191 research outputs found

    From news to comment: Resources and benchmarks for parsing the language of web 2.0

    Get PDF
    We investigate the problem of parsing the noisy language of social media. We evaluate four all-Street-Journal-trained statistical parsers (Berkeley, Brown, Malt and MST) on a new dataset containing 1,000 phrase structure trees for sentences from microblogs (tweets) and discussion forum posts. We compare the four parsers on their ability to produce Stanford dependencies for these Web 2.0 sentences. We find that the parsers have a particular problem with tweets and that a substantial part of this problem is related to POS tagging accuracy. We attempt three retraining experiments involving Malt, Brown and an in-house Berkeley-style parser and obtain a statistically significant improvement for all three parsers

    Robustness issues in a data-driven spoken language understanding system

    Get PDF
    Robustness is a key requirement in spoken language understanding (SLU) systems. Human speech is often ungrammatical and ill-formed, and there will frequently be a mismatch between training and test data. This paper discusses robustness and adaptation issues in a statistically-based SLU system which is entirely data-driven. To test robustness, the system has been tested on data from the Air Travel Information Service (ATIS) domain which has been artificially corrupted with varying levels of additive noise. Although the speech recognition performance degraded steadily, the system did not fail catastrophically. Indeed, the rate at which the end-to-end performance of the complete system degraded was significantly slower than that of the actual recognition component. In a second set of experiments, the ability to rapidly adapt the core understanding component of the system to a different application within the same broad domain has been tested. Using only a small amount of training data, experiments have shown that a semantic parser based on the Hidden Vector State (HVS) model originally trained on the ATIS corpus can be straightforwardly adapted to the somewhat different DARPA Communicator task using standard adaptation algorithms. The paper concludes by suggesting that the results presented provide initial support to the claim that an SLU system which is statistically-based and trained entirely from data is intrinsically robust and can be readily adapted to new applications

    Learning to Generate 3D Training Data

    Full text link
    Human-level visual 3D perception ability has long been pursued by researchers in computer vision, computer graphics, and robotics. Recent years have seen an emerging line of works using synthetic images to train deep networks for single image 3D perception. Synthetic images rendered by graphics engines are a promising source for training deep neural networks because it comes with perfect 3D ground truth for free. However, the 3D shapes and scenes to be rendered are largely made manual. Besides, it is challenging to ensure that synthetic images collected this way can help train a deep network to perform well on real images. This is because graphics generation pipelines require numerous design decisions such as the selection of 3D shapes and the placement of the camera. In this dissertation, we propose automatic generation pipelines of synthetic data that aim to improve the task performance of a trained network. We explore both supervised and unsupervised directions for automatic optimization of 3D decisions. For supervised learning, we demonstrate how to optimize 3D parameters such that a trained network can generalize well to real images. We first show that we can construct a pure synthetic 3D shape to achieve state-of-the-art performance on a shape-from-shading benchmark. We further parameterize the decisions as a vector and propose a hybrid gradient approach to efficiently optimize the vector towards usefulness. Our hybrid gradient is able to outperform classic black-box approaches on a wide selection of 3D perception tasks. For unsupervised learning, we propose a novelty metric for 3D parameter evolution based on deep autoregressive models. We show that without any extrinsic motivation, the novelty computed from autoregressive models alone is helpful. Our novelty metric can consistently encourage a random synthetic generator to produce more useful training data for downstream 3D perception tasks.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163240/1/ydawei_1.pd

    Automatically extracting polarity-bearing topics for cross-domain sentiment classification

    Get PDF
    Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning

    Unsupervised Structure Prediction with Non-Parallel Multilingual Guidance

    Get PDF
    We describe a method for prediction of linguistic structure in a language for which only unlabeled data is available, using annotated data from a set of one or more helper languages. Our approach is based on a model that locally mixes between supervised models from the helper languages. Parallel data is not used, allowing the technique to be applied even in domains where human-translated texts are unavailable. We obtain state-of-theart performance for two tasks of structure prediction: unsupervised part-of-speech tagging and unsupervised dependency parsing.

    Fortschritte im unüberwachten Lernen und Anwendungsbereiche: Subspace Clustering mit Hintergrundwissen, semantisches Passworterraten und erlernte Indexstrukturen

    Get PDF
    Over the past few years, advances in data science, machine learning and, in particular, unsupervised learning have enabled significant progress in many scientific fields and even in everyday life. Unsupervised learning methods are usually successful whenever they can be tailored to specific applications using appropriate requirements based on domain expertise. This dissertation shows how purely theoretical research can lead to circumstances that favor overly optimistic results, and the advantages of application-oriented research based on specific background knowledge. These observations apply to traditional unsupervised learning problems such as clustering, anomaly detection and dimensionality reduction. Therefore, this thesis presents extensions of these classical problems, such as subspace clustering and principal component analysis, as well as several specific applications with relevant interfaces to machine learning. Examples include password guessing using semantic word embeddings and learning spatial index structures using statistical models. In essence, this thesis shows that application-oriented research has many advantages for current and future research.In den letzten Jahren haben Fortschritte in der Data Science, im maschinellen Lernen und insbesondere im unüberwachten Lernen zu erheblichen Fortentwicklungen in vielen Bereichen der Wissenschaft und des täglichen Lebens geführt. Methoden des unüberwachten Lernens sind in der Regel dann erfolgreich, wenn sie durch geeignete, auf Expertenwissen basierende Anforderungen an spezifische Anwendungen angepasst werden können. Diese Dissertation zeigt, wie rein theoretische Forschung zu Umständen führen kann, die allzu optimistische Ergebnisse begünstigen, und welche Vorteile anwendungsorientierte Forschung hat, die auf spezifischem Hintergrundwissen basiert. Diese Beobachtungen gelten für traditionelle unüberwachte Lernprobleme wie Clustering, Anomalieerkennung und Dimensionalitätsreduktion. Daher werden in diesem Beitrag Erweiterungen dieser klassischen Probleme, wie Subspace Clustering und Hauptkomponentenanalyse, sowie einige spezifische Anwendungen mit relevanten Schnittstellen zum maschinellen Lernen vorgestellt. Beispiele sind das Erraten von Passwörtern mit Hilfe semantischer Worteinbettungen und das Lernen von räumlichen Indexstrukturen mit Hilfe statistischer Modelle. Im Wesentlichen zeigt diese Arbeit, dass anwendungsorientierte Forschung viele Vorteile für die aktuelle und zukünftige Forschung hat

    Unsupervised structure induction and multimodal grounding

    Get PDF
    Structured representations build upon symbolic abstraction (e.g., words in natural language and visual concepts in natural images), offer a principled way of encoding our perceptions about the physical world, and enable the human-like generalization of machine learning systems. The predominant paradigm for learning structured representations of the observed data has been supervised learning, but it is limited in several respects. First, supervised learning is challenging given the scarcity of labeled data. Second, conventional approaches to structured prediction have been relying on a single modality (e.g., either images or text), ignoring the learning cues that may have been specified in and can be readily obtained from other modalities of data. In this thesis, we investigate unsupervised approaches to structure induction in a multimodal setting. Unsupervised learning is inherently difficult in general, let alone inducing complex and discrete structures from data without direct supervision. By considering the multimodal setting, we leverage the alignments between different data modalities (e.g., text, audio, and images) to facilitate the learning of structure-induction models, e.g., knowing that the individual words in ``a white pigeon'' always appear with the same visual object, a language parser is likely to treat them as a whole (i.e., phrase). The multimodal learning setting is practically viable because multimodal alignments are generally abundant. For example, they can be found in online posts such as news and tweets that usually contain images and associated text, and in (YouTube) videos, where audio, scripts, and scenes are synchronized and grounded in each other. We develop structure-induction models, which are capable of exploiting bimodal image-text alignments, for two modalities: (1) for natural language, we consider unsupervised syntactic parsing with phrase-structure grammars and regularize the parser by using visual image groundings; and (2) for visual images, we induce scene graph representations by mapping arguments and predicates in the text to their visual counterparts (i.e., visual objects and relations among them) in an unsupervised manner. While useful, crossmodal alignments are not always abundantly available on the web, e.g., the alignments between non-speech audio and text. We tackle the challenge by sharing the visual modality between image-text alignment and image-audio alignment; images function as a pivot and connect audio and text. The contributions of this thesis span from model development to data collection. We demonstrated the feasibility of applying multimodal learning techniques to unsupervised structure induction and multimodal alignment collection. Our work opens up new avenues for multimodal and unsupervised structured representation learning
    corecore