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Abstract
Human skin segmentation is a crucial task in computer vision and biometric systems, yet it
poses several challenges such as variability in skin colour, pose, and illumination. This paper
presents a robust data-driven skin segmentation method for a single image that addresses
these challenges through the integration of contextual information and efficient network
design. In addition to robustness and accuracy, the integration into real-time systems requires
a careful balance between computational power, speed, and performance. The proposed
method incorporates two attention modules, Body Attention and Skin Attention, that utilize
contextual information to improve segmentation results. These modules draw attention to the
desired areas, focusing on the body boundaries and skin pixels, respectively. Additionally,
an efficient network architecture is employed in the encoder part to minimize computational
power while retaining high performance. To handle the issue of noisy labels in skin datasets,
the proposedmethod uses aweakly supervised training strategy, relying on the SkinAttention
module. The results of this study demonstrate that the proposed method is comparable to, or
outperforms, state-of-the-art methods on benchmark datasets.

Keywords Skin segmentation · Attention mechanism · Weakly supervised training · Deep
neural networks

1 Introduction

Skin detection, also known as skin segmentation, is the process of separating skin pixels or
regions in an image from non-skin pixels such as background or covered body pixels [1].
This technique has awide range of applications, including human biometric analysis, medical
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image analysis, autonomous driving, and the beauty industry.Additionally, it is also important
in other applications such as content retrieval, robotics, sign language recognition, and human
tracking [2]. Furthermore, skin segmentation is often the first step in tasks related to nudity
and appearance detection [3]. The use of cameras in video-based applications for Ambient
AssistedLiving (AAL) and remotemonitoringof patients raises privacy concerns, particularly
related to unwanted nudity. To address these concerns, a promising solution is privacy by
context [4], which adapts privacy levels based on various factors, including the level of nudity.
In these applications, the accurate detection of skin areas is critical for ensuring privacy.

However, skin segmentation is a challenging task as it faces many difficulties including
variations in illumination conditions, different skin tones, camera variations, makeup, ageing,
and backgrounds with similar colours. The success of skin segmentation algorithms depends
on their ability to overcome these challenges and accurately identify skin pixels in an image.

Prior to the advent of deep learning, most methods relied on the distribution of skin
colours to identify fixed or adaptive ranges of skin pixel values in different colour spaces or
the training of a classifier according to each colour space [5]. However, these methods have
several drawbacks, such as poor generalization and high dependence on the training data.
As a result, they tend to have poor performance in complex background situations and high
false positive detection rates, making them ill-suited for real-world scenarios.

With the rise of deep learning, skin segmentation accuracy has improved drastically. The
introduction of Fully Convolutional Networks (FCN) for semantic segmentation by Shel-
hamer et al. [6], as well as increases in computation power, have boosted both accuracy and
speed in the segmentation task.Additionally, othermethods such asUNet [7] andDeepLab [8]
were proposed, capable of segmenting multiple objects with high precision. These methods
have also been adapted for human skin segmentation [5, 9]. Despite the advances in accu-
racy achieved by these deep learning-based methods, there is still room for improvement. In
particular, they are highly dependent on large datasets and tend to perform poorly on small
or noisy skin segmentation datasets [10].

In this paper, we propose a novel skin segmentation method that leverages the advances in
human body segmentation to improve accuracy. In recent years, human body segmentation
has improved significantly, with reliable open source models such as DensePose [11] and
Mask R-CNN [12] being published, which can provide different body parts regions in a
given image. These regions can serve as contextual information for detecting skin pixels.
Instead of approaching the problem of skin segmentation from scratch, our method utilizes
this auxiliary information to increase accuracy with lighter models. Our approach involves
the use of two separate attention modules in the decoder, namely the Body Attention module
and the Skin Attention module. The Body Attention module utilizes the output of the body
mask to make the network focus on the body boundary. In the Skin Attention module, we
make the assumption that the face and hands areas consistmostly of skin pixels. Therefore, we
calculate the affinity of these pixels and body pixels embeddings to produce a skin attention
mask, which provides extra guidance to the network for the target class. By integrating these
attentionmodules, ourmethod can effectively segment skin pixels by utilizing the information
from human body segmentation and facial features.

Our contribution to the field of skin segmentation includes:

• A lightweight model that improves skin segmentation performance without greatly
increasing model size.

• Incorporating contextual information in the skin detection process to enhance perfor-
mance.
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• Modifying commonly used attention mechanisms to better suit the skin segmentation
task.

• Utilizing individual skin colour as a cue for segmentation to address variations in skin
tone.

• A weakly supervised training strategy that utilizes the proposed attention module for
training on noisy datasets.

The above contributions provide a method that balances the trade-off between accuracy,
resources and computational cost which make it feasible for real-world applications.

The remaining structure of this paper is as follows: Section 2 provides a brief overview
of current methods for human skin detection. Section 3 describes the proposed method for
skin segmentation, including the architecture and the details of attention modules. Section 4
presents experiments and results, as well as an ablation study. Section 5 introduces a weakly
supervised training strategy to improve results. Finally, in Section 6, conclusions of the work
and suggestions for future research are discussed.

2 Related work

Human skin segmentation is a challenging task in computer vision andmachine learning, and
has been widely studied in the literature. Similar to many other recognition and segmentation
tasks, human skin segmentation can be broadly categorized into two groups: traditional
methods, and deep learning methods.

Traditional skin detection methods have primarily focused on skin colour characteristics.
For example, thresholding methods based on the intensity of skin colour have been proposed
in [13, 14]. These methods typically define a set of rules and conditions for each colour
channel, and check if a given pixel satisfies these conditions to decide if it belongs to the skin
class or not. These rules are established either based on trial and error [15–17] or by using
thresholding algorithms [18]. However, these methods have a high false detection rate and
are strongly dependent on the training dataset and its conditions.

To address the limitations of traditional skin detection methods, various researchers have
proposed more robust methods by dynamically updating rules using cues in the image. For
example, Shifa et al. [19] proposed a hybrid method with Combined Threshold-rules that
adapts the threshold ranges by detecting the sampling skin tone and analysing the colour
histogram and distribution. Probabilistic methods were also proposed as a way of detecting
skin by evaluating the general distribution of skin colour. These methods include using
parametric and non-parametric techniques such as histograms, look-up tables (LUT), Naive
Bayes and Gaussian distributions. For example, Gomez et al. [20] used 3D histograms to
propose the conditions for skin probability, utilizing a simplified version of probability theory.
Nanni et al. [21] proposed the use of histogramswithmultipleLUTs in different colour spaces,
which resulted in a reduction of the false detection rate. However, thesemethods, despite their
speed, do not take into account the relation between adjacent pixels and the spatial information
which are crucial for skin detection [22]. Bayesian classifiers have also been used for skin
detection, but they require a large training set to achieve high accuracy. For instance, [23–25]
used the Bayes rule to calculate the conditional probability density function of a pixel from
normalized histograms and adjust threshold values. Additionally, some works [26–28] have
modelled skin colour distribution using Gaussian mixtures, 2D Gaussian Probability Density
Function (PDF) were used to model skin colour in different colour spaces like YUV, HSV
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and RGB. These methods typically require the use of expectation maximization (EM) for
parameter optimization [29]. Supervised learning and binary classification methods, such
as Support Vector Machines (SVMs) and Multi-Layer Perceptrons (MLPs), have also been
employed in skin detection. These methods train a classifier on extracted colour-texture
features, such as Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP),
FAST and ORB, derived from blobs of an image [30, 31]. For example, Han et al. [32] used
SVM for binary pixel-wise classification. Another example is the combination of SVM and
Gaussian Mixture Model (GMM) proposed in [33].

Region-based skin detection is another approach that has been used in skin detection.
These techniques aim to make use of spatial information and connections in an image to
identify regions with similar features, without building a skin colour model. Region growing
is one such technique where the segmentation process starts with selected seed pixels. The
neighbouring pixels are compared to the seed pixel and if they have similar properties,
they are added to the seed pixel’s region, which then grows. This process is repeated for
new adjacent pixels until no neighbouring pixels satisfy the conditions and the growth of
the region stops. Variations of this method have been proposed in [34–36] where different
measurement techniques have been proposed to measure the similarity between adjacent
pixels for assigning them to a region, such as Euclidean distance, colour distance map or
probability measuring.

With the advent of deep learning, newer ideas have been proposed for human skin seg-
mentation, many of which draw inspiration from the broader research area of semantic
segmentation or a combination of various deep learning concepts. Early work treated the
problem as a classification task by dividing an image into smaller patches and using deep
networks to perform binary classification between skin and non-skin classes [37–39]. For
example, Lei et al. [38] proposed a patch-based skin segmentation method using stacked
autoencoders to extract discriminative features from the blobs in an image, but this approach
is not efficient in terms of time and resources required and it does not take into account
relations between patches and contextual information.

Fully Convolutional Networks (FCNs) [6] have become the main approach for various
segmentation tasks, including skin segmentation, due to their ability to reduce the number
of parameters through an encoder-decoder architecture. The encoder extracts features and
performs down-sampling, while the decoder up-samples the features to the original input
size. For example, Kim et al. [37] evaluated some of the prevalent FCN architectures for skin
segmentation. Chang-Hsian et al. [40] used pre-trained ResNet50 and transfer learning. Roy
et al. [41] combined conditional adversarial training approach [42] along with U-Net [7].
Zuo et al. [9] used RNN layers as they claim that CNN are not sufficient to model the
relationship between adjacent pixels. He et al. [5] proposed a semi-supervised method which
takes advantage of other similar datasets and used dual-task fully convolutional network
which shares the encoder and two separate decoders for detecting both body and skin parts in a
U-Net shape auto-encoder. Arsalan et al. [43] proposed an end-to-end semantic segmentation
network with an outer residual skip connection to transfer the edge information from early
layers to end layers.

A successful technique in semantic segmentation is the use of self-attention modules for
modelling long-range dependencies within an image. This technique was originally proposed
in [44] for machine translation but has since been widely used in various tasks such as [45,
46]. In computer vision, self-attention modules were introduced in [47] to extract global
dependencies of inputs for better image generation. Since then, various kinds of self-attention
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mechanisms have been proposed, ranging from simple lightweight methods such as [48] to
more complex methods like [49] that capture dependencies in different dimensions.

3 Method

In this section, we present a novel method for efficient skin segmentation. We begin by
describing the task-oriented attention modules that form a key component of our approach.
Next, we outline the general architecture of our network, which is based on a fully convolu-
tional network (FCN) with encoder-decoder architecture. Finally, we discuss the efficiency
of our approach, specifically in terms of the reduction of parameters in the encoder.

3.1 Attentionmechanisms

The attention modules are designed to help the network focus on specific areas of an image
that are relevant to the task at hand, such as skin pixels in this case, without adding a large
amount of redundant parameters. The two attention mechanisms used in this work are:

• Body Attention: This is used to emphasize the body area in a given image, as the skin
pixels are only present within the body boundaries. This module is used in an earlier
stage of the decoder, and its purpose is to guide the network to focus on the body area
and extract body-related information from the encoded data.

• Skin Attention: This module is designed to compare the embeddings of pre-defined skin
areas, such as the face and hands, to all other body embeddings. The purpose of this
module is to provide auxiliary guidance to refine the output. It is implemented in a later
stage of the decoder with a higher resolution, which leads to finer boundaries and reduces
noise.

By using these two attention mechanisms, the network is able to perform more efficiently
by focusing on the given task and reach higher accuracy using fewer parameters. In the
following, each module is explained in detail.

3.1.1 Body attention module

TheBodyAttentionmodule aims to focus feature extraction on the body area. It is based on the
ConvolutionalBlockAttentionModule (CBAM) [48]method for adaptive feature refinement,
but with slight modifications to make it better suited for the task of skin segmentation.

CBAM produces attention maps along the channel and spatial dimensions sequentially.
The module starts by generating an attention map for the channel dimension by using a
fully connected layer and a sigmoid activation function to weigh the importance of each
channel. Then, it generates an attention map for the spatial dimension by using max-pooling
and average-pooling to compute the importance of each spatial location. These two attention
maps are then multiplied element-wise to produce a final attention map. This map is then
used to weight the feature maps and refine the feature extraction.

This modified version of CBAM is used in the Body Attention module to emphasize the
body area in a given image, and guide the network to focus on the body area and extract
body-related information from the encoded data. This helps to improve the performance of
the network by focusing on the most important areas of the image.

For a given block input tensor F ∈ R
C×H×W , a 1D channel attention Mc ∈ R

C×1×1

and a 2D spatial attention map Ms ∈ R
1×H×W are inferred [48]. According to [50] each
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channel of feature tensor acts as an object detector, therefore channel attention tries to find
meaningful objects in an image.

For the channel attention submodule, we followed the CBAMapproach described in detail
by Woo et al. [48]. Specifically, we use the following steps:

1. The input tensor is max-pooled and average-pooled simultaneously and squeezed spa-
tially.

2. The descriptor vectors are then fed to a shared network, which is a multi-layer perceptron
(MLP) with one hidden layer. The size of the hidden layer is reduced from the input by
a ratio of ∇.

3. The outputs of the shared MLP are then merged by summation and a sigmoid function
is applied to the result.

4. Finally, this channel attention vector is broadcasted to the input tensor F .

The spatial attention submodule focuses on the area where the desired object (skin)
appears. It uses a modified version of the CBAM approach to compute the spatial attention.
In CBAM, the spatial attention is computed by applying average-pooling and max-pooling
operations along the channel axis and concatenating them to generate an efficient feature
descriptor. This descriptor is then convolved by a standard convolution layer. In our approach,
we make use of the knowledge that skin is present within the body boundaries. We extract
a body mask by using a pre-trained network and concatenate it to the original concatenation
before the convolution layer. This forces the attention module to put emphasis on the area of
interest (human body) and extract more related attention maps from the input. The Sigmoid
function is again applied to the final result. It has been empirically confirmed in our experi-
ments that by adding the body mask in the concatenation operation, the network can extract
a more related attention map from the input, which results in an improvement in accuracy of
the whole network.

This refined and task-oriented CBAM submodule can be summarized as follows:

F ′ = Mc(F) ⊗ F (1)

F ′′ = Ms(F
′) ⊗ F ′ (2)

where
Mc(F) = σ(MLP(AvgPool(F)) + MLP(Max Pool(F))) (3)

and
Ms (F

′) = σ(Conv7×7(Concat[AvgPool(F ′); Max Pool(F ′); BodyMask(I )])) (4)

The Sigmoid function is denoted by σ , F ′ is the input tensor to the spatial attention and I is
the input image. The output 2D map is multiplied to all input channels of F ′. Finally, using a
skip connection, the attention module output F ′′ is summed with the module input tensor F .

3.1.2 Skin attention module

Skin detection in images can be a difficult task, especially in unconstrained situations where
skin areas can be exposed on different body partswith different shapes and under varying body
poses. Conventional CNNs, which are designed to find objects and shapes for a given class,
may not be completely effective or appropriate for this task. In addition, Fully Convolutional
Networks with convolution operations have local receptive fields and fail to capture long-
range contextual information. This means that the features extracted from the same class in
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different parts of the image may vary in representation, leading to a performance drop due
to intra-class inconsistency. Furthermore, to account for the variety of human skin colours,
the datasets for the deep learning model have to be large and inclusive of all skin types. To
overcome these challenges, a skin attention module inspired by the work of Fu et al. [49]
is introduced in this study. The proposed method is able to take advantage of a wider range
of contextual information and draw a global context over local features to improve feature
representations for better pixel-level prediction and noise reduction. The mechanism is based
on the assumption that face and hand areas of a given human image mostly consist of skin
pixels.

In this proposed method, we begin by using a pre-trained body segmentation network to
infer the body part masks from the input image, I . In the attention module, an intermediate
input feature tensor T ∈ R

C×H×W is duplicated and then fed to a CNN layer, followed by
batch normalization to obtain K , Q ∈ R

C×H×W . Then, by using the body part masks, the
binary mask of face and hand area is multiplied by broadcasting to K, and the full body
binary mask is element-wise multiplied to Q. Both outcomes are then reshaped to R

C×N

where N = H × W . The energy matrix E ∈ R
N×N is calculated by taking the matrix

multiplication of the transpose of Q and K.
By utilizing the body part masks, we then element-wise multiply the binary mask of the

face and hand area with K and the full body binary mask with Q. Both matrices are reshaped
to C×N. The energy matrix, E, with dimensions N×N, is calculated by taking the matrix
multiplication of the transpose of Q and K.

Each non-zero column in the reshaped matrices K and Q represents the feature vector of
face pixel and body pixel, respectively. Therefore, each element in E represents the inner
product or similarity measure between a pixel in the face and hands areas and a pixel in the
body. By calculating the weighted average of E with respect to the number of face and hands
pixels in I, the average similarity between the embedding of a pixel in body area and all the
pixels in hands and face areas is obtained. The closer they are, the output of the inner product
is higher.

The resulting matrix, called the similarity matrix S ∈ R
N×1, is further processed by

applying the tanh function for normalization and limiting the values below 1. It is then
reshaped to 1 × H × W , which has the same dimensions as the input tensor. This resulting
matrix, called the attention map A, illustrates the correlation between a body pixel and all
supposed skin pixels in the hands and face of a person. Since the body of each person is
compared to their corresponding face and hands, this method works well with a variety
of skin colours. Additionally, all body embeddings are compared to the face regardless of
location, body part, or the shape of that body part. This allows for a broader range of contextual
information to be involved in the process, rather than relying solely on local features from
the CNN.

To enable the network to adjust the effect of this attention map, a trainable weight param-
eter, ω, is applied to it. This allows the network to decide the importance of this attention
map and use it accordingly. The final attention map is then added to the input tensor, T, to
obtain the final result.

Empirical results demonstrate that the trainable weight parameter, ω, tends to increase
during the training process. This suggests that the attention map, A, contains useful informa-
tion for the final prediction. The proposed attention module, as a whole, is depicted in Fig. 1.
This highlights the effectiveness of the proposedmethod in capturing the correlation between
pixels in the body, face and hands areas, and utilizing it to improve the final prediction.
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Fig. 1 Skin Attention Module. ©� denotes element-wise multiplication and × is matrix multiplication

3.2 Network architecture

Semantic segmentation has seen significant advancements in recent years, with several meth-
ods achieving high accuracy on benchmark datasets. However, these methods often rely on
heavy backbone networks, making them less suitable for real-time applications with lim-
ited computation resources. To address this issue, researchers have proposed lightweight
networks that can achieve performance comparable to that of high-quality networks while
consuming less computational resources. Examples of such networks include ENet [51],
DFANet [52], and LEDNet [53], which employ techniques such as depthwise separable con-
volutions (DwConv2D) [54], feature aggregation subnetworks, and channel split and shuffle.

The proposed model for semantic segmentation consists of two channels. The primary
channel of the network is an asymmetric encoder-decoder architecture that incorporates
auxiliary submodules in the pipeline. It is inspired by HLNet [55] and HRNet [56] and
employs best practices in segmentation modules.

The encoder consists of CNNs and DwConv2D, bottlenecks and interaction modules.
The input image, with a resolution of 256 × 256, is fed to a CNN block with 32 filters,
followed by two DwConv2D blocks with 64 filters and a stride of 2. This fast downsampling
process ensures low-level feature sharing [57]. Each block has 3 × 3 kernels, followed by
batch normalization and ReLU activation. To preserve details and constrain the number of
parameters, the maximum downsampling rate is set to 1/8. The output, with a resolution of
32 × 32, is then fed to the information interaction module proposed in [55]. This module
consists of three parallel inverted residual blocks using different filter sizes and strides.
Each block captures information with different resolutions and feature map sizes, learning
multiscale information representation. This process increases the network’s ability to segment
small objects and shapes while preserving more details. Subsequently, the information from
high to low resolutions is combined together by concatenation. For more details, please refer
to HLNet [55].

In addition to the primary channel, the proposed model also includes an auxiliary channel
that is pre-trained for body segmentation. Given an image, this model produces a whole
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body mask, as well as separate masks for the face and hands. These masks are then resized
and fed to the decoder to be used in attention mechanisms. These attention mechanisms (see
Section 3.1) aim to make use of the information provided by the auxiliary channel to improve
the overall performance of the semantic segmentation.

The decoder of the proposed model consists of three bilinear upsampling layers, each
followed by a convolution block, to construct an original size image from the 32×32 feature
map in the bottleneck. To make use of the information provided by the auxiliary channel, a
body attention module is applied after the first upsampling layer and a skin attention module
is applied after the second one. Additionally, skip connections are added to propagate the
error to the early feature extraction layers.

Finally, a Sigmoid layer is applied to perform binary classification between skin and non-
skin pixels. In order to optimize the network, given the class imbalance between skin and
non-skin pixels in most images, where the background is larger than the area covered by
the person, a combination of Dice loss and Binary Focal loss is used between the output
mask and the ground truth. This has been shown to be more effective for segmenting small
objects [58]. The overall network architecture is illustrated in Fig. 2.

4 Experimental results

4.1 Datasets and implementation details

Obtaining data for skin segmentation is a common challenge in this field. One approach
is to collect bespoke datasets, but there are also several public datasets available for this
task which can be useful for the evaluation and comparison of methods, even though they
may not follow the same protocol (i.e., some considered eyebrows and lips as skin and

Fig. 2 Proposed skin segmentation network
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some excluded them) or contain noise. To train the proposed method, the visuAAL Skin
Segmentation dataset [10] (VSS) is used. The VSS dataset contains 46,775 high-quality
images divided into a training set with 45,623 images and a validation set with 1,152 images.
The skin labels were automatically extracted with an algorithm. Additionally, 230 images
were manually segmented for evaluation purposes, which are used as the test set in order
to report the performance. Some samples of the VSS dataset are shown in Fig. 3. Another
dataset incorporated in this work is the Pratheepan face Dataset [59]. Pratheepan is a small
dataset containing 78 images with precise annotation and is mostly used as a benchmark. The
obtained results are evaluated on this dataset in order to make a comparison with existing
methods. Both datasets are publicly available. In this work, the DensePose method was
used for body, face and hands area detection. DensePose is a method that can provide precise
bodymasks. To incorporate this information in our network, the parameters of the DensePose
network were frozen during the training process.

The proposed method was implemented using TensorFlow and the training was run on
two GPUs, one NVIDIA GeForce GTX 1080Ti and one NVIDIA GeForce GTX 2080Ti.
The network was trained for 30 epochs using an initial learning rate of 0.001, with a decay
rate of 0.96, and the ADAM optimization algorithm. The whole training process took about
5 hours.

4.2 Results

The results of the proposed method were compared with other important semantic segmenta-
tion methods on the VSS dataset in Table 1. All of these networks were trained and evaluated
on the same data. As shown in the table, the proposed method outperformed all other meth-
ods with a considerably lower number of parameters. One important thing to note is the
improvement in results when comparing HLNet to our method. Despite their similarities in
terms of the backbone network architecture and the amount of parameters employed, the

Fig. 3 Samples from VSS dataset
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Table 1 Semantic segmentation results on VSS dataset

Method Precision Recall F1-score CDR DSC Param.

SegNet [60] 80.71% 80.12% 80.29% 97.75% 78.82% 30M

UNet [7] 82.66% 85.34% 83.83% 98.01% 82.38% 30M

Basic FCN [61] 70.34% 84.88% 76.80% 97.11% 74.40% 10M

DSNet [62] 85.80% 85.08% 85.40% 98.35% 84.14% 8M

HLNet [55] 76.50% 79.86% 78.01% 97.43% 76.08% 1.2M

Proposed method 88.30% 85.91% 86.96% 98.45% 86.44% 1M

Base network 76.20% 78.22% 77.19% 97.24% 75.88% 1M

With body attention 78.11% 82.08% 80.04% 97.81% 78.92% 1M

With skin attention 86.62% 83.11% 84.82% 98.18% 83.33% 1M

proposed method shows significant improvement in all metrics for skin segmentation. This
demonstrates the effectiveness of the proposed attention mechanisms. An additional study to
compare the efficiency of different methods has been performed. The results are illustrated
in Table 2 and prove the proposed method is either the best or second only to HLNet but with
considerable improvement in the performance metrics.

4.3 Ablation study

Furthermore, to validate the effect of eachmodule, each of themwas evaluated separately. The
results are presented inTable 1, and it is shown that the SkinAttention played amore important
role compared to the Body Attention module, yet adding Body Attention still improved the
results from the base network. Figure 4 illustrates some of the segmentation results. One
significant observation in the proposed method is the impact of the Body Attention and Skin
Attention modules on Recall and Precision. The Body Attention module has a greater effect
on Recall compared to Precision, while the Skin Attention improves Precision to a greater
extent than recall. This can be explained by the BodyAttention’s emphasis on the whole body
area, resulting in the inclusion of all body pixels and thus, a higher Recall. Conversely, the
Skin Attention focuses on excluding non-skin pixels from the final mask, leading to improved
Precision. Furthermore, the ω parameter which adjusts the amount of effect and participation
of the Attention map in the whole network is set to 1.3 at the end of the training process.

Table 2 Efficiency evaluation

Method Model size Training time
per epoch

GPU memory
required∗

Inference time Param.

SegNet 260MB 30min 430MB 33ms 30M

UNet 120MB 30min 350MB 30ms 30M

Basic FCN 60MB 25min 270MB 30ms 10M

DSNet 120MB 20min 270MB 50ms 8M

HLNet 10MB 10min 70MB 25ms 1.2M

Proposed
method

5MB 15min 120MB 30ms 1M

∗: For a batch size of one sample
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(a) (b) (c) (d)

Fig. 4 The proposed method segmentation results on VSS dataset. (a) Original image, (b) ground truth, (c)
model output, (d) attention map

5 Improvement using weakly supervised training for noise reduction

Deep learning methods have shown better performance compared to previous approaches for
semantic segmentation, but they require a large amount of training data to perform adequately.
The annotation process for segmentation is costly, very demanding and labor-intensive. Most
of the datasets for skin segmentation are either small or suffering from low-quality images,
but the main problem is the labelling noise, as it is expensive to annotate such a large amount
of images accurately.

To make use of these big but noisy datasets, a method is proposed to modify the ground
truth labels during a recursive training process. This is addressed as a weak supervision task
in which, although the labels for a desired class exist (skin pixels), they may be annotated
wrongly. In other words, every pixel with a skin class label can either belong to skin or non-
skin class, but the pixels labelled as non-skin are considered to be correct. This assumption
is made after studying available skin datasets. In this work, the VSS dataset is used, which
includes a large training set produced automatically and may contain some noise, and a small
fully supervised validation set. The problem of training directly over this dataset is that for a
number of epochs, the improvement over validation and training sets accuracy can be seen.
However, as the number of epochs increases, the network tends to overfit on the noisy training
data, and this causes a drop in validation accuracy. To address this problem, the training data
is utilized to the point that it is useful for the objective, and then the noise is modified to
redirect the network parameters to segment the desired areas.

This approach allows the network to make use of the large amount of training data while
addressing the problem of noisy labels in the dataset. The modified training set is then used
to continue training the network for a fixed number of rounds. With this method, the network
learns the general segmentation task in the warm-up step and then is able to improve its
performance by using the Attention map to correct the noisy labels in the training set in each
modification step. The threshold used to relabel the pixels is increased after eachmodification
step, allowing the network to focus on pixels that are more likely to belong to the skin class
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while ignoring the noisy labels. Additionally, pixels outside the body boundary area are not
relabelled, providing an additional constraint on the modification process.

The Attention map is used before applying the weight parameter ω in the skin attention
module. As the Attention map is computed as the product of the tanh function, the values are
limited to 1, and can be considered as a skin probability map regarding face and hand pixels.
This probability map is then multiplied with the weight parameter ω to adjust the effect and
participation of the Attention map in the overall network.

The approach of using the Attention map to modify the ground truth labels during the
training process is inspired by previous work [63, 64]. However, two modifications have
been made. First, instead of using the output after each round, the Attention map is used.
This provides stronger supervision as it uses the auxiliary information provided by the body
segmentation module. Second, instead of searching in the rectangular bounding box, the
search is limited to the body area (i.e., the only place skin pixels can exist). This reduces the
search space and increases the precision of the relabelling process. Additionally, the spatial
continuity condition is skipped in this approach. This is because, depending on the garment
types, skin exposure can be found in any shape and size over the body.

The labelling procedures for a given pixel in position (i, j) can be written as:

Lnew
(i, j) =

{
1 if L prev

(i, j) ⊗ P(S | F, H)(i, j) > t

0 otherwise
(5)

in which Lnew will be the new label after this training round, L prev is the last round training
ground truths, P(S | F, H) is the probability map of the skin class given hand and face and
t is the threshold value.

(a) (b) (c) (d) (e)

Fig. 5 Recursive training effect on the noisy labels. (a) Original image, (b) noisy labels, (c) after 1st modifi-
cation round, (d) after 2nd modification round, (e) after 4th modification round
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Table 3 Comparing the results of the proposed method on the VSS dataset before and after recursive training

Method Precision Recall F1-score CDR DSC

Base network 76.20% 78.22% 77.19% 97.24% 75.88%

Proposed method 88.30% 85.91% 86.96% 98.45% 86.44%

Recursive training 90.59% 87.92% 89.17% 98.61% 88.91%

The improvement in performance is measured using the validation set after each round of
the modification step. This process is continued until a performance drop is observed in the
validation set. This indicates that the threshold for relabelling pixels has been increased so
much that skin pixels are being discarded from the new ground truth labels. It is important
to note that this procedure may not remove the noise from all images in the dataset equally
or to the same extent, but it corrects the problematic and faulty labels that cause the most
errors. As a result, the overall quality of the segmentation improves. In this way, it makes
the performance higher on the denoised validation data. For the final step of training, the
ground truth labels produced in the epoch previous to the performance drop are considered
as the final training set. The training is continued over these labels until the best results are
achieved. Depending on the level of noise in each image, the number of modification epochs
needed to denoise might be different. As illustrated in Fig. 5, for a small modification such
as removing a bracelet or necklace, even one epoch is enough, however, large mislabelling
requires more rounds of this recursive training procedure.

In this experiment, the number of training rounds n used for the warm-up step was 2, and
the threshold value t for modification started at 0.2 with an increasing step size of 0.05 after
each round. The optimum threshold reached at the end was 0.35 and the normal training
process started with the dataset generated by this round. In Table 3, the improvement of
the results compared with the direct training approach is shown. It can be seen that the
proposed method outperforms the direct training approach in terms of overall segmentation
performance. This demonstrates the effectiveness of the proposed method in addressing the
problem of labelling noise in the training dataset and improving the segmentation results.

In addition, in order to make a comparison between our method and other skin segmen-
tation methods, the evaluation, over the Pratheepan dataset, of the proposed method after
the recursive training steps was performed and is illustrated in Table 4. As it can be seen,
our method is performing better than classic approaches and produces very similar results
to the state-of-the-art method. Considering the model sizes, this can be considered as a
higher improvement in efficiency. Some samples of the results on the Pratheepan dataset
are illustrated in Fig. 6. This comparison further validates the effectiveness of the proposed
method in addressing the problem of labelling noise and improving the overall segmentation
performance, while also being more efficient than other methods.

Table 4 Evaluation of human
skin segmentation methods on
the Pratheepan dataset

Method Precision Recall IoU

Thresholding [65] 65.31% 89.58% 60.20%

GMM [24] 62.36% 91.5% 60.46%

UNet [7] 89.55% 87.87% 85.50%

SOTA [5] 92.58% 87.51% 87.90%

Our method 89.24% 90.95% 89.80%
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(a) (b) (c)

Fig. 6 Segmentation results on the Pratheepan benchmark dataset. (a) Original image, (b) ground truth, (c)
model output

6 Conclusion

In conclusion, a lightweight, efficient and robust model for human skin segmentation is
proposed in this paper. By utilizing prior knowledge and contextual information, the proposed
method addresses some of the main challenges in human skin detection, such as variations in
skin colour and real-time performance. Additionally, a weakly supervised training strategy
is proposed using the attention module to make large datasets with possible annotation errors
more usable. The results show that the proposed method outperforms other existing methods
in terms of accuracy and efficiency. Furthermore, the method is able to handle unseen skin
characteristics and colours. However, to further improve the model, future enhancements
such as reducing the memory requirements for calculating the skin attention, adding post-
processing steps for smoothing the detected regions and refining the output, and keeping
consistency may be beneficial.
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