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Abstract
Structured representations build upon symbolic abstraction (e.g., words in natural lan-

guage and visual concepts in natural images), offer a principled way of encoding our

perceptions about the physical world, and enable the human-like generalization of ma-

chine learning systems. The predominant paradigm for learning structured represen-

tations of the observed data has been supervised learning, but it is limited in several

respects. First, supervised learning is challenging given the scarcity of labeled data.

Second, conventional approaches to structured prediction have been relying on a single

modality (e.g., either images or text), ignoring the learning cues that may have been

specified in and can be readily obtained from other modalities of data. In this thesis,

we investigate unsupervised approaches to structure induction in a multimodal setting.

Unsupervised learning is inherently difficult in general, let alone inducing com-

plex and discrete structures from data without direct supervision. By considering the

multimodal setting, we leverage the alignments between different data modalities (e.g.,

text, audio, and images) to facilitate the learning of structure-induction models, e.g.,

knowing that the individual words in “a white pigeon” always appear with the same

visual object, a language parser is likely to treat them as a whole (i.e., phrase). The

multimodal learning setting is practically viable because multimodal alignments are

generally abundant. For example, they can be found in online posts such as news and

tweets that usually contain images and associated text, and in (YouTube) videos, where

audio, scripts, and scenes are synchronized and grounded in each other.

We develop structure-induction models, which are capable of exploiting bimodal

image-text alignments, for two modalities: (1) for natural language, we consider un-

supervised syntactic parsing with phrase-structure grammars and regularize the parser

by using visual image groundings; and (2) for visual images, we induce scene graph

representations by mapping arguments and predicates in the text to their visual coun-

terparts (i.e., visual objects and relations among them) in an unsupervised manner.

While useful, crossmodal alignments are not always abundantly available on the web,

e.g., the alignments between non-speech audio and text. We tackle the challenge by

sharing the visual modality between image-text alignment and image-audio alignment;

images function as a pivot and connect audio and text. The contributions of this the-

sis span from model development to data collection. We demonstrated the feasibility

of applying multimodal learning techniques to unsupervised structure induction and

multimodal alignment collection. Our work opens up new avenues for multimodal and

unsupervised structured representation learning.
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Lay Summary
In this thesis, we focus on learning to represent the observed data, e.g., images, audio,

and text. This is a fundamental step in many machine learning systems. Intuitively,

to understand what we humans see, hear, and read, machine learning systems need to

transform our observations into representations that are apprehensible to them. For

example, to understand an image that consists of hundreds of thousands of pixels, ma-

chines usually transform it into a low-dimensional vector. But, cramming the whole

image into a vector entangles visual concepts, i.e., it is unclear which dimensions cor-

respond to which objects/attributes/relations. This poses a challenge for performing

complex queries regarding an image, e.g., “what is the color of the ball held by the

boy?” Conceptually, to answer the question, we would need a scene graph that repre-

sents objects, and their attributes and relations, so we can reason over the graph step

by step. Since the reasoning steps are specified in the language form, we would also

need to transform the query into another form that represents the reasoning chain.

To tackle the challenge, we set out to study the problem of structure induction. In

particular, we are interested in learning structure-induction models in an unsupervised

manner and from multimodal data. Unsupervised learning means that we use unlabeled

data, e.g., images are not annotated with graph structures; instead, we will induce

them from images. Multimodal learning means that: rather than learning from a single

modality (e.g., either images or text), we exploit additional learning cues provided by

other data modalities. Multimodal learning has been through aligned multimodal data,

e.g., captioning data wherein each caption describes the associated image.

In these settings, we develop structure-induction models for text and images. For

text, we leverage visual groundings for the induction of phrase structures that de-

scribe the process of merging adjacent phrases into larger phrases. The reason that

visual groundings are helpful is based on the observation that: knowing adjacent

words/phrases refer to the same visual object, a parser should probably treat them as a

whole. For images, we induce their scene graph representations, i.e., labeling objects

and predicting relations between objects. The object and relation labels are expressed

as words in captions; our parser is trained to map them to objects and object pairs,

respectively. We further tackle the issue of scarce multimodal alignments between en-

vironmental sound and language descriptions; we propose a model that connects audio

and text via image pivots. In this thesis, we demonstrated the feasibility of applying

multimodal learning techniques to unsupervised structure induction. Our work opens

up new avenues for multimodal and unsupervised structured representation learning.
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Chapter 1

Introduction

1.1 Motivation

An important challenge in machine learning is to model diverse modalities of data such

as images, audio, and text. In most scenarios, machine learning methods for modeling

the observed data involve deriving alternative representations of the data, e.g., encod-

ing images/text into continuous vectors or structured forms. We refer to this process as

representation learning. There are many reasons for performing representation learning

such as reducing the dimension of the observed data and finding better representations

that are more predictive of some targets. Apart from these general reasons, we would

like to highlight the reasons related to cognitive modeling and engineering.

In cognitive modeling, a primary goal of investigating representation learning is

to advance our understanding of human intelligence. For example, there has been a

wealth of research providing insights into the way humans acquire language and per-

ceive the physical world. Specifically, hierarchical tree structures of sentences are used

to model the way humans process language, and part-whole hierarchy is proposed to

explain how humans perceive visual scenes. From the perspective of engineering, a

crucial reason for studying representation learning is to find ways of communicating

with intelligent systems, thus research on representation learning has focused on build-

ing efficient and interpretable interfaces. For example, search engines like Google need

to represent heterogeneous contents on the Internet in such a way that it can be queried

efficiently, voice assistants such as Alexa and Siri need to transform human language

into a representation that is suitable for machines to comprehend, and ideally, general-

purpose representations shared across domains, tasks, and even data modalities are

preferred, in order to make applications flexible.

1



2 Chapter 1. Introduction

In this thesis, we study the problem of representation learning. We discuss the

limitations of traditional learning settings and motivate new learning settings.

• Supervised learning → unsupervised learning. The conventional paradigm for

learning representations of the observed data has been supervised learning and thus

relies on labeled data, e.g., a supervised model for sentence structure prediction has

to be trained on sentences annotated with desired target structures. Since human-

annotated resources are usually specific to a domain (e.g., all annotated sentences

may come from the same news domain), the representations derived via supervised

learning tend to be difficult to generalize across domains, which is contrary to the

goal of learning general-purpose representations. Moreover, due to the prohibitive

cost of human annotations, labeled data is usually scarce, rendering supervised

representation learning more challenging.

Instead, recent deep learning approaches to representation learning eschew labeled

data in favor of unsupervised learning. In particular, training large models on plen-

tiful unlabeled data has been a popular means of learning general-purpose rep-

resentations, which have demonstrated astonishing performance in various down-

stream tasks such as question answering (Devlin et al., 2019; Dong et al., 2019),

image classification (Dosovitskiy et al., 2021; Radford et al., 2021), audio classifi-

cation (Baevski et al., 2022), protein structure prediction (Jumper et al., 2021), and

game playing (Kramár et al., 2022).

• Continuous representation→ structured representation. While deep learning

has propelled the phenomenal advance in artificial intelligence, deep learning mod-

els still fall short of human intelligence in some prominent aspects and, in partic-

ular, compositional generalization. Compositional generalization reflects humans’

capability of recombining known components to construct novel inferences, pre-

dictions, and behaviors. A promising strategy for improving the compositional

generalizability of neural models is through structured representations, e.g., hier-

archical tree structures that are built from reusable production rules, and general

graph structures that are composed of atomic entities and relations. Structured

representations build upon symbolic abstraction, offer an implementation of the

concept of compositional generalization, and importantly are amenable to learn-

ing from data (Ganchev et al., 2010; Kim et al., 2019b) and building into neural

models (Tai et al., 2015; Kipf and Welling, 2017).
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It is not entirely surprising that neural models struggle to generalize composition-

ally. To efficiently train large models on big data so as to maximize the benefits of

model scaling and data scaling (Kaplan et al., 2020), neural models have been de-

signed to prioritize end-to-end learning and minimize structural biases in computa-

tions and representations (e.g., ResNet (He et al., 2016) and Transformer (Vaswani

et al., 2017)). While they have demonstrated great success, they fail spectacularly

in tasks that require compositional generalization (Lake and Baroni, 2018; Keysers

et al., 2020), presumably because they lack structured modeling. Thus, we advo-

cate structured representation learning, which we believe will benefit challenging

tasks that rely on reasoning (Barrett et al., 2018; Hudson and Manning, 2019a),

involve learning from a few observations (Lake et al., 2015, 2017), and require

domain generalization (Kim and Linzen, 2020).

• Single modality→ multimodality. To eschew supervised learning and tackle the

compositional generalization issue, we investigate unsupervised methods for learn-

ing structured representations. Structured representations are an important compo-

nent of structure-aware neural models, e.g., graph neural networks follow a given

structure to perform computations (Kipf and Welling, 2017). However, inducing

complex and discrete structures from data without direct supervision is inherently

difficult. To induce desired structures, we usually make a priori representational

and computational assumptions, e.g., to induce tree structures, we define produc-

tion rules and constrain the way they combine (representation). But, in order for

learning to be tractable and for models to generalize, these assumptions are gen-

erally overly flexible, e.g., we may assume each rule in a tree is independent of

the others (computation). Consequently, it is rather difficult to induce meaningful

structures that best represent the data.

A possible solution to this issue is to use extra regularization to further disam-

biguate models’ predictions. Among available regularization choices, we are par-

ticularly interested in using multimodal alignment to regularize structure-induction

models. Multimodal alignment has been in the form of aligned multimodal data

such as images and text in captioning data. An explanation of the usefulness of

multimodal alignment is based on the observation that: the same concept can be

grounded in different modalities and aligned with each other via paired multimodal

data, e.g., “a white pigeon” appears in both a caption “a white pigeon sits in the

grass” and the associated images it describes. Regularities of this kind help with,
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in a way, identifying meaningful structural patterns such as phrases in language.

Specifically, while “white” and “pigeon” are two separate words in captions, they

refer to (or appear with) the same visual region, thus knowing this fact supposedly

encourages a language parser to treat them as a whole. Since phrases are basic

units of phrase structures, visual groundings potentially help with phrase-structure

induction. Conversely, the vector representations of visual “pigeon” and “grass”

may be difficult to distinguish because they are spatially close to each other in

an image, but knowing that they are two separate concepts in language, an image

parser probably learns to make their visual representations more separable, i.e.,

textual groundings cause more symbolic object representations, an important com-

ponent of structured image representations like scene graphs.

However, conventional approaches to structure induction have been relying on a

single modality, so they can not use complementary learning cues provided by

other modalities. Instead, we advocate learning structured representations from

aligned multimodal data.

In these new settings, we develop novel representation learning models and tackle

data scarcity issues we will confront in learning the models.

• Unsupervised structure induction with multimodal alignment. We investigate

unsupervised structure induction for images and text in the multimodal setting be-

cause (1) there has been a wealth of research on inducing structures of images/text

from individual modalities, thus we can build upon the existing work and focus

on developing models that are capable of learning from multiple modalities; and

(2) the image-text setting allows for using prevailing image-text pre-training tech-

niques, and importantly, it requires little annotation effort since image-text align-

ment is abundantly available on the web and is relatively easy to collect (e.g., via

online posts that usually contain images associated with language descriptions).

For text, we focus on unsupervised syntactic structure induction and propose an

end-to-end fully-differentiable visually grounded learning framework. The frame-

work allows for learning a parser via joint unsupervised learning on raw text and

contrastive image-text pre-training on image-text pairs. For images, we formulate

the task of unsupervised scene graph induction and propose a visually-grounded

masked language model. Our model can be trained on image-text pairs via a

masked language modeling objective.
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• Unsupervised curation of multimodal alignment. Our multimodal models for

unsupervised structure induction rely on image-text pre-training and generally re-

quire large-scale parallel image-text data, but unlike visual and textual modalities,

many other modality pairs lack sufficient co-occurrence data. This poses a grand

challenge for extending our models to modality pairs that have scarce aligned data.

We identify this problem in the pair of textual and auditory modalities and, specif-

ically, text and non-speech audio (i.e., environmental sound). It is supposedly

caused by reporting bias: we are less likely to describe what we hear than what

we see. To tackle the problem, we propose a pivoting model; it connects audio and

text via image pivots, without using any parallel audio-text data.

1.2 Overview

In this thesis, we focus on the problem of structure induction and investigate unsu-

pervised approaches that exploit multimodal alignment (modeling). We also address

scenarios wherein multimodal alignment is scarce and provide a remedy (multimodal

alignment collection).

Structured formalisms are needed in many scenarios, from representing direct per-

ceptual experiences such as images, audio, and text to modeling more sophisticated

cognitive activities such as reasoning, decision-making, and problem-solving. In this

thesis, we investigate unsupervised structure induction for images and text, on which

there has been a wealth of research, but very little considers the multimodal setting.

For text, we focus on the classical syntactic structures (Chomsky, 1956, 1957;

Hopcroft et al., 2006). The related structure induction problem is known as unsuper-

vised grammar induction, and has a long history in computational linguistics (Carroll

and Charniak, 1992; Pereira and Schabes, 1992; Brill, 1993; Stolcke and Omohundro,

1994; Klein and Manning, 2004). Though there have been various paradigms for gram-

mar induction such as grammar induction via language modeling (Shen et al., 2018;

Kim et al., 2019b) and grammar induction as syntax probing (Kim et al., 2020; Wu

et al., 2020), all of them have relied solely on text, while we are more interested in a

grounded learning setting, where parsers are learned from downstream tasks such as

sentiment classification, textual entailment, and natural language inference (Yogatama

et al., 2017; Choi et al., 2018; Maillard et al., 2019). By analogy to this task-dependent

grammar induction, we formulate a multimodal learning task for grammar induction.

For images, we study scene graph representations (Johnson et al., 2015). Scene
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graphs have been shown to be helpful in a variety of vision tasks, including image re-

trieval, captioning, and generation (Johnson et al., 2015, 2018; Yang et al., 2019) and

visual question answering (Shi et al., 2019b; Hudson and Manning, 2019a,b). This

has further stimulated the development of scene graph generation methods (Xu et al.,

2017; Yang et al., 2018; Zareian et al., 2020a; Tang et al., 2020). The prevailing learn-

ing paradigm for scene graph generation has been supervised learning and thus relies

on labeled data, but labeled data is prohibitively costly and the widely-used annotated

resources suffer from the issue of skewed label distribution (Zellers et al., 2018; Yao

et al., 2021). Those that do not require labeled data are, however, pipeline models (Ye

and Kovashka, 2021); they rely on external language parsers and pre-trained object

detectors to preprocess the inputs, and thus inherently suffer from the errors accumu-

lated from preprocessing steps. These challenges necessitate the need for end-to-end

unsupervised induction of scene graphs.

Our first study focuses on inducing syntactic structures of text with visual super-

vision, i.e., images that are aligned with the text. Drawing inspiration from the ef-

forts of inducing text structures from supervised tasks (Havrylov et al., 2019; Mail-

lard et al., 2019), we adopt a multimodal learning task and attempt to learn parsers

from it. Specifically, we choose the contrastive image-text pre-training task (Radford

et al., 2021). Contrastive image-text learning connects images and text through learn-

ing a joint image-text vector space. It requires little annotation effort (Jia et al., 2021)

while providing a way of combining multimodal learning with grammar induction.

We choose probabilistic context-free grammars as our parsing model and achieve an

end-to-end fully-differentiable learning framework. Our model can be seen as a neural-

symbolic (i.e., hybrid) model in the sense that it combines symbolic language modeling

via grammar and continuous image-text modeling via contrastive learning. Apart from

optimizing image-text alignment (i.e., task-dependent learning), our parser allows for

optimizing a language modeling objective (i.e., self-supervised learning). Intuitively,

the prior knowledge about image-text alignment is injected into the parser during joint

training; it functions as a regularizer and potentially leads to a better parser.

In the previous study, we empirically found that visual groundings help with induc-

ing structures of text. Conversely, will textual groundings help with inducing structures

of images? To answer this question, we investigate unsupervised induction of scene

graph representations of images with textual supervision, i.e., language descriptions

that are aligned with the images. A scene graph consists of nodes and edges, where

each node is an abstract description of a visual object (e.g., “girl” and “flowers”), and
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each edge connects two objects via a relation expressed in a word (e.g., “hold” in the

tuple (girl, hold, flowers)). Our ultimate goal is to perform object segmentation (rep-

resentation), object labeling (abstraction), and visual relation prediction (composition)

within a unified framework. But in this work, we assume that visual object representa-

tions have been given (e.g., via a pre-trained object detector) and focus only on object

classification and relation prediction. We design a unified neural module to tackle

the two subtasks. The customized module can be integrated into image-conditioned

masked language models, so we can further learn it from abundantly available image-

text pairs via multimodal masked language modeling (Lu et al., 2019). Our model can

be seen as a unified connectionist model (cf. hybrid models) since it follows the philos-

ophy of unified approaches within the framework of connectionism (Greff et al., 2020).

To quantify model performance, we propose automatic evaluation metrics and create

an artificial image-captioning dataset that focuses on spatial relational reasoning.

The findings from our previous work suggest that multimodal alignment helps

with unsupervised text and image structure induction. Unfortunately, not all modal-

ity pairs have abundantly available co-occurrence data. This hinders the wider ap-

plication of multimodal learning techniques to unsupervised structure induction. To

tackle the challenge, we further investigate unsupervised curation of large-scale mul-

timodal alignment and, specifically, the alignment between text and non-speech audio

(i.e., environmental sound). Complementary to speech, environmental sound provides

rich and diverse perspectives on the physical world, but it lacks large-scale and closely-

related natural language descriptions. Inspired by pivot-based models for unsupervised

machine translation (Wu and Wang, 2007), we propose to connect audio and text via

images. The pivoting idea mirrors the connection between our mental imagery experi-

ence and language experience: hearing a sound, humans can visually imagine possibly

associated events and literally describe them. Pivoting is practically viable because

there are abundantly available image-text and video-audio co-occurrences on the web,

from which we can train image-text and image-audio alignment models via contrastive

bimodal pre-training (Radford et al., 2021). By sharing the visual modality between

the two alignment models, we link audio and text implicitly in the vector space and

mine novel audio-text pairs that never occurred together.

The main contributions of this thesis are:

• An end-to-end fully-differentiable framework for inducing phrase-structure gram-

mars of language with natural image supervision.
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• A multimodal masked language model for inducing scene graph representations

of images with natural language supervision.

• A pivoting model for unsupervised multimodal alignment induction. We demon-

strate its effectiveness in inducing audio-text alignment via image pivots.

1.3 Outline

We organize the rest of this thesis into six chapters. After reviewing background ma-

terials for unsupervised structure induction and multimodal learning (Chapter 2), we

elaborate on our efforts in (1) unsupervised image and text structure induction in the

multimodal setting (Chapters 3–4); and (2) unsupervised curation of audio-text align-

ment (Chapter 5). We conclude the thesis with Chapter 6.

Chapter 2 provides an overview of background materials related to unsupervised

structure induction and multimodal learning. We first review typical formalisms of

text structures and image structures and, in particular, expand on (1) phrase structures

of text (Chomsky, 1957; Allerton, 2016); and (2) scene graphs (Johnson et al., 2015)

and scene grammars of images (Zhu and Mumford, 2006; Siskind et al., 2007). We

further describe machine learning techniques for unsupervised structure induction and

discuss multimodal learning for image and text understanding.

Chapter 3 presents a fully-differentiable neural-symbolic model for inducing phrase-

structure grammars of text with visual image supervision. We explicitly model hidden

syntactic structures of text via a latent variable model (Kim et al., 2019b). Motivated

by the observation that language is largely grounded in visual perceptions, we incor-

porate this prior knowledge (i.e., image-text alignment) into grammar induction via

contrastive image-text learning. We learn our model by jointly optimizing a language

modeling objective and an image-text alignment loss. Once trained, our parser can

be directly used to parse text, without requiring the aligned images. We compare our

visually grounded parser with the parser learned from text alone. Our experimental

results suggest that visual groundings help with grammar induction. This chapter is

based on the work published in Zhao and Titov (2020) and Zhao and Titov (2023a).

Chapter 4 presents a unified connectionist model for inducing scene graph repre-

sentations of images with natural language supervision. We formulate the structure
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induction task as labeling objects and assigning relations to object pairs, i.e., predict-

ing a label (i.e., word) given each object (pair). We design a unified computational

module, which is capable of both object labeling and relation prediction. The module

is integrated into an image-conditioned masked language model, thus we can further

learn it via multimodal masked language modeling (Lu et al., 2019). Once trained, by

virtue of the architecture design, our model can be directly used to make predictions

given images, without requiring the aligned text. To quantify model performance, we

create an artificial image-captioning dataset and propose automatic evaluation met-

rics. Our model demonstrates reasonable performance when using symbolic object

representations, but the experimental results also suggest difficulties in inducing scene

graphs of images via image-text pre-training. This chapter is based on a technical

report available via Zhao and Titov (2023b).

Chapter 5 presents a pivoting model for inducing multimodal alignment and, specif-

ically, audio-text alignment. Multimodal alignment is referred to as prior knowledge

that the same concept can be found in different modalities of data. It forms the ba-

sis for many multimodal learning tasks, including the structure induction problems

we have studied. However, not all kinds of multimodal alignment are as abundantly

available as image-text alignment, e.g., the alignment between text and non-speech au-

dio (i.e., environmental sound). Inspired by pivot-based machine translation (Wu and

Wang, 2007), we propose to induce audio-text alignment by using the images as the

pivot. Our idea is to take advantage of the abundance of image-text alignment (e.g.,

via online news and tweets) and image-audio alignment (e.g., via YouTube videos)

and connect audio and text via images. We realize the idea via a tri-modal contrastive

pre-training framework. We conduct audio-text pre-training on the mined audio-text

data; fine-tuning the learned audio encoder results in state-of-the-art results on a wide

range of audio understanding tasks. This chapter is adapted from Zhao et al. (2022).

Chapter 6 concludes the thesis. Along with a summary of our studies, we acknowl-

edge the limitations of our work and discuss potential improvements and extensions,

which we leave for future work.





Chapter 2

Background

In this chapter, we review background materials related to unsupervised structure in-

duction and multimodal learning. We first present an overview of formalisms for struc-

tured representations of two data modalities: text and images. For text, we will elabo-

rate on the syntax of language; for images, we will introduce scene graphs and scene

grammars. Then we review unsupervised approaches to learning two families of struc-

ture induction models: neural-symbolic (hybrid) models and structure-aware (connec-

tionist) models. Since we posit unsupervised structure induction in a multimodal set-

ting and thus rely on multimodal data such as images and associated captions, we will

also cover multimodal learning for image and text understanding.

2.1 Structured Text Representations

We are interested in structured modeling (i.e., syntax) of text on the sentence level (cf.

the morphology/lexicon/phrase/document level). We first elaborate on phrase-structure

grammar, a formalism for syntactic analysis (Section 2.1.1), which will be the theme

of Chapter 3. Then we present a brief overview of related structured formalisms for

sentence representation (Section 2.1.2).

2.1.1 Phrase-Structure Grammars

Phrase-structure grammars are a generative model of language. They specify the syn-

tax of a language via a finite set of rewrite rules, e.g., A→ B reads as “the string A is

replaced by the string B.” Given a phrase-structure grammar, every sentence it admits

is associated with a set of derivations, and each derivation is composed of a group of

11
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Figure 2.1: Constituent analyses for “I prefer warm ginger tea”. Left: a parse tree in

the Penn Treebank style. Right: binarized unlabeled parse tree.

rules from the grammar (see Figure 2.1). When traversed in a top-down manner, a

derivation describes the process of recursively breaking down a sentence/phrase into

smaller constituent phrases until the minimum constituent units (e.g., words or mor-

phemes) are reached. These phrases are classified into one of phrasal categories such

as noun phrase (NP) and verb phrase (VP) if they consist of two or more words,1 and

into one of lexical categories (i.e., part-of-speech tags such as Verb (V) and Noun (N))

if they are words (Chomsky, 1956). As we will see, these syntactic (phrasal/lexical)

categories are used as grammar symbols in grammar rules. Since a derivation relies

on the abstraction of constituent phrases and describes the structural relation between

each constituent and the larger constituent that contains it, it is also called constituency

tree, and phrase-structure grammars are also known as constituency grammars.

Depending on the restrictions placed on the form of phrase structure rules, Chom-

sky (1956) describes four types of grammars (i.e., regular grammar, context-free gram-

mar, context-sensitive grammar, and recursively enumerable grammar), which form

the Chomsky hierarchy. Among them, we are interested in context-free grammars. A

Context-Free Grammar (CFG) is formally defined as a 4-tuple G = (N ,Σ,R ,S):

1Traditionally, a phrase is composed of multiple words, but, in some cases, single words can also be
phrases, e.g., “I” in Figure 2.1, which is first classified into the lexical category PRP, short for “personal
pronoun”, and is further classified into the phrasal category NP.
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• N is a finite set of grammar/nonterminal symbols (nonterminals for short);

• Σ is a finite set of terminal symbols (terminals such as words for short);

• R is a set of grammar rules of the form:

A→ α with A ∈N , α ∈ (N ∪Σ)∗ ; (2.1)

• S ∈N is the start symbol dominating the whole sentence.

The context-freeness is evident from the fact that A can be rewritten by α regardless

of its context. To facilitate representation and natural language parsing, i.e., inferring

the hidden tree structure that yields a sentence, context-free grammars are usually writ-

ten in the Chomsky norm form (CNF), which restricts the form of grammar rules to

be either A→ BC or A→ w, where A,B,C ∈N and w ∈ Σ (Chomsky, 1959; Hopcroft

et al., 2006). To distinguish phrasal categories from lexical categories, we adopt a for-

malism that defines a CFG in CNF as a 5-tuple G = (N ,P ,Σ,R ,S). It is distinguished

from the previous definition of CFG in the following aspects:

• N is a finite set of phrasal categories and S /∈N (nonterminals for short);

• P is a finite set of part-of-speech tags and /0 = N ∩P (preterminals for short);

• R is a set of grammar rules of the form:

(1) S→ A with A ∈N , (2.2)

(3) A→ w with A ∈ P , w ∈ Σ , (2.3)

(2) A→ BC with A ∈N , B,C ∈N ∪P . (2.4)

Phrase-structure grammars are initially proposed as a simple yet revealing alter-

native to the finite-state Markov process, which lacks the capability of describing En-

glish (Chomsky, 1956). The class of CFG has been investigated in the context of lan-

guage acquisition, where CFG serves as an approximation of the grammars of human

languages (Shieber, 1985). Studies on the learnability of CFG have formed opposite

(i.e., for and against) attitudes toward “the argument from the poverty of the stimulus,”

which argues that the experience of language use is insufficient for language acqui-

sition, so human infants are born with at least some innate linguistic-specific knowl-

edge (Chomsky, 1965). While early analysis by Gold (1967) shows strong support

for the argument, both empirical assessments of the argument (Pullum and Scholz,
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Figure 2.2: Linear grammatical structure for “I prefer warm ginger tea”. S is the start

symbol as in context-free grammars. The symbols in circles are part-of-speech tags.

2002) and the success of computational approaches to unsupervised CFG induction

indicate the opposite, i.e., the fact that CFG can be automatically induced from text

data alone undermines the argument (Zuidema, 2002; Klein and Manning, 2002). In

addition to the cognitive implications of unsupervised CFG induction, most computa-

tional approaches are intended to examine the generative capacity of CFG models, i.e.,

to which extent the underlying tree structures of sentences can be recovered by CFG

models (Klein and Manning, 2004; Jiang et al., 2016; Kim et al., 2019b). To deal with

ambiguity (i.e., different derivations yield the same sentence), these approaches typi-

cally adopt Probabilistic CFG (PCFG; Booth and Thompson (1973)). PCFG extends

CFG (the 5-tuple G) by attaching each grammar rule with a probability such that:∑
α

p(A→ α) = 1 , where A ∈N ∪P ∪{S} . (2.5)

In principle, PCFG can be learned (i.e., parameter estimation) via the expectation-

maximization algorithm (Dempster et al., 1977), and the most probable tree of a given

sentence can be inferred via, for example, the CKY algorithm (Cocke, 1969; Kasami,

1966; Younger, 1967).

2.1.2 Related Structured Formalisms

Syntactic structure analysis focuses on the syntax of language, i.e., the underlying pro-

cess that governs the arrangement of words in a sentence. Apart from phrase-structure

grammars, which describe hierarchical grammatical structures and give rise to deep

syntactic analyses, there are other formalisms for syntactic analysis such as regular

grammars and dependency grammars.

Regular grammars have been a popular formalism for shallow syntactic analysis.

According to the Chomsky hierarchy, regular grammars are subsumed by CFG (Chom-

sky, 1956). A regular grammar consists of rules of the form A→ wB, where A,B are
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nonterminals and w is a terminal; it describes linear grammatical structures of sen-

tences (see Figure 2.2). The related inference task, which is known as part-of-speech

(POS) tagging, aims to assign each word to a lexical category (i.e., a part of speech

such as Verb (V) and Noun (N)) and gives rise to a bijective mapping between words

and parts of speech. POS tagging has been the basis for more involved syntactic anal-

ysis such as constituency parsing.

Dependency grammars are another widely-used formalism for deep syntactic anal-

ysis. Differently from phrase-structure grammars, which emphasize the modeling of

constituents, dependency grammars explicitly represent grammatical relations between

words in a sentence (see the first parse in Figure 2.3). Such binary relations are rep-

resented as directed edges from one lexicon (i.e., headwords or heads) to the other

(i.e., dependent words or dependants) (Jurafsky and Martin, 2000). The edge between

a head and each of its direct dependants may be assigned to a label, which is cho-

sen from a finite set of grammatical relations. Starting from the root node/word, when

traversing all the directed edges recursively, all the words of the sentence will be visited

and the traverse path will form a dependency tree (see the second parse in Figure 2.3).

Each node of the tree is a headword and dominates a group of dependent/child words;

together they form a phrase. For example, “tea” is a head with dependants “warm”

and “ginger”, and they form the phrase “warm ginger tea”. But, compared to con-

stituency grammars, dependency grammars have a weaker concept of phrases because

there are no phrasal nodes (i.e., syntactic categories) in dependency structures. While

word order is predictive of dependency structures, dependency structures on their own

are determined by relations between words and do not explicitly represent phrases that

respect word order. Consequently, dependency grammars lend themselves to modeling

languages that have relatively free word order, including Catalan, Czech, and Finnish.

However, sentences that are grammatically correct are not necessarily semantically

meaningful, e.g., “colorless green ideas sleep furiously” by Chomsky (1956). Thus,

apart from analyzing the syntax of language, it is also important to understand se-

mantics via, for example, semantic structure analysis, which focuses on the meaning

representations of utterances. Semantic structure analysis usually resorts to probabilis-

tic models to represent the meaning of an utterance in terms of meaning units (e.g.,

lexicons and phrases) and relate meaning units via semantic relations. There have

been several formalisms developed for structured meaning representations, which fall

roughly into two categories: (1) broad-coverage meaning representations and (2) exe-

cutable meaning representations.
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Figure 2.3: Dependency analyses for “I prefer warm ginger tea to coffee”. The depen-

dency relations in the first parse are optional. Starting from the “root” node, traversing

all the words following the directed edges leads to the right tree structure.

Broad-coverage meaning representations aim at a unified representation across do-

mains and tasks. In the area of shallow semantic structure analysis, predicate-argument

structures have been the main focus (Gildea and Jurafsky, 2000). For deep semantic

structure analysis, there are several popular formalisms, including semantic depen-

dency structures (Oepen et al., 2014), abstract meaning representations (Banarescu

et al., 2013), and combinatory categorial grammars (Steedman, 2000).2 Notably, se-

mantic dependency structures and combinatory categorial grammars are motivated by

and built on syntactic dependency grammars and constituency grammars, respectively.

Differently from broad-coverage meaning representations, executable meaning repre-

sentations are usually domain-specific and application-oriented; they can be seen as

machine-readable languages, including logic forms (Kate et al., 2005) and SQL (Yu

et al., 2018). We will use logical form representations to automatically synthesize

image captions in Chapter 4.

2.2 Structured Image Representations

We describe two formalisms of structured representations of images: (1) scene graphs

with a focus on visual relation modeling (Section 2.2.1); and (2) scene grammars with

an emphasis on hierarchy modeling (Section 2.2.2). We will further expand on scene

graphs in Chapter 4.

2Combinatory categorial grammar derivations on their own do not necessarily carry seman-
tics (Hockenmaier and Steedman, 2007), but they can be augmented with semantic interpretations via
lambda calculus (Zettlemoyer and Collins, 2005).
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Figure 2.4: A scene graph (right) representation of the natural image (left). The scene

graph is used for an illustration and does not include the “hand” object. Each object is

localized in the image as a bounding box (not shown in the scene graph).

2.2.1 Scene Graphs

A scene graph is a directed graph consisting of objects as nodes and relationships as

edges (see Figure 2.4). Formally, it can be defined as a 3-tuple G =(O,P ,R ), where

• O is a finite set of localized objects in a given image. Each object is labeled with a

category (e.g., “pigeon”, “flower”, and “grass”) and is associated with a bounding

box (i.e., being localized). There might be multiple objects belonging to the same

category, e.g., “man.01” and “man.02”. They are distinguished from each other by

the associated bounding boxes;

• P is a finite set of predicates. Each predicate represents an edge label (or relation

type) such as “sniff”, “below”, and “grow-in”. The special predicate “null” ∈ P
indicates no relations;

• R is a set of relations in the form of (o, p,o′), where o,o′ ∈ O and p ∈ P . For

example, (pigeon, sniff, flower) and (pigeon, sit-in, grass).

The scene graph representations of images build upon object-level abstractions and

abstract away lower-level visual concepts (i.e., parts of objects), so they emphasize re-

lations among objects. As a popular manually-annotated resource, Visual Genome (Kr-

ishna et al., 2017) also annotates object attributes. In this case, we can accordingly

extend the above 3-tuple formalism to a 4-tuple G =(O,A ,P ,R ), where

• A is a finite set of attributes. Attributes can be color (e.g., green), state (e.g., smil-

ing), and material (e.g., wood). Each attribute is associated with a set of admissible

assignments, e.g., the “material” attribute can be assigned to wood, metal, glass,

plastic, etc.;
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• R is a set of relations in the form of (1) (o, p,o′) for describing relations between

objects, where o,o′ ∈ O and p ∈ P ; and (2) (o,a) for describing object attributes,

where o∈O, and a∈A and is instantiated by a concrete attribute value, e.g., (lamp,

off), (flower, small), and (pigeon, white).

2.2.2 Scene Grammars

While scene graphs offer concise representations of images, they lack the capacity to

encode the hierarchies of visual scenes. Intuitively, a hierarchy describes the process

of grouping primitives (i.e., visual words similar to tokens in text) into parts, parts

into objects, and objects into scenes. This hierarchical construction process mirrors

the compositional aspect of humans’ perception of visual images (Biederman, 1987;

Essen et al., 1992; Ullman, 1995; Sheinberg and Logothetis, 2001), and presumably

hierarchical structured representations in terms of reusable parts and objects are pre-

ferred for better image understanding such as object detection and segmentation (Tu

et al., 2003; Jin and Geman, 2006; Tighe and Lazebnik, 2010; Xu et al., 2022), scene

classification (Socher et al., 2011), and image captioning (Yao et al., 2019).

Parsing images into hierarchical tree structures has been considered a challeng-

ing problem since the 1970s (Ohta et al., 1978). By analogy to natural language

parsing, early approaches to modeling hierarchical structures of images have resorted

to grammar-based models such as CFG (Chomsky, 1956). Given a CFG of two-

dimensional (2D) images, each image admitted by the CFG is associated with a 3D

derivation, which consists of grammar rules from the CFG. The 3D derivation essen-

tially describes the process of recursively breaking down an image region into sub-

regions until the minimum region units (e.g., part/pixel) are reached. While it is a

straightforward extension of text CFG to 2D images, it is not practically applicable.

The challenge lies in modeling visual concepts (e.g., parts and objects) that have ar-

bitrary shapes. To find image regions that tightly encapsulate valid visual concepts

(i.e., semantic segments via semantic segmentation), an inference algorithm will have

to consider all possible ways of dividing an image region into subregions of arbi-

trary shapes, which is, however, intractable. A potential solution is to limit admis-

sible decomposition by, for example, restricting image regions to be rectangular (see

Figure 2.5). Though this restriction does not respect irregular shapes that visual con-

cepts may have, it leads to the tractable spatial random tree model (SRT; Pollak et al.

(2003a,b)). SRTs are nothing different from PCFG except that they rely on two sets
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Figure 2.5: An example parse of a 3×3 grid. Each cell can be a pixel, or it can be an

image token that corresponds to an image region if the image has been tokenized via

the vector-quantization technique (van den Oord et al., 2017).

of binary rules to account for two different ways of (e.g., horizontal and vertical) de-

composition, respectively. Formally, denoting an SRT by G = (N ,P ,Σ,R ,S), it is

distinguished from PCFG in the following ways:

• Σ is a finite set of terminals such as integer pixel values in image data;

• R consists of the following types of rules:

(1) S→ A with A ∈N , (2.6)

(2) A→ w with A ∈ P , w ∈ Σ , (2.7)

(3) A d→ BC with A ∈N , B,C ∈N ∪P , d ∈ {h,v} , (2.8)

where d is a variable denoting the way of decomposition; h and v indicate horizon-

tal and vertical decomposition, respectively.

The probabilities of the binary rules satisfy:∑
d

∑
B,C

p(A d→ BC) = 1 . (2.9)

While computationally tractable in theory, it is computationally impractical to ap-

ply SRTs to natural image parsing because of overly high time and space complex-

ities, e.g., the time complexity of SRTs is as high as O(l5) (l = max(H,W ) and the
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height H and width W of natural images are usually larger than 100). Thus, to make

SRTs practically usable, additional assumptions on the input form have to be made to

reduce the input scale, e.g., previous SRT-based models parse images from given se-

mantic segmentation rather than from raw pixels. While this substantially reduces the

search space because inferring semantic segments from pixels have been done prior to

parsing, extra spatial constraints are needed to ensure that the composition of two sub-

regions/segments is admissible (Siskind et al., 2007; Socher et al., 2011). Moreover,

the reliance on an external object segmentation model/algorithm renders these mod-

els error-prone and may hinder them from learning meaningful (sub-)parts. To tackle

these challenges, Friesen and Domingos (2018) proposed submodular field grammars

(SFGs), which combine CFG with submodular Markov random fields (MRFs; Gould

et al. (2009); Blake et al. (2011)). SFGs enjoy the best of both worlds: hierarchical

composition afforded by CFG and flexible region-shapes modeled via tractable sub-

modular MRFs (Kolmogorov and Zabin, 2004). However, they only discussed the

inference with SFGs, without presenting learning algorithms for SFGs.

And-Or graphs are another grammar-based model for representing hierarchical

structures of images. There are two types of nodes in And-Or graphs: an And-node

represents a decomposition of a pattern into its parts and an Or-node switches be-

tween alternative ways of composing a pattern (Zhu and Mumford, 2006). Similarly

to phrase-structure grammars, And-Or graphs can be augmented with a probabilis-

tic interpretation by assigning a probability to each rule. The resulting probabilistic

models integrate PCFG with graphical models (e.g., MRFs), where PCFG accounts

for hierarchy modeling, and graphical models are responsible for context modeling

(i.e., pre-specified relations between nodes that determine the validity of combining

two nodes). Thus, And-Or grammars represent probabilistic context-sensitive gram-

mars of images (Zhu and Mumford, 2006; Tu et al., 2013), but it is also possible to

make them context-free (Tu, 2016). And-Or grammars rely on a visual vocabulary

consisting of visual concepts at all composition levels. These visual concepts can be

recursively combined to give rise to larger and larger patterns for parts and objects.

The bottom-up composition starts with image primitives (cf. tokens in text) such as

1D lines (Zhao and Zhu, 2011), shape elements (Wang et al., 2013), quantized im-

age patches (Si and Zhu, 2013), which immediately generate pixels (e.g., an image

patch/segment by itself is composed of pixels). To ensure valid concept combinations,

certain composition constraints are attached to visual concepts (e.g., “table-leg” ex-

pects a “table-top” rather than a “laptop”). Learning of And-Or grammars includes
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structure learning and parameter learning and is typically accomplished with iterative

learning approaches (Zhao and Zhu, 2011; Tu et al., 2013). Relatedly, sum-product

networks (SPNs) similar in spirit to And-Or graphs have also been used to model hi-

erarchical structures of images, but we will not cover SPNs here; instead, we refer

interested readers to Poon and Domingos (2011) and (Tu, 2016).

2.3 Unsupervised Structure Induction

We discuss two families of structure induction models: (1) neural-symbolic (hybrid)

models where the underlying structures are treated as discrete latent variables; and

(2) structure-aware (connectionist) models where the hidden structures are represented

via specialized computational models. We begin with an exposition of latent variable

modeling (e.g., variational inference) for neural-symbolic models (Section 2.3.1), and

conclude with some examples of specialized computational models that rely on cus-

tomized model architectures to model discrete structures (Section 2.3.2).

2.3.1 Neural-Symbolic Models

Neural-symbolic models combine symbolic modeling with connectionism. In unsuper-

vised structure induction, symbolic modeling refers to explicit modeling of the under-

lying discrete structures of the observed data, and connectionism indicates that models

are implemented and learned by using deep learning techniques, e.g., neural networks

for parameterization and gradient descent methods for optimization.

Latent variable models have been a popular tool to operationalize symbolic mod-

eling for unsupervised structure induction. A latent variable model defines a joint dis-

tribution p(xxx,zzz;θ), where xxx indicates the observed variable (i.e., observations), zzz rep-

resents the unobserved variable (e.g., latent structures), and θ parameterizes the joint

distribution. The joint distribution can be factorized as p(xxx,zzz;θ) = p(xxx|zzz;θ)p(zzz;θ),

which defines a data generating process. Specifically, the latent variable zzz is first

sampled from the prior distribution p(zzz;θ), then conditioning on the sampled zzz, the

observed variable xxx is generated via the generative model p(xxx|zzz;θ). In the context of

structure induction, the latent variable zzz explicitly specifies structured representations

of an observation xxx. For example, zzz can be a syntactic tree yielding a sentence, and

alternatively, zzz can be a scene graph explaining an image.

To use latent variable approaches to model the observed data, we need to compute
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the probability of each observation xxx under a model θ by marginalizing out the latent

variables zzz (the sum needs to be replaced with an integral when zzz is continuous):

p(xxx;θ) =
∑

zzz

p(xxx,zzz;θ) =
∑

zzz

p(xxx|zzz;θ)p(zzz;θ) , (2.10)

where p(xxx;θ) represents unconditional modeling; it is usually referred to as marginal

or model distribution. Since the goal of unsupervised structure induction is to uncover

the hidden structures zzz, i.e., alternative representations of a given observation xxx, we are

also interested in inferring the conditional distribution of the latent variable zzz given the

observed variable xxx, i.e., posterior inference:

p(zzz|xxx;θ) =
p(xxx,zzz;θ)

p(xxx;θ)
, (2.11)

which involves estimating the marginal distribution p(xxx;θ).

As with probabilistic modeling, given a set of observations X = {xxx(1), . . . ,xxxN},
latent variable models are usually learned through maximizing the log-likelihood L(θ):

L(θ) =
∑

i

log p(xxx(i);θ) =
∑

i

log
∑
zzz(i)

p(xxx(i),zzz(i);θ) , (2.12)

In structure-induction tasks, after finding the model θ∗ that best fits the observed data,

we would like to use it to infer the most probable structure zzz∗ of a given xxx:

zzz∗ = argmax
zzz

p(xxx,zzz;θ
∗) , (Inference)

θ
∗ = argmax

θ

L(θ) . (Learning)

The challenge with latent variable models lies in estimating the marginal likelihood

p(xxx;θ), which is needed in learning and posterior inference but requires enumerating

all possible configurations of the latent variable zzz. Depending on whether the posterior

inference p(zzz|xxx;θ) is tractable, there are different approaches to optimizing the log-

likelihood function L(θ). We will elaborate on them in the remainder of this section.

2.3.1.1 Exact Inference

The expectation-maximization (EM) algorithm is a popular tool for maximizing the

marginal likelihood when the exact posterior p(zzz|xxx;θ) can be calculated tractably (Demp-

ster et al., 1977). Starting from a random guess of the parameters θ(0), the EM algo-

rithm finds an estimate of the parameters by iteratively alternating between the follow-

ing E-step and M-step:
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• Expectation step (E-step) calculates posteriors p(zzz|xxx(i);θ(t)) with the current θ(t)

for xxx(i) ∈X (X = {xxx(1),xxx(2), . . . ,xxx(N)} is a set of examples) and constructs Q (θ|θ(t))
as the expected log-likelihood of the complete data under p(zzz|xxx(i);θ(t)):

Q (θ|θ(t)) =
∑

i

Ep(zzz|xxx(i);θ(t)) log p(xxx(i),zzz;θ) . (2.13)

• Maximization step (M-step) maximizes Q (θ|θ(t)) with θ(t) fixed:

θ
(t+1) = argmax

θ

Q (θ|θ(t)) . (2.14)

The EM algorithm can be derived in terms of optimizing a lower bound on the

model log-likelihood (Neal and Hinton, 1998; Minka, 1998). To show this, we first

define arbitrary probability distributions over the latent variables as qi(zzz) (1 ≤ i ≤ N)

and derive the lower bound as:

L(θ) =
∑

i

log
∑
zzz(i)

p(xxx(i),zzz(i);θ) (Model log-likelihood)

=
∑

i

log
∑
zzz(i)

qi(zzz(i))
p(xxx(i),zzz(i);θ)

qi(zzz(i))
(Rewriting in qi(zzz))

≥
∑

i

∑
zzz(i)

qi(zzz(i)) log
p(xxx(i),zzz(i);θ)

qi(zzz(i))
(Applying the Jensen’s inequality)

=
∑

i

∑
zzz(i)

qi(zzz(i)) log p(xxx(i),zzz(i);θ)−qi(zzz(i)) logqi(zzz(i)) (Distributing log)

=
∑

i

B(θ;xxx(i)) . (Evidence lower bound B)

An important observation from the above derivation is that B(θ;xxx) is true for any

q(zzz). Among those valid probability distributions q(zzz), the E-step finds a q(zzz) that

leads to a tight bound B(θ;xxx) at the current θ(t). One way to show this is to treat

B(θ;xxx) as a function of q(zzz), and solve the maximization of B(θ;xxx) by introducing

a Lagrange multiplier that enforces the constraint
∑

zzz q(zzz) = 1. But a more intuitive

explanation is given as follows by Minka (1998):

B(θ;xxx) =
∑

zzz

q(zzz) log p(xxx,zzz;θ)−q(zzz) logq(zzz) (2.15)

=
∑

zzz

q(zzz) log p(zzz|xxx;θ)p(xxx;θ)−q(zzz) logq(zzz) (2.16)

=−
∑

zzz

q(zzz) log
q(zzz)

p(zzz|xxx;θ)
+ log p(xxx;θ) (2.17)

=−DKL(q(zzz)||p(zzz|xxx;θ))+L(θ;xxx) , (2.18)
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where DKL(q(zzz)||p(zzz|xxx;θ)) calculates the Kullback-Leibler (KL) distance between a

proposed posterior distribution q(zzz) and the true posterior distribution p(zzz|xxx;θ). It

equivalently measures the difference between the lower bound B(θ;xxx) and the model

log-likelihood L(θ;xxx). Since L(θ;xxx) is constant at a given θ and DKL(·) is non-

negative, the maximum of the lower bound can be obtained when DKL(q(zzz)||p(zzz|xxx;θ))

is zero, i.e., by setting q(zzz) = p(zzz|xxx;θ) (θ = θ(t)). Therefore, the E-step yields a lower

bound equal to L(θ(t)).

Given the calculated posteriors from the E-step, the M-step maximizes the lower

bound with respect to θ:

B(θ;xxx) =
∑

zzz

q(zzz) log p(xxx,zzz;θ)−q(zzz) logq(zzz) (2.19)

= Eq(zzz)[log p(xxx,zzz;θ)]−H(q(zzz)) , (2.20)

where H(q(zzz)) indicates the entropy of q(zzz). Since H(q(zzz)) is independent of θ, maxi-

mizing the lower bound B(θ;xxx) is equivalent to maximizing the first expectation term,

and the optimal parameters are obtained by optimizing B(θ;xxx) over all xxx:

θ
(t+1) = argmax

θ

∑
i

B(θ;xxx(i)) = argmax
θ

∑
i

Eq(zzz)[log p(xxx(i),zzz;θ)] . (2.21)

Substituting q(zzz) in the above derivation by p(zzz|xxx;θ(t)) yields the expected complete-

data likelihood under p(zzz|xxx;θ(t)), i.e., the objective in the M-step. For models such

as PCFG, the optimal parameters in the M-step can be estimated analytically, but for

many other discrete latent variable models, especially those that are implemented with

neural networks, there are no closed-form solutions. Instead, numerical optimization

techniques (e.g., gradient ascent) are used to find an approximate estimate:

θ
(t+1) = θ

(t)+η ·▽θQ (θ;θ
(t)) , (2.22)

where η > 0 is the learning rate and ▽θQ (θ;θ(t)) is obtained by differentiating it with

respect to θ. While Q (θ(t+1);θ(t)) > Q (θ(t);θ(t)) holds, gradient-based optimization

performs local maximization and does not necessarily give rise to the optimal estimate

of θ(t+1). This leads to a new variant of the EM algorithm that is referred to as the gen-

eralized expectation-maximization algorithm (Dempster et al., 1977; Neal and Hinton,

1998). In fact, assume L(θ) is differentiable with respect to θ, depending on the prop-

erties of zzz, in some cases we can directly optimize L(θ) via gradient-based methods.

For example, when zzz is factorizable or |Z| (zzz ∈ Z) is small, and the marginalization
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over zzz in calculating L(θ) can be tractably computed (e.g., through the dynamic pro-

gramming as with PCFG). It can be shown that the gradient formulation given by

▽θL(θ) is the same as that given by ▽θQ (θ;θ(t)).

2.3.1.2 Variational Inference

We have discussed the optimization of L(θ) in cases where the posterior inference

p(zzz|xxx;θ) is tractable, or equivalently, the marginal likelihood p(xxx;θ) is tractable to es-

timate, but in many cases the marginalization over zzz is intractable, so is the posterior.

Variational inference tackles this challenge by using a tractable posterior to approxi-

mate the exact posterior. Defining the set of tractable probability distributions as Q
(aka. variational family), a tractable posterior q(zzz;ξ) ∈ Q is parameterized by ξ and is

constructed to approximate the true posterior for each individual example, i.e., the set

of parameters ξ are example-dependent. The learning problem in variational inference

is to minimize the distance between the variational posterior and the true posterior. As

with variational inference, this distance is measured via the KL divergence between

the two distributions:

q∗(zzz;ξ) = argmin
q(zzz;ξ)∈Q

DKL(q(zzz;ξ)||p(zzz|xxx;θ)) . (2.23)

The KL distance has been used in the formulation of the evidence lower bound

(ELBO) on the marginal likelihood, i.e., B(θ;xxx) in Equation 2.18. By substituting the

arbitrary probability distribution q(zzz) in B(θ;xxx) with q(zzz;ξ), we can rewrite the KL

distance in terms of ELBO as:

DKL(q(zzz;ξ)||p(zzz|xxx;θ)) =−B(θ,ξ;xxx)+L(θ;xxx) . (2.24)

Since L(θ;xxx) does not depend on q(zzz;ξ) in Equation 2.24, minimizing the KL

divergence between q(zzz;ξ) and p(zzz|xxx;θ) amounts to maximizing the evidence lower

bound (Jordan et al., 1999; Wainwright and Jordan, 2008). To tractably compute

ELBO, which requires estimating expectations with respect to q (see Equation 2.19),

many variational-inference models have resorted to the mean-field variational family.

In this family, each latent variable is assumed to be independent of the others, and q is

decomposed as q(zzz;ξ) =∏i q(zzzi;ξ). This is known as mean field approximation, which

has its roots in mean field theory in physics (Parisi and Shankar, 1988) and gives rise

to the mean-field variational inference (Opper and Saad, 2001). A natural extension

to this mean field is to introduce dependencies between the latent variables, leading to
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Algorithm 1: Variational Expectation Maximization with Coordinate Ascent

Input : X = {xxx(1),xxx(2), . . . ,xxx(N)}.
Return: θ and ξ(i) with i ∈ [1,N].
θ, ξ(i)← random initializations;
while B(θ,ξ;X ) has not converged do

• Variational E-step: fix current θ and maximize ELBO with respect to ξ(i)

for each xxx(i)(i ∈ [1,N]) by using coordinate ascent variation inference:

ξ
(i) = argmax

ξ(i)
B(θ,ξ(i);xxx(i)) = argmin

ξ(i)
DKL(q(zzz;ξ

(i))||p(zzz|xxx(i);θ))

• Variational M-step: fix current ξ and maximize ELBO with respect to θ:

θ = argmax
θ

∑
i

B(θ,ξ(i);xxx(i)) = argmax
θ

∑
i

Eq(zzz;ξ(i))[log p(xxx(i),zzz;θ)]

B(θ,ξ;X ) =
∑

i B(θ,ξ(i);xxx(i))
end

the structured mean field (Saul et al., 1996; Barber and Wiegerinck, 1998; Wiegerinck,

2000; Xing et al., 2002).

In mean-field variational inference, coordinate ascent has been a popular method

for optimizing variational parameters (see Equation 2.23). Concretely, we iteratively

optimize with respect to the variational distributions while keeping the others fixed

until ELBO converges. With proper assumptions on the functional forms of the model

distribution and the variational distribution (e.g., both are in the exponential family),

a closed-form update for each coordinate can be derived (Hoffman et al., 2013; Blei

et al., 2017). In general, the ELBO objective function is non-convex, so the coordinate-

ascent variational-inference algorithm (CAVI) only guarantees to converge to a local

minimum, and similarly to the EM algorithm, it can be sensitive to model initialization.

To maximize ELBO with respect to both the variational parameters ξ and the model

parameters θ, we can construct the CAVI algorithm in such a way that it resembles the

EM algorithm. Specifically, in each iteration, we first maximize ELBO with respect

to ξ(i) for all examples i ∈ [1,N] while keeping θ fixed, then we maximize ELBO

with respect to θ while keeping all ξ(i) fixed (see Algorithm 1). This iterative learning

paradigm is known as variational expectation maximization (Neal and Hinton, 1998).

Differently from the EM algorithm, which always obtains a tight bound by choosing

the true posterior as the variational posterior in the E-step, variational inference is more
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flexible: it aims to find parameters ξ that yield as tight a bound as possible, then it uses

the approximating posterior rather than the exact posterior to calculate the expected

complete-data log-likelihood, which is further maximized in the M-step.

Again, as with most neural-based models, it is impossible to derive analytical so-

lutions in the variational M-step. In this case, gradient-based optimization is used to

update θ locally. Regarding the variational E-step, while there is usually a closed-

form update for each variational parameter, coordinate ascent is inefficient for large

data sets because each variational E-step requires optimizing a separate set of varia-

tional parameters for every training example. A possible solution is to perform the

variational E-step (and M-step) over a mini-batch of training examples. This has led

to the development of stochastic variational inference (SVI; Hoffman et al. (2013)).

Apart from mini-batch training, SVI updates both ξ in the variational E-step and θ in

the variational M-step using gradient-based methods (i.e., natural gradients (Amari,

1998)). However, due to the reliance on stochastic optimization that requires subsam-

pling the training data (Robbins and Monro, 1951), SVI suffers from noisy gradient

estimates. While increasing the batch size could mitigate the issue, it leads to higher

computational costs. To tackle the variance issue, many other strategies have been ex-

plored such as non-uniformly sampling training examples (Gopalan et al., 2012; Zhao

and Zhang, 2015; Csiba and Richtárik, 2018) and using a control variate (Paisley et al.,

2012; Ranganath et al., 2014).

2.3.1.3 Amortized Variational Inference

While stochastic variational inference scales well as the dataset size increases, per-

example posterior optimization in the E-step is inherently expensive, especially when

there are no closed-form solutions and numerical optimization has to be used. More-

over, since each individual example has its own variational parameters, variational

inference is unable to reuse previous inferences, so when new examples come, it

will have to estimate all the parameters all over again. A possible strategy for re-

solving these issues is amortized inference (Stuhlmüller et al., 2013; Gershman and

Goodman, 2014). Amortized inference refers to the philosophy of reusing past expe-

rience (Michie, 1968) to construct inferences for newer examples; it has been imple-

mented for variational inference in deep learning models (Ritchie et al., 2016). The key

idea of amortized variational inference is to employ a parameterized function f (·;φ)

to predict variational parameters for each example: ξ = f (xxx;φ), where f (·) is imple-

mented as a neural network and φ is shared across examples (Ritchie et al., 2016).
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Intuitively, f (·;φ) outputs similar variational parameters for similar examples, thus

the reuse of previous inferences becomes possible. During learning, in the variational

E-step, amortized variational inference maximizes ELBO with respect to the shared

variational parameters φ, so the cost of variational posterior inference is amortized

across examples through the encoding function f (·;φ):

φ
∗ = argmax

φ

∑
i

B(θ, f (xxx(i);φ);xxx(i)) . (2.25)

2.3.1.4 Variational Autoencoder

The fact that amortized variational inference is amenable to gradient-based optimiza-

tion connects it with deep learning models, which follow the philosophy of end-to-

end learning with gradient-based optimization. Combining variational inference with

neural models has led to the variational autoencoder framework (VAE; Kingma and

Welling (2014)). A variational autoencoder consists of a neural encoder modeling the

variational inference process and a neural decoder describing the data generating pro-

cess. This will become more clear after we substitute the arbitrary posterior q(zzz) in the

original ELBO with the amortized variational posterior q(zzz|xxx;φ) ≜ q(zzz; f (xxx;φ)) (see

Equation 2.15):

B(θ,φ;xxx) =
∑

zzz

q(zzz|xxx;φ) log p(xxx,zzz;θ)−q(zzz|xxx;φ) logq(zzz|xxx;φ) (2.26)

= Eq(zzz|xxx;φ)[log p(xxx|zzz;θ)]−DKL(q(zzz|xxx;φ)||p(zzz;θ)) . (2.27)

In the above derivation, q(zzz|xxx;φ) corresponds to a probabilistic encoder that infers a

distribution over the latent zzz from each given example xxx, and p(xxx|zzz;θ) corresponds to

a probabilistic decoder that produces a distribution over the example space for each

given zzz. To establish connections with the standard autoencoders, we can interpret

the expectation term as the expected negative reconstruction loss under a variational

posterior and the KL term as a regularizer that pushes the variational posterior toward

the true posterior (see Equation 2.27).

2.3.1.5 Gradient Estimation

As with the standard VAEs, the inference model and the generative model are jointly

optimized by maximizing ELBO with respect to φ and θ via gradient-based meth-

ods (Kingma and Welling, 2014). We first present an estimate of the gradients of
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ELBO with respect to θ:

▽θB(θ,φ;xxx) = ▽θEq(zzz|xxx;φ)[log p(xxx,zzz;θ)] (2.28)

= Eq(zzz|xxx;φ)[▽θ log p(xxx,zzz;θ)] , (2.29)

where we have used Leibniz’s rule to interchange the gradient operator and the expec-

tation operator. Though the variational posterior is constructed to be tractable, the sum

over zzz can still be intractable. In this case, the Monte Carlo method is used to calculate

approximate gradients:

▽θB(θ,φ;xxx)≈ 1
K

K∑
i=1

▽θ log p(xxx,zzz(i);θ) with zzz(i) ∼ q(zzz|xxx;φ) . (2.30)

Estimating the gradients of ELBO with respect to φ is nontrivial because the re-

sulting gradient expression may not be written as an expectation with respect to a

probability density; accordingly, the Monte Carlo estimator can no longer be used.

To tackle this challenge, there have been several techniques developed, among which

we elaborate on the score function estimator (Glynn, 1987), the pathwise gradient es-

timator (Kingma and Welling, 2014; Rezende et al., 2014), and the gumbel-softmax

estimator (Jang et al., 2017; Maddison et al., 2017).

Score Function Estimator. The key idea of the score function estimator (Glynn,

1987) is to use the identity ▽q = q▽ logq, which holds for any valid distribution q:

▽φB(θ,φ;xxx) = ▽φEq(zzz|xxx;φ)

[
log

p(xxx,zzz;θ)

q(zzz|xxx;φ)

]
(2.31)

= Eq(zzz|xxx;φ)

[
log

p(xxx,zzz;θ)

q(zzz|xxx;φ)
▽φ logq(zzz|xxx;φ)

]
. (2.32)

The resulting gradient formulation is also known as REINFORCE in the context of

reinforcement learning, and log p(xxx,zzz;θ)
q(zzz|xxx;φ) is referred to as the learning reward (Williams,

1992). Again, the Monte Carlo method is used to calculate approximate gradients

when the sum over zzz is intractable:

▽φB(θ,φ;xxx)≈ 1
K

K∑
i=1

log
p(xxx,zzz;θ)

q(zzz|xxx;φ)
▽φ logq(zzz|xxx;φ) with zzz(i) ∼ q(zzz|xxx;φ) . (2.33)

The score function estimator is applicable to both discrete and continuous variational

distributions. Though it is unbiased, it is prone to high variance, primarily because the

multiplier log p(xxx,zzz;θ)
q(zzz|xxx;φ) of the gradient ▽φ logq(zzz|xxx;φ) is unbounded.
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Pathwise Gradient Estimator. A low-variance estimator is the pathwise gradient es-

timator; it is also known as the reparameterization trick in the VAE literature (Kingma

and Welling, 2014; Rezende et al., 2014). The key idea of the pathwise gradient esti-

mator is to formalize the variational posterior in terms of a base probability density so

that, instead of directly sampling from the variational posterior, we can sample from

the base distribution and deterministically transform the sample:

zzz = g(ε;ξ) with ε∼ p(ε) , (2.34)

where p(ε) is a base distribution simpler than the variational posterior, and g(ε,ξ) is a

deterministic transform function differentiable with respect to ξ.

Below we present an example with the multivariate normal distribution as the base

distribution since we will use it in Chapter 3:

p(ε) = N (ε;0,I) , (Base distribution)

q(zzz|xxx;φ) = N (zzz;µ,σ2) with ξ = (µ,σ2) = f (xxx;φ) , (Variational posterior)

zzz∼ q(zzz|xxx;φ)⇔ zzz = g(ε;ξ) = µ+σ · ε with ε∼N (ε;0,I) . (Reparameterization)

The reparameterization trick separates the variational parameters φ from the discrete

sampling path. We can instead estimate the expectation in the lower bound under the

base distribution that does not involve any learnable parameters:

B(θ,φ;xxx) = Ep(ε)

[
log

p(xxx,g(ε;ξ);θ)

q(g(ε;ξ)|xxx;φ)

]
. (2.35)

To estimate the gradients, we use the Monte Carlo method to obtain a low-variance

estimate of the lower bound B̃(θ,φ;xxx) and differentiate the empirical lower bound

with respect to θ and φ: ▽θ,φB̃(θ,φ;xxx).

Gumbel-Softmax Estimator. The Gumbel-Softmax estimator extends the reparame-

terization trick that works with continuous distributions to discrete distributions, e.g,

the categorical distribution. Denoting zzz as a categorical variable with C categories,

zzz is represented as a one-hot vector and takes on each category with a probability πi

(
∑C

i=1 πi = 1). The Gumbel-Softmax estimator (Jang et al., 2017; Maddison et al.,

2017) achieves differentiable sampling by using the Gumbel-Max trick, i.e., applying

the reparameterization trick to discrete variables (Maddison et al., 2014). Gumbel-Max

uses the Gumbel distribution as the base distribution. Given a vector of independent
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random Gumbel noises ε(|ε|=C),3 Gumbel-Max transforms it by using Perturb-and-

MAP (Papandreou and Yuille, 2011):

zzz = one_hot
(

argmax
i

(logπi + εi)

)
with ε∼ Gumbel(ε;0,I) . (2.36)

But the argmax operator precludes gradient backpropagation; instead, the Gumbel-

Softmax estimator uses a Gumbel-Softmax sample as a differentiable proxy of the

discrete one-hot sample zzz:

z̃zzi = exp((logπi + εi)/τ)/Z with Z =
∑

i

exp((logπi + εi)/τ) , (2.37)

where τ is a positive temperature parameter controlling the closeness between the dif-

ferential approximate and the corresponding discrete sample. But, at test time, the

maximum a posteriori (MAP) estimate is usually required, and we will have to trans-

form the continuous approximate back into a discrete sample. To bridge the gap be-

tween training and inference, the Gumbel-Softmax estimator is further augmented with

the Straight-Through estimator (ST; Bengio et al. (2013)). The key idea of the ST es-

timator is to use the discrete (i.e., argmax) version of continuous relaxation z̃zz in the

forward pass and backpropagate through z̃zz in the backward pass.

2.3.1.6 Semi-supervised Learning

We have so far focused on learning structure-induction models in a fully-unsupervised

manner. In cases where there are downstream tasks that benefit from structured repre-

sentations, we could learn task-specific structure-induction models. Formally, suppose

that, in the supervised setting, each observation xxx is associated with a target yyy (e.g., yyy

can be a sentiment label if xxx is a sentence), a traditional supervised model would pre-

dict yyy directly from xxx: p(yyy|xxx;λ). Rather than conditioning on xxx alone, we would like

to predict the target yyy conditioning on both xxx and its structured representations. Since

the structured representations are unobserved, we treat them as latent variables and

indicate them by zzz. Using the latent variable zzz, we further reformulate the traditional

conditional model as:

p(yyy|xxx;λ) =
∑

zzz

p(yyy|xxx,zzz;λ)p(zzz|xxx;λ) . (2.38)

3In practice, Gumbel variables are sampled via inverse transform sampling: ε =
− log(− log(uuu)) with uuu∼ Uniform(0,I).
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Compared with the traditional conditional model, the latent-variable formulation

relies on an additional posterior distribution p(zzz|xxx;λ) to model latent structures. Ex-

plicitly modeling hidden structures has been shown to be useful for downstream su-

pervised tasks (Chiang, 2005; Yogatama et al., 2017; Deng et al., 2018), especially

those that require symbolic reasoning (Mao et al., 2019; Havrylov et al., 2019). But in

our case, we are interested in uncovering the structures underlying observations xxx, i.e.,

learning the inference model p(zzz|xxx;λ) from downstream tasks. Given that structured

representations help with downstream tasks, we hypothesize that, in return, supervi-

sion from downstream tasks will help with learning structure-induction models. To

favor unsupervised learning, we assume that yyy is easy to obtain, e.g., yyy can be images

that are aligned with the given text xxx (see Chapter 3).

Learning the latent-variable conditional model can be formulated as maximizing

the conditional log-likelihood of yyy given xxx:

L(λ) =
∑

i

log p(yyy(i)|xxx(i);λ) =
∑

i

log
∑

zzz

p(yyy(i)|xxx(i),zzz;λ)p(zzz|xxx(i);λ) , (2.39)

which involves learning the posterior distribution p(zzz|xxx;λ) over parameters λ. Since

p(zzz|xxx;λ) can be derived from p(xxx,zzz;λ), we instead replace it with a separate model

p(zzz|xxx,θ) and learn another unsupervised model p(xxx;θ) =
∑

z p(xxx,zzz;θ). In particular,

we are interested in a joint learning paradigm that combines supervised learning and

unsupervised learning:

L(θ,λ) =
∑

i

log p(xxx(i);θ)+
∑

i

log p(yyy(i)|xxx(i);θ,λ) . (2.40)

We refer to the joint learning paradigm as semi-supervised learning. To optimize the

full model, we resort to the learning techniques discussed in Sections 2.3.1.1–2.3.1.5.

2.3.2 Structure-Aware Models

Differently from neural-symbolic models, which explicitly model latent structures via

discrete latent variables, structure-aware models encode discrete structures via compu-

tation graphs, which can be specified by given structures (e.g., trees) or dynamically

constructed via an algorithm (e.g., easy-first parsing (Goldberg and Elhadad, 2010)).

The challenges with structure-aware models lie in representation and inference.

The representation challenge means that we have to design appropriate model ar-

chitectures to encode desired structural patterns (e.g., phrase boundaries). Since these

structural patterns are specific to a structure-induction task (e.g., phrase boundaries
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can be used to induce syntactic structures), the model architectures are in general

task-specific, but there are generic architectures that are capable of encoding discrete

structures, including the self-attention mechanism for complete graphs (Vaswani et al.,

2017) and graph neural networks for arbitrary graph-like structures (Kipf and Welling,

2017). Apart from encoding generic structures like graphs, in many cases, we are inter-

ested in encoding more restricted structures in neural models. A possible way to do so

is to place proper restrictions on computations. This has led to more specialized model

architectures, e.g., the recurrent computations of recurrent neural networks encode

linear-chain structures (Elman, 1990) and the recursive computations of TreeLSTM

encode tree structures (Tai et al., 2015). These structure-aware models generally rely

on given structures, which can be implicitly defined (e.g., complete graphs), explic-

itly specified (e.g., parse trees), and dynamically constructed (Goldberg and Elhadad,

2010). Another way of encoding structures is to perform structure-aware computa-

tions without requiring specific structures. It is usually operationalized via customized

attention mechanisms that are capable of capturing general hierarchies in images and

text, i.e., these specialized computational mechanisms allow for semantically similar

regions/spans to merge implicitly and recursively (Geng et al., 2023).

The inference challenge means that we need to tailor an inference algorithm to

translate computations and representations of a structure-aware model into target struc-

tures (e.g., finding a set of phrase boundaries that best describe the syntactic structure

of a sentence). An inference algorithm generally consists of two components: enu-

merating and ranking all possible structures. These structures may have been specified

by the model (e.g., graph structures underlying graph neural networks), or they have

to be interpreted via an algorithm (e.g., the CKY algorithm (Cocke, 1969) on its own

produces tree-like structures). To score structures for disambiguation, an inference al-

gorithm may directly use the model’s computations (e.g., likelihoods of relations for

a given object pair in scene graph induction) or it has to define a measure by using

the intermediate representations produced by the model (e.g., measuring the distance

between two words as the cosine similarity between their vector representations).

Since we are interested in unsupervised approaches to structure induction, we will

focus on model architectures that are not only capable of encoding structural patterns

but also allow for unsupervised learning. Specifically, we primarily use Transformer

models (Vaswani et al., 2017) to demonstrate the idea of structure-aware structure-

induction models since they have been widely used for self-supervised (i.e., unsuper-

vised) learning in the language and vision community (Devlin et al., 2019; Radford
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et al., 2018; Caron et al., 2021; He et al., 2022; Zellers et al., 2022).

At the core of Transformer is the self-attention mechanism. It produces attention

scores that measure dependencies between the subparts of an input (e.g., words in a

sentence and objects in an image); the attention scores are further used to compute

contextualized subpart representations. Though the attention mechanism implicitly

defines a complete graph of subparts, it encodes no preferences for a particular struc-

tural formalism. But, with a carefully designed inference algorithm, desired structured

representations can be extracted from internal representations of Transformer models

such as attention scores and contextualized subpart representations.

As a first example, in the area of Transformer-based language modeling, it has been

shown that syntactic structures can be induced from pre-trained language models (Kim

et al., 2020; Wu et al., 2020). Take dependency tree induction, two popular paradigms

for inducing dependency structures of sentences have been explored. They are sim-

ilar in that they both rely on a dynamic programming approach to produce tree-like

structures but are distinguished from each other in their ways of scoring trees. Scoring

dependency trees relies on a metric to quantify the dependencies between words. In

doing so, one paradigm uses the fact that self-attention scores can be seen as a measure

of the dependencies between words (Htut et al., 2019), while the other resorts to the

similarities between contextualized word representations (Wu et al., 2020).

Transformer-based models are an example of generic model architectures for struc-

ture induction. In the context of unsupervised parsing, more sophisticated model archi-

tectures have also been explored. For example, ordered neurons LSTM (ON-LSTM)

implements a specialized gating mechanism to model hierarchical phrase structures.

Essentially, the gating mechanism computes the likelihood that a split point forms a

phrase boundary. At inference time, a top-down greedy algorithm is used to recover

tree structures from intermediate phrase-boundary likelihoods (Shen et al., 2019).

In the area of vision-language learning, the generic self-attention mechanism has

also been shown to be capable of capturing structural visual patterns. For example, in

pre-training masked vision-language models (Lu et al., 2019; Su et al., 2020), the inter-

mediate cross-modal attention has been shown to be predictive of visual relations (Li

et al., 2020a). In Chapter 3, we will present a specialized computational model that

is similar in spirit to masked language models (Devlin et al., 2019) but conditions on

additional visual objects and is created with the goal of predicting relations for every

pair of visual objects in a given image.
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2.4 Multimodal Learning

Multimodal learning generally refers to machine learning problems that involve mod-

eling connections among multiple modalities of data. We posit unsupervised structure

induction in the multimodal setting and, specifically, the image-text learning setting,

which relies on visual-textual groundings in the form of aligned image-text pairs. We

first discuss the role of visual groundings in language understanding (Section 2.4.1),

then show the potential of language abstraction for image understanding (Section 2.4.2),

and finally review unsupervised curation of image-text alignments (Section 2.4.3).

2.4.1 Visual Groundings of Natural Language

Enabling machines to understand human language has long been a grand challenge.

There have been different computational tools developed for representing, analyzing,

and understanding natural language, from syntactic models to semantic models. No-

tably, recent breakthroughs in natural language understanding (NLU) have been made

by distributional semantic models. Underlying these models is the distributional hy-

pothesis, which states that words appearing in similar contexts are semantically sim-

ilar (Harris, 1954), forms the basis of learning contextualized word representations

from raw text corpora (Mikolov et al., 2013), and leads to the recent success of large

language models (LLMs) for NLU (Devlin et al., 2019; Brown et al., 2020).

However, criticisms of these models have also arisen. For example, Bender and

Koller (2020) argue that LLMs trained only on form (e.g., utterances) do not neces-

sarily learn meanings (of words). One of the major reasons is that LLMs derive the

representations of words (i.e., symbols) directly from their textual contexts, without

considering the physical world (e.g., via visual and auditory perceptions) that grounds

language (see symbol grounding problem; Harnad (1990)), which is contrary to the

strong evidence that humans rely on visual information to learn language (O’Grady,

2005; Vigliocco et al., 2014). Moreover, linguistic data alone does not faithfully reflect

the truth about the physical world, e.g., the relative frequency of an event, when de-

scribed in text, does not necessarily match its relative likelihood in the world (Gordon

and Van Durme, 2013), an issue that is usually referred to as the reporting bias prob-

lem (Van Durme, 2010). Consequently, learning from linguistic data alone will not

plausibly lead to a system capable of understanding the world and human language.

To endow machine learning models with the ability of general language under-

standing, it is essential to learn them in an environment that demonstrates how lan-
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guage is used (Wittgenstein, 1953), and practically, to learn from additional visual

perceptions (Bruni et al., 2014; Bisk et al., 2020). To this end, many have been advo-

cating visually grounded language learning, e.g., machine translation with image piv-

ots (Elliott et al., 2016) and next-word prediction with image contexts (Ororbia et al.,

2019). Apart from learning continuous sentence representations from visual ground-

ings (Kiela et al., 2018; Bordes et al., 2019), visual groundings have been shown to be

helpful for core NLP tasks such as unsupervised word segmentation (Kawakami et al.,

2019) and syntax induction (Shi et al., 2019a). Further, with the large-scale image-text

data (Sharma et al., 2018), multimodal pre-training progresses towards bridging the

gap between vision and language (Lu et al., 2019; Zhou et al., 2020; Su et al., 2020).

2.4.2 Language Abstraction of Visual Concepts

Image understanding problems (e.g., object detection, image classification, and visual

question answering) generally require machine learning models to capture visual con-

cepts at a certain level, e.g., parts and objects. In the deep learning era, most neural

models for these tasks are designed to follow the philosophy of end-to-end training,

i.e., they transform pixel images into continuous feature vectors and decode a target

directly from the feature vectors. While there is no explicit modeling of high-level

abstraction of image contents, explainable visual concepts (e.g., objects) have been

shown to emerge in unsupervised learning of object detectors (Le et al., 2012) and su-

pervised scene classification (Zhou et al., 2015). These observations, to some extent,

demonstrate the ability of neural models to understand complex scenes and account

for their state-of-the-art performance, but meanwhile, the learned visual features have

been shown to be correlated to some visual regularities such as textures and spatial

closeness, e.g., visual objects “dog” and “couch” in the image “the dog is sitting on

the couch” tend to have similar vector semantic representations because of the overlap

between the corresponding object regions (Li et al., 2020b).

In contrast, words that refer to different concepts are likely to be separable in a

learned word embedding space, partly because of the discrete nature of human lan-

guage, e.g., words “dog” and “couch” are easy to distinguish from each other in the

vector space. This observation suggests that language can be used as a tool to ab-

stract visual concepts, giving rise to more symbolic visual representations. The ar-

gument is further bolstered by findings from cognitive science, which indicate that

language experience causes more categorical visual perception (Lupyan et al., 2020).
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Indeed, Li et al. (2020b) have shown that pre-trained word embeddings help learn more

separable visual object representations. Abstracting visual concepts into textual con-

cepts (e.g., translating images into scene graphs) has also improved image captioning

and visual question answering (Wu et al., 2016). In low-level image understanding

tasks such as object detection, a detector trained by additionally optimizing image-text

alignment shows better performance than without using image-text alignment regular-

ization (Kamath et al., 2021). Similarly, language supervision (e.g., semantic labels

of pixels) via contrastive image-text learning enables few- and zero-shot semantic seg-

mentation (Li et al., 2022a), and surprisingly contrastive image-text learning alone (i.e.,

without semantic mask annotations) results in meaningful semantic segmentation (Xu

et al., 2022). However, all these models have been primarily focused on visual enti-

ties and learning their abstractions from language supervision. In addition to visual

entities, visual relations (e.g., “behind” and “hold”), as another kind of visual concept,

are essential for arranging visual entities and composing them into reasonable images,

thus another interesting yet challenging problem would be inducing visual relations

between objects from language supervision.

2.4.3 Curation of Image-Text Alignment

A prerequisite for training multimodal models is multimodal data and, specifically, the

multimodal alignment that encodes informative connections among multiple modali-

ties of data. Take aligned image-text pairs, images provide not only intuitive visual

explanations of text but also extra contexts of text (i.e., what is unsaid in aligned text).

Conversely, text offers high-level abstractions of complex visual concepts (e.g., the

way “boy” and “ball” interact in an image can be abstracted as “play” in text). The

methods for curating multimodal alignment vary depending on practical use scenarios.

We will primarily focus on image-text alignment (i.e., via parallel image-text data) and

briefly review the curation of representative image-text datasets.

The progress in computer vision has been a major drive for curating image-text

data. Starting with image classification, the past decade has witnessed an increased

interest in understanding interactions between vision and language in challenging yet

practical multimodal tasks, including, inter alia, image captioning (Lin et al., 2014),

visual question answering (Antol et al., 2015), visual (commonsense) reasoning (Zellers

et al., 2019), and text-conditioned image generation (Ramesh et al., 2021). Depending

on whether human labor is involved or not, the methods for curating image-text data
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fall into two categories: manual curation and automatic curation.

Human-annotated resources have been used in vision-language tasks of varying

difficulty, e.g., from visual perceptual tasks to visual cognitive tasks and higher-order

visual reasoning tasks. For visual perceptual tasks, ImageNet (Deng et al., 2009), a

hierarchical image database organized according to the hierarchy of WordNet (Fell-

baum, 1998), has led to the breakthroughs of neural approaches to image classifi-

cation (Krizhevsky et al., 2012) and is undoubtedly instrumental in the advances of

deep learning. Progressing from perceptual tasks to cognitive tasks, MSCOCO (Lin

et al., 2014; Chen et al., 2015), which is annotated with human-written captions,

stimulates an interest in image captioning. Further, it is annotated with additional

question-answer pairs for visual question answering (Antol et al., 2015), and has also

become part of Visual Genome, an effort towards connecting structured visual con-

cepts with language (Krishna et al., 2017). Advancing towards higher-order reasoning,

NLVR (Suhr et al., 2019) and VCR (Zellers et al., 2019) provide testbeds for visually-

grounded language reasoning and visual commonsense reasoning, respectively.

The fact that human annotations are prohibitively expensive to obtain on a large

scale motivates automatic curation of image-text data. Synthetic image-text data is

probably the easiest to create because it can be generated by following pre-defined pro-

cedures. Synthetic data is needed for two reasons: (1) to avoid difficult detection and

labeling of natural image contents, e.g., AbstractScene assigns a set of semantically

similar synthesized images to each human-written caption (Zitnick and Parikh, 2013);

and (2) to function as a diagnostic dataset, e.g., CLEVR uses abstract images and exe-

cutable functional language to facilitate the analysis of visual question-answering mod-

els (Johnson et al., 2017). Still, aligned natural image-text pairs are needed for training

models for practical tasks, e.g., text-to-image generation. YFCC100M stands for the

early large-scale automatically-curated dataset and contains around 100 million photos,

but the associated tags are sparse and fail to fulfill the need for semantically diverse

language descriptions (Thomee et al., 2016). Conceptual Captions demonstrates an

automatic curation of large-scale high-quality image-text data from the Web (Sharma

et al., 2018). Recent vision-language models such as CLIP (Radford et al., 2021) and

DALLE (Ramesh et al., 2021) are learned from hundreds of millions of image-text

pairs, which are also collected from the web. But aligned data is not always abun-

dantly available for every modality pair (e.g., non-speech audio and text for auditory

and textual modalities), posing an obstacle to working with data-scarce modality pairs.

In Chapter 5, we will investigate this problem and present our solutions.
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Figure 3.1: Visually-grounded Compound Probabilistic CFG (vc-PCFG). vc-PCFG

is trained on image-text pairs by jointly optimizing a contrastive loss (negative pairs are

not shown) and a language modeling loss. At test time, it infers syntactic structures

directly from text, without access to the aligned images.

In this chapter, we investigate the task of inducing phrase-structure representations of

text. While there have been different models developed for tackling the task, we are

particularly interested in Context-Free Grammar (CFG). Given a CFG, every sentence

admitted by it is associated with a derivation, i.e., phrase structure, which is composed

of grammar rules from the CFG, and describes the process of recursively merging

small constituent phrases into a larger constituent phrase. The task of finding latent

phrase structures of language is known as grammar induction and has been formulated

as an unsupervised learning task. As with grammar-based models, the goal of gram-

mar induction is to learn a CFG from raw text, without using any annotated phrase

39
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structures. As a fundamental problem in computational linguistics, grammar induction

has been extensively studied prior to the deep learning era. Some of the early work

on this problem is conducted with the purpose of examining the Poverty of the Stim-

ulus argument (Chomsky, 1956) in the context of language acquisition (Gold, 1967;

Pullum and Scholz, 2002; Zuidema, 2002), while many others are interested in evalu-

ating the capability of CFG to represent English (Lari and Young, 1990; Carroll and

Charniak, 1992; Clark, 2001; Klein and Manning, 2002). With the re-rising of neural

networks, recent deep learning models have been applied to grammar induction and

greatly advanced the area (Shen et al., 2018, 2019; Kim et al., 2019b,c). But these neu-

ral approaches to grammar induction follow conventional learning settings that were

established decades ago. They have been generally limited to, for example, relying on

text, without considering learning signals from other modalities.

In contrast, the crucial aspect of natural language learning is that it is grounded in

perceptual experiences (Barsalou, 1999; Fincher-Kiefer, 2001; Bruni et al., 2014). As

neural models have been approaching human performance on natural language pro-

cessing benchmarks, grounded language learning has been argued to be an important

next step towards better natural language understanding (Bisk et al., 2020; Bender and

Koller, 2020). Existing work on grounded language learning has been primarily rely-

ing on visual groundings, largely because image-text pairs are abundantly available. It

has been shown that visual groundings not only help with learning continuous sentence

representations (Kiela et al., 2018; Bordes et al., 2019), but also benefit unsupervised

word segmentation (Kawakami et al., 2019), machine translation (Elliott et al., 2016;

Li et al., 2022b), and causal language modeling (Ororbia et al., 2019). In this chap-

ter, we consider a more challenging problem: can visual groundings help us induce

syntactic structure? We refer to this problem as visually grounded grammar induction.

The challenge with visually grounded grammar induction is: how to incorporate vi-

sual groundings into the learning of structure-induction models. Inspired by the work

on task-dependent tree induction, where a latent-tree model induces tree-structured

representations of text for downstream tasks such as sentiment classification and natu-

ral language inference (Yogatama et al., 2017; Choi et al., 2018; Maillard et al., 2019),

we learn a latent-tree model from image-text pairs for a multimodal task. By analogy

to the supervised natural language tasks in task-specific tree induction, where input

text is grounded in the corresponding label (e.g., sentiment), the image in an image-

text pair can be seen as the label of the aligned text. Predicting the image grounding

of text can be formulated as finding an image that is most similar to the given text.
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To learn such a similarity model, we adopt contrastive image-text learning, which has

been shown to be effective in learning image and text representations from large-scale

image-text data (Radford et al., 2021; Jia et al., 2021). Importantly, image and text

representations are decoupled in contrastive image-text learning. This will be useful,

at test time, for inferring syntactic structures without the reliance on aligned images.

Based on the framework of contrastive image-text pre-training, Shi et al. (2019a)

has proposed a visually grounded neural syntax learner (VG-NSL) to tackle the task

of visually grounded grammar induction. Specifically, they learn a parser from image-

captioning data. The parser is optimized via REINFORCE, where the reward is com-

puted by scoring the alignment of images and constituents. Though their model has

demonstrated reasonable performance in latent tree induction, matching-based rewards

can, as we will discuss further in the paper, make the parser focus only on more local

and short constituents (e.g., 79.6% recall on NPs) and perform poorly on longer ones

(e.g., 26.2% recall on VPs) (see Shi et al. (2019a)). While for the former it outperforms

the text-only grammar induction methods, for the latter it substantially underachieves.

This may not be surprising, as it is not guaranteed that every constituent of a sentence

has its visual representation in the aligned image; the reward signals can be noisy and

insufficient to capture all aspects of phrase-structure syntax. Consequently, Shi et al.

(2019a) have to rely on language-specific inductive bias to obtain more informative

reward signals. Another issue with VG-NSL is that the parser does not admit tractable

estimation of the partition function and the necessary posterior probabilities – rewards

have to be computed via point estimation, with learning potentially suffering from the

high variance of gradient estimation.

To alleviate the first issue, we propose to complement the image-text alignment-

based loss with a loss defined on unlabeled text (i.e., its log-likelihood). As re-confirmed

with neural models in Shen et al. (2019) and Kim et al. (2019b), text itself can drive

induction of rich syntactic knowledge, so additionally optimizing the parser on raw

text can be beneficial and complementary to visually grounded learning. To resolve

the second issue, we resort to an extension of Probabilistic CFG (PCFG) parsing

model, compound PCFG (Kim et al., 2019b). It admits tractable estimation of the

posteriors, needed in the alignment loss, with dynamical programming and leads to

a fully-differentiable end-to-end visually grounded learning. More importantly, the

PCFG parser lets us complement the alignment loss with a language modeling ob-

jective, leading to a framework of jointly maximizing the log-likelihood of text and

optimizing image-text alignment.
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Our key contributions can be summarized as follows: (1) we propose a fully-

differentiable end-to-end visually grounded learning framework for grammar induc-

tion; (2) we additionally optimize a language modeling objective to complement vi-

sually grounded learning; and (3) we conduct experiments on MSCOCO (Lin et al.,

2014) and observe that our model has a higher recall than VG-NSL for five out of

the six most frequent constituent labels, e.g., it surpasses VG-NSL by 55% recall on

VPs and by 48% recall on prepositional phrases (PPs). Comparing to a model trained

purely via visually grounded learning, extending the loss with a language modeling

objective improves the overall F1 from 50.5% to 59.4%.

3.1 Related Work

Grammar Induction has a long history in computational linguistics. Following obser-

vations that direct optimization of log-likelihood with the Expectation Maximization

algorithm (Lari and Young, 1990) is not effective at producing effective grammars, a

number of approaches have been developed, embodying various inductive biases or

assumptions about the language structure and its relation to surface realizations (Klein

and Manning, 2002; Smith and Eisner, 2005; Cohen and Smith, 2009; Spitkovsky et al.,

2010; Zhao et al., 2018). The recent advances in the area have been brought by flexible

neural models (Shen et al., 2018, 2019; Kim et al., 2019b,c; Drozdov et al., 2019). All

these methods, with the exception of Shi et al. (2019a), rely solely on text.

Visually grounded learning is motivated by the observation that natural language

is grounded in perceptual experiences (Steels, 1998; Barsalou, 1999; Fincher-Kiefer,

2001; Roy, 2002; Bisk et al., 2020). It has been shown effective in word representation

learning (Bruni et al., 2014; Silberer and Lapata, 2014; Lazaridou et al., 2015) and

sentence representation learning (Kiela et al., 2018; Bordes et al., 2019). All this work

uses visual images as perceptual experience of language and exploits visual seman-

tics derived from images to improve continuous vector representations of language. In

contrast, we induce structured representations, discrete tree structures of language, by

using visual groundings. We propose a model for the task within the contrastive learn-

ing framework. Learning involves estimating concreteness of spans, which generalizes

word-level concreteness (Turney et al., 2011; Kiela et al., 2014).

In the vision and machine learning community, unsupervised induction of struc-

tured image representations (aka scene graphs or world models) has been receiving

increasing attention (Eslami et al., 2016; Burgess et al., 2019; Kipf et al., 2020), how-
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ever, they typically rely solely on visual signals. An interesting extension of our work

would be to consider joint induction of structured representations of images and text

while guiding learning by an alignment loss.

3.2 Background and Motivation

Our model relies on compound PCFG (Kim et al., 2019b) and generalizes the visually

grounded grammar learning framework of Shi et al. (2019a). We will describe the

relevant aspects of both frameworks in Sections 3.2.1-3.2.2, and then discuss their

limitations (Section 3.2.3).

3.2.1 Compound PCFG

Compound PCFG extends Context-Free Grammar (CFG) and, to establish notation,

we start by briefly introducing them. A CFG is defined as a 5-tuple G =(S,N ,P ,Σ,R )

where S is the start symbol, N is a finite set of nonterminals, P is a finite set of preter-

minals, Σ is a finite set of terminals,1 and R is a set of production rules in the Chomsky

normal form:

S→ A A ∈N , (3.1)

A→ BC A ∈N , and B,C ∈N ∪P , (3.2)

T � w T ∈ P ,w ∈ Σ . (3.3)

PCFG extends CFG by associating each production rule r ∈ R with a non-negative

scalar πr such that
∑

r:A→γ
πr = 1, i.e., the probabilities of production rules with the

same left-hand-side nonterminal sum to 1. The strong context-free assumption hin-

ders PCFG and prevents them from being effective in the grammar induction context.

Compound PCFG (c-PCFG) mitigates this issue by assuming that rule probabilities

follow a compound probability distribution (Robbins, 1951):

πr = gr(z;θ) with z∼ p(z) , (3.4)

1Strictly, Context-Free Grammar does not distinguish nonterminals N (constituent labels) from
preterminals P (part-of-speech tags). They are both treated as nonterminals. N ,P ,Σ must satisfy
N ∩P = /0 and (N ∪P )∩Σ = /0.
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where p(z) is a prior distribution of the latent z, and gr(·;θ) is parameterized by θ and

yields a rule probability πr. Depending on the rule type, gr(·;θ) has one of these forms:

πS→A =
exp(uT

A fs([wS;z])∑
A′∈N exp(uT

A′ fs([wS;z])
, (3.5)

πA→BC =
exp(uT

BC[wA;z])∑
B′,C′∈N ∪P exp(uT

B′C′[wA;z])
, (3.6)

πT→w =
exp(uT

w ft([wT ;z])∑
w′∈Σ

exp(uT
w′ ft([wT ;z])

, (3.7)

where u is a parameter vector, wN is a symbol embedding and N ∈ {S} ∪N ∪ P .

[·; ·] indicates vector concatenation, and fs(·) and ft(·) encode the input into a vector

(parameters are dropped for simplicity).

A c-PCFG defines a mixture of PCFGs (i.e., we can sample a set of PCFG param-

eters by sampling a vector z). It satisfies the context-free assumption conditioned on

z and thus admits exact inference for each given z. Learning with c-PCFG involves

maximizing the log-likelihood of every observed sentence www = w1w2 . . .wn:

log pθ(www) = log
∫

z

∑
t∈TG (www)

pθ(t|z)p(z)dz , (3.8)

where TG(www) consists of all parses of www under a PCFG G . Though for each given z the

inner sum over parses can be efficiently computed using the inside algorithm (Baker,

1979), the integral over z renders optimization intractable. Instead, c-PCFG relies on

variational inference and maximizes the evidence lower bound (ELBO):

log pθ(www)≥ ELBO(www;φ,θ) = Eqφ(z|www)[log pθ(www|z)]−KL[qφ(z|www)||p(z)] , (3.9)

where qφ(z|www) is a variational posterior, a neural network parameterized with φ. The

expected log-likelihood term is estimated via the reparameterization trick (Kingma

et al., 2014); the KL term can be computed analytically when p(z) and qφ(z|www) are

normally distributed.

3.2.2 Visually Grounded Neural Syntax Learner

The visually grounded neural syntax learner (VG-NSL) comprises a parsing model

and an image-text matching model. The parsing model is an easy-first parser (Gold-

berg and Elhadad, 2010). It builds a parse greedily in a bottom-up manner while at the

same time producing a semantic representation for each constituent in the parse (i.e., its
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“embedding”). The parser is optimized through REINFORCE (Williams, 1992). The re-

ward encourages merging two adjacent constituents if the merge results in a constituent

that is concrete, i.e., if its semantic representation is predictive of the corresponding

image, as measured with a matching function. We omit details of the parser and how

the semantic representations of constituents are computed, as they are not relevant to

our approach, and refer the reader to Shi et al. (2019a).

However, as we will extend their image-text matching model, we explain this com-

ponent of their approach more formally. In their work, this loss is used to learn the

textual and visual representations. For every constituent c(i) of a sentence www(i), they

define the following triplet hinge loss:

h(c(i),v(i)) =Ec′
[
m(c′,v(i))−m(c(i),v(i))+ ε

]
+
+

Ev′
[
m(c(i),v′)−m(c(i),v(i))+ ε

]
+
, (3.10)

where [·]+ = max(0, ·), ε is a positive margin, m(c,v)≜ cos(c,v) is the matching func-

tion measuring similarity between the constituent representation c and the image rep-

resentation v. The expectation is taken with respect to “negative examples”: c′ and v′.
In practice, for efficiency reasons, a single representation of an image v′ and a single

representation of a constituent (span) c′ from another example in the same batch are

used as the negative examples. Intuitively, an aligned image-constituent pair (v(i),c(i))
should score higher than an unaligned one ((v(i),c′) or (v′,c(i))).

The total loss for an image-sentence pair (v(i),www(i)) is obtained by summing losses

for all constituents in a tree t(i), sampled from the parsing model (we write c(i) ∈ www(i)):

ŝ(v(i),www(i)) =
∑

c(i)∈t(i)

h(c(i),v(i)) . (3.11)

In their work, training alternates between optimizing the parser using rewards (rely-

ing on image and text representations) and optimizing the image-text matching model

to refine image and text representations (relying on the fixed parsing model). Once

trained, the parser can be directly applied to text, i.e., images are not used at test time.

3.2.3 Limitations of The VG-NSL Framework

While VG-NSL has shown reasonable performance in latent tree induction, there are

several practical issues inhibiting this visually grounded learning framework. First,

contrastive learning implicitly assumes that every constituent of a sentence has its vi-

sual representation in the aligned image. However, it is not guaranteed in practice and



46 Chapter 3. Visually Grounded Grammar Induction

would result in noisy reward signals. Besides, the loss in Equation 3.10 (and a similar

component in the reward, see Shi et al. (2019a)) focuses on constituents correspond-

ing to short spans. Long spans, independently of their syntactic structure, tend to be

sufficiently discriminative to distinguish the aligned image v(i) from an unaligned one.

This implies that there is not much learning signal for such constituents. The tendency

to focus on short spans and those more easily derivable from an image is evident from

the results (Shi et al., 2019a). For example, their parser is accurate for noun phrases

(recall 79.6%), which are often short for captions, but performs poorly on verb phrases

(recall 26.2%), which have longer spans, and are more complex compositionally and

also harder to predict from images (see our analysis in Section 3.4.3.2). While there

may be ways to mitigate some of these issues, we believe that any image-text match-

ing loss alone is unlikely to provide sufficient learning signal to accurately capture all

aspects of syntax. Instead of resorting to language-specific inductive biases as done by

Shi et al. (2019a) (i.e., head-initial bias (Baker, 2008) of English), we propose to com-

plement the image-text matching loss with the objective derived from the unaligned

text (i.e., log-likelihood), jointly training a parser to both explain the raw language

data and the alignment with images.

Moreover, their learning is likely to suffer from large variance in gradient estima-

tion as their parser does not admit tractable estimation of the partition function, and

thus they have to rely on sampling decisions. This will be even more of a problem if we

would attempt to use it in the joint learning setup. Similar parsing models do not yield

linguistically-plausible structures when used in the conventional (i.e., non-grounded)

grammar-induction set-ups (Williams et al., 2018; Havrylov et al., 2019).

In the next section, we will use compound PCFG (Kim et al., 2019b) and describe

an improved visually grounded learning framework that can tackle these issues neatly.

3.3 Visually Grounded Compound PCFG

We use compound PCFG and develop Visually-grounded Compound PCFG (dubbed

vc-PCFG) within the contrastive learning framework. Instead of sampling a tree

and computing a point estimate of the image-text matching loss, we can compute

the expected image-text matching loss under a tree distribution and use end-to-end

contrastive learning (Section 3.3.1). Since it is inefficient to compute constituent rep-

resentations relying on the chart, we will introduce an additional textual representation

model to encode constituents (Section 3.3.2). Moreover, vc-PCFG lets us addition-
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ally optimize a language modeling objective, complementing the visually grounded

contrastive learning (Section 3.3.3).

3.3.1 End-to-End Contrastive Learning

In the visually grounded grammar induction framework, the parsing model is opti-

mized through learning signals derived from the alignment of images and constituents,

as scored by the image-text matching model. Denoting a set of image representations

by V = {v(i)} and the corresponding set of sentences by W = {www(i)}, the image-text

matching model is optimized via contrastive learning:

L(V ,W ;φ,θ) =
∑

i

s(v(i),www(i)) . (3.12)

We define s(v(i),www(i)) as the loss of aligning v(i) and www(i). In VG-NSL, it is estimated

via point estimation (see Equation 3.11). While in vc-PCFG, given an aligned image-

sentence pair ⟨v,www⟩, we compute the expected image-sentence matching loss under a

tree distribution pθ(t|www), leading to an end-to-end contrastive learning:

s(v,www) = Epθ(t|www)
∑
c∈t

h(c,v) , (3.13)

where h(c,v) is the hinge loss of aligning the unlabeled constituent c and the image v
(defined in Equation 3.10). Minimizing the hinge loss encourages an aligned image-

constituent pair to rank higher than any unaligned one. Expanding the right-hand side

of Equation 3.13 leads to:

s(v,www) =
∑

t∈TG (www)

pθ(t|www)
∑
c∈t

h(c,v)

=
∑
c∈www

∑
t∈TG (www)

1[c∈t]pθ(t|www)

︸ ︷︷ ︸
p(c|www): marginal of the span c

h(c,v)

=
∑
c∈www

p(c|www)h(c,v) , (3.14)

where p(c|www) is the conditional probability (i.e., marginal) of the span c given www. It

can be efficiently computed by using the inside algorithm and automatic differentia-

tion (Eisner, 2016; Rush, 2020).
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3.3.2 Span Representation

Estimation of the expected image-text matching scores relies on span representations.

Ideally, a span representation should encode semantics of a span with its computation

guided by its syntactic structure (Socher et al., 2013). The reliance on the predicted

tree structure will result in propagating learning signals derived from the alignment of

images and sentences back to the parser. To realize this desideratum, we could follow

the inside algorithm and recursively compose span representations (Le and Zuidema,

2015; Stern et al., 2017; Drozdov et al., 2019), which is, however, both time- and

memory-inefficient in practice.

Instead, we produce span representations largely independently of the parser, as

we will explain below. The only way the parser model influences this representation is

through the predicted constituent label: we use its distribution to compute the represen-

tation.2 Specifically, as a trade-off for better training efficiency, we adopt a single-layer

bidirectional LSTM (BiLSTM) to encode spans. A mean-pooling layer is applied over

the hidden states h of the BiLSTM and followed by a label-specific affine transforma-

tion fk(·) to produce a label-specific span representation ck. Take a span ci, j = wi . . .w j

(0 < i < j ≤ n):

ck = fk(
1

j− i+1

j∑
l=i

hl) . (3.15)

The BiLSTM encoding model operates at the span level and naturally encodes se-

mantics of a span. Unlike using a single sentence-level BiLSTM encoder, it guarantees

that no information from words outside of the span leaks into its representations. More

importantly, it can run in O(n) for a sentence of length n with a parallel implementa-

tion. While the produced representation does not reflect the structural decisions made

by the parser, it can be sensitive to word order and may be affected by its syntactic

structure (Blevins et al., 2018).

In order to compute the representation of unlabeled constituent c, we average the

distribution ck under the distribution of labels defined by the parser:

c =
K∑

k=1

p(k|c,www)ck , (3.16)

where p(k|c,www) is the probability that the span c has label k, conditioned on having

this constituent span in the tree.
2Intuitively, the key learning signal for the parser in our model comes through the marginals in

Equation 3.14, not through the span representation.
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To further reduce computation we estimate the matching loss only using the n(n−1)
4

shortest spans for a sentence of length n. Thus the image-text alignment loss will focus

on small constituents. This is the case anyway (see discussion in Section 3.2.3), so we

expect that this simplification would not hurt model performance significantly.

3.3.3 Joint Objective

Rather than simply optimizing the contrastive learning objective, we jointly maximize

the log-likelihood of text data. As with c-PCFG, we optimize the ELBO:

L(W ;φ,θ) =−
∑

www∈W

ELBO(www;φ,θ) . (3.17)

This learning objective complements contrastive learning. As contrastive learning op-

timizes a parser by solely matching images and constituents, the parser would only

focus on simple and local constituents (e.g., short NPs). Moreover, in practice, since

not every constituent can be grounded in an image, contrastive learning would suffer

from misleading or ambiguous learning signals.

To summarize, the overall loss function is

J (φ,θ) = L(W ;φ,θ)+α ·L(V ,W ;φ,θ) , (3.18)

where α is a hyper-parameter balancing the relative importance of contrastive learning.

3.3.4 Parsing

The parser can be directly used to parse raw text after training, without requiring access

to visual groundings. Parsing seeks for the most probable parse t∗ of www:

t∗ = argmax
∫

z
pθ(t|www,z)pθ(z|www)dz . (3.19)

Still, though the maximum a posterior (MAP) inference over pθ(t|www) can be solved by

the CKY algorithm (Cocke, 1969; Kasami, 1966; Younger, 1967), inference becomes

intractable when introducing into z. The MAP inference is instead approximated by

t∗ ≈ argmax
∫

z
pθ(t|www,z)δ(z−µµµφ(www))dz , (3.20)

where δ(·) is the Dirac delta function and µµµφ(www) is the mean vector of the variational

posterior qφ(z|www). As δ(·) has zero mass everywhere but at the mode µµµφ(www), it is

equivalently solving argmaxt pθ(t|www,µµµφ(www)).



50 Chapter 3. Visually Grounded Grammar Induction

3.4 In-Domain Evaluation of VC-PCFG

3.4.1 Datasets and Evaluation

Datasets: We use MSCOCO (Lin et al., 2014). It consists of 82,783 training images,

1,000 validation images, and 1,000 test images. Each image is associated with 5 cap-

tion sentences. We encode images into 2048-dimensional vectors using the pre-trained

ResNet-101 (He et al., 2016). At test time, only captions are used. We follow Shi

et al. (2019a) and parse test captions with Benepar (Kitaev and Klein, 2018). We use

the same data preprocessing as in Shen et al. (2019) and Kim et al. (2019b), where

punctuation is removed from all data, and the top 10,000 frequent words in training

sentences are kept as the vocabulary.

Evaluation: We mainly compare vc-PCFG with VG-NSL (Shi et al., 2019a). To

verify the effectiveness of the use of visual groundings, we also compare our model

with a c-PCFG trained only on the training captions. All models are run four times

with different random seeds and for at most 15 epochs with early stopping (i.e., the

image-caption loss/perplexity on the validation captions does not decrease). We report

both averaged corpus-level F1 and averaged sentence-level F1 numbers as well as the

unbiased standard deviations.

3.4.2 Settings and Hyperparameters

We adopt parameter settings suggested by the authors for the baseline models. For

VG-NSL we run the authors’ code. We re-implement c-PCFG using automatic dif-

ferentiation (Eisner, 2016) to speed up training. Our vc-PCFG comprises a parsing

model and an image-text matching model. The parsing model has the same parame-

ters as the baseline c-PCFG; the image-text matching model has the same parameters

as the baseline VG-NSL. Concretely, the parsing model has 30 nonterminals and 60

preterminals. Each of them is represented by a 256-dimensional vector. The inference

model qφ(z|www) uses a single-layer BiLSTM. It has a 512-dimensional hidden state

and relies on 512-dimensional word embeddings. We apply a max-pooling layer over

the hidden states of the BiLSTM and then obtain 64-dimensional mean vectors µµµφ(www)

and log-variances logσσσφ(www) by using an affine layer. The image-text matching model

projects visual features into 512-dimensional feature vectors and encodes spans as 512-

dimensional vectors. Our span representation model is another single-layer BiLSTM,

with the same hyperparameters as in the inference model. α for visually grounded
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Model NP VP PP SBAR ADJP ADVP C-F1 S-F1

Left Branching 33.2 0.0 0.0 4.9 0.0 0.0 15.1 15.7

Right Branching 23.8 91.5 63.0 96.0 18.3 76.7 42.4 42.8

Random Trees 32.8±0.5 18.4±0.4 24.4±0.3 17.7±1.7 26.8±2.6 20.9±1.5 24.2±0.3 24.6±0.2

c-PCFG 43.0±8.6 85.0±2.6 78.4±5.6 90.6±2.1 36.6±21 87.4±1.0 53.6±4.7 53.7±4.6

VG-NSL† 79.6±0.4 26.2±0.4 42.0±0.6 22.0±0.4 50.4±0.3

VG-NSL+HI† 74.6±0.5 32.5±1.5 66.5±1.2 21.7±1.1 53.3±0.2

VG-NSL∗ 64.3±1.1 28.1±0.5 32.2±1.1 16.9±3.2 13.2±1.5 5.6±0.3 41.5±0.5 41.8±0.5

VG-NSL+HI∗ 61.0±0.2 33.5±1.6 62.7±0.6 42.0±5.1 13.9±0.6 65.9±2.5 48.8±0.4 49.4±0.5

vc-PCFG (ours) 54.9±14 83.2±3.9 80.9±7.9 89.0±2.0 38.8±25 86.3±4.1 59.3±8.2 59.4±8.3

w/o LM 35.6±3.7 93.4±2.1 70.1±2.0 95.9±3.9 20.6±0.8 78.0±2.2 49.7±2.6 50.5±2.5

Table 3.1: Recalls on six frequent constituent labels (i.e., NP, VP, PP, SBAR, ADJP, and

ADVP) in the MSCOCO test captions and corpus-level F1 (C-F1) and sentence-level

F1 (S-F1) results. The best mean number in each column is in bold. † indicates results

reported by Shi et al. (2019a). ∗ denotes results obtained by running their code. Notice

that the results from Shi et al. (2019a) are not comparable to ours because they keep

punctuation and include trivial sentence-level spans in evaluation.

learning is set to 0.001. We implement3 vc-PCFG relying on Torch-Struct (Rush,

2020), and optimize it using Adam (Kingma and Ba, 2015) with the learning rate set to

0.01, β1 = 0.75, and β2 = 0.999. All parameters are initialized with the Xavier uniform

initializer (Glorot and Bengio, 2010).

3.4.3 Results and Analysis

3.4.3.1 Main Results

Our model outperforms all baselines according to both corpus-level F1 and sentence-

level F1 (see Table 3.1). Notably, it surpasses VG-NSL+HI by 10% F1.4 The right

branching model is a strong baseline on image captions, as observed previously on the

WSJ corpus, including in recent work (Shen et al., 2018; Kim et al., 2019b). Com-

paring with c-PCFG, which is trained solely on captions, vc-PCFG achieves a much

3https://github.com/zhaoyanpeng/vpcfg.
4We run the code of Shi et al. (2019a) and train VG-NSL and VG-NSL+HI on the training captions

with punctuation removed. This is considered a more challenging setting as punctuation signals the
boundaries of constituents and makes it easy for parsers to derive constituents. At test, as a common
practice (Shen et al., 2018, 2019; Kim et al., 2019b), we discard punctuation and ignore trivial single-
word and sentence-level spans. We notice that including sentence-level spans can improve the F1 of
VG-NSL to around 48%.
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Figure 3.2: Recall broken down by constituent length.

higher mean F1 (+5.7% F1), demonstrating the informativeness of visual groundings.

However, vc-PCFG suffers from a larger variance, presumably because the joint ob-

jective is harder to optimize. Visually grounded contrastive learning (w/o LM) has

a mean F1 50.5%. It is further improved to 59.4% when additionally optimizing the

language modeling objective.

Moreover, we show recall on six frequent constituent labels (NP, VP, PP, SBAR,

ADJP, and ADVP) in the test captions. Unsurprisingly, VG-NSL is best on NPs be-

cause the matching-based reward signals optimize it to focus only on short and con-

crete NPs (recall 64.3%). It performs poorly on other constituent labels such as VPs

(recall 28.1%). In contrast, vc-PCFG exhibits a relatively even performance across

constituent labels, e.g., it is most accurate on PPs and SBARs and works fairly well on

VPs (recall 83.2%). Meanwhile, it improves over c-PCFG for NPs, which are usually

short and “concrete”, once again confirming the usefulness of visual groundings. Vi-

sually grounded contrastive learning (w/o LM) tends to behave like the right branching

baseline but performs slightly better on NPs (+2.8% recall). Additionally optimizing

the language modeling objective brings a huge improvement for NPs (+19.3% recall).

3.4.3.2 Analysis

We analyze model performance for constituents of different lengths (Figure 3.2). As

expected, VG-NSL becomes weaker as constituent length increases, and the drop is

very dramatic. c-PCFG and its grounded version vc-PCFG consistently outperform

VG-NSL on constituents longer than four tokens and display a more even performance
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Figure 3.3: Label distribution over constituent length. “All” denotes frequencies of

constituent lengths. Zero frequencies are due to the limited numerical precision.

across constituent lengths. Meanwhile, vc-PCFG beats c-PCFG on constituents of

length below 5, confirming that visual groundings are beneficial for short spans. We

further plot the distribution over constituent length for different phrase types (Fig-

ure 3.3) and find that around 75% constituents in our dataset are shorter than six to-

kens, and 60% of them are NPs. Thus, it is not surprising that the improvement on NPs,

brought by visually grounded learning, has a large impact on the overall performance.

Next, we analyze induced tree structures. We compare model predictions against

gold trees, left-branching trees, and right-branching trees. As there is little perfor-

mance difference between corpus-level F1 and sentence-level F1, we focus on sentence-

level F1 in this analysis. We report self F1 (Williams et al., 2018) to show model con-

sistency across runs. The self F1 is computed by averaging over six model pairs from

four different runs. All results are presented in Table 3.2. Overall, all models have

self F1 above 70%, indicating a relatively high consistency. We observe that using the

head-initial bias pushes VG-NSL closer to the right-branching baseline, while visually

grounded learning leads to improvements over c-PCFG, forcing vc-PCFG to deviate

from the default right-branching behaviour.

Moreover, we test VG-NSL+HI and vc-PCFG on 50 manually annotated captions

released by Shi et al. (2019a). vc-PCFG achieves a mean F1 62.7%, surpassing VG-

NSL+HI by 12.1% F1. In Figure 3.4 we visualize a parse tree predicted by the best

run of vc-PCFG. We can see that vc-PCFG identifies most NPs but makes mistakes

in PP attachment and consequently fails to identify the VP.



54 Chapter 3. Visually Grounded Grammar Induction

Model Gold Left Right Self

VG-NSL 41.8 28.3 20.6 84.3

VG-NSL+HI 49.4 24.5 29.2 88.6

c-PCFG 53.7 1.3 53.6 77.3

vc-PCFG 59.4 4.4 48.5 71.1

Table 3.2: Average sentence-level F1 results against gold trees (Gold), left-branching

trees (Left), right-branching trees (Right), and self F1 (Self) (Williams et al., 2018).
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Figure 3.4: Left: A parse output by the best run of vc-PCFG. Right: The gold tree.

3.5 Cross-Domain Transfer of VC-PCFG

vc-PCFG has demonstrated impressive performance and, specifically, it improves

over non-grounded c-PCFG on MSCOCO, but it has only been evaluated on in-

domain text, so it is unclear if the improvements transfer across domains or, equiv-

alently, if the models acquire a general grammar or only a grammar suitable for a

certain domain.

To bridge the gap, we further study the transferability of vc-PCFG. First, to enable

vc-PCFG to transfer across domains, we extend it using pre-trained word embeddings

and obtain transferrable vc-PCFG (dubbed tvc-PCFG). This modification allows for

directly applying vc-PCFG to a target domain, without requiring training on any data

from the target domain.

3.5.1 Transfer Learning

3.5.1.1 Background

To motivate transfer learning of vc-PCFG, we first reiterate the learning objective of

vc-PCFG. Suppose a captioning data set D = {(v(i),www(i))|1 ≤ i ≤ N} consists of N
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pairs of image v and caption www, the loss function of vc-PCFG is formally defined as:

L =
∑

i

− log p(www(i))+α · s(v(i),www(i)) , (3.21)

where www is a caption; v is the vector representation of an image v and is precomputed

by using a pre-trained image encoder such as ResNet (He et al., 2016). The hyper-

parameter α controls the relative importance of the two loss terms. The first term

− log pθ(www) computes the negative log-likelihood of the caption www under a PCFG G ;

it can be seen as a language modeling (LM) loss. The second term s(v,www) defines a

hinge loss. Intuitively, s(·) is optimized to score higher for an aligned pair (v(i),www(i))

than for any un-aligned pair by a positive margin (see technical details in Section 3.3).

Essentially, the loss function defined in Equation 3.21 corresponds to multi-objective

learning and can be applied to text alone or to image-text pairs. Specifically, for sen-

tences that are paired with aligned images, both the LM loss and the hinge loss are

minimized; for sentences without aligned images, only the LM loss is minimized. By

treating images as the labels of the aligned text, this type of multi-objective learning

can be seen as semi-supervised learning.

3.5.1.2 Transferable vc-PCFG

We consider a zero-shot transfer learning setting: we directly apply and transfer a pre-

trained vc-PCFG to the target domain. This setting is viable because vc-PCFG can

be learned solely on text and does not rely on images to parse text at inference time.

To enable vc-PCFG to transfer across domains, we extend it by using pre-trained

word embeddings and sharing them between the source domain and the target domain.

Following our definition of PCFG, a vc-PCFG consists of three types of grammar

rules: start rules (e.g., S→ A), binary rules (e.g., A→ BC), and preterminal rules (e.g.,

T → w). The start rules and the binary rules are domain agnostic, but the preterminal

rules, which generate a word conditioning on a preterminal, are domain-dependent

because they rely on the domain-specific vocabulary. Thus, the key to transferring

vc-PCFG from the source domain to the target domain is to share preterminal rules

or, equivalently, a vocabulary between the source and target domains.

Still, sharing the same set of grammar rules between the two domains does not

guarantee that a learned model transfers to unseen preterminal rules. This is because

the target-domain vocabulary is not necessarily subsumed by the source-domain vocab-

ulary. To make it more clear, we first note that vc-PCFG generates rule probabilities
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Split CF CG CK CL CM CN CP CR All (Brown)

train 2191 2324 2708 2745 615 3267 2801 648 17299

dev 507 461 570 518 115 599 543 164 3477

test 466 494 603 451 151 549 598 155 3467

File ID Splits

train 1-22 1-25 1-19 1-18 1-4 1-21 1-20 1-6

dev 23-27 26-31 20-23 19-21 5-5 22-25 21-25 7-7

test 28-32 32-36 24-29 22-24 6-6 26-29 26-29 8-9

Table 3.3: Nine subdomains of the Brown corpus of Penn Treebank (Marcus et al.,

1999). CF: popular lore. CG: belles lettres, biography, memoires, etc. CK: general

fiction. CL: mystery and detective fiction. CM: science fiction. CN: adventure and

western fiction. CP: romance and love story. CR: humor.

conditioning on grammar symbols. Take preterminal rules of the form T → w:

p(T → w) ∝ g(uT ,ew,z;θ) , (3.22)

where gθ is a neural network, u and e indicate preterminal-symbol embeddings and

word embeddings, respectively, and z is a sentence-dependent latent vector. Since we

train vc-PCFG only on the source domain, for preterminal rules that contain words

outside of the source domain, their rule probabilities and, specifically, the word embed-

dings that are used to compute the rule probabilities, will never be learned. To resolve

this issue, we propose to use pre-trained word embeddings, namely GloVe (Pennington

et al., 2014), and refer to the resulting model as tvc-PCFG. Pre-trained word embed-

dings have encoded similarities between words, i.e., similar words are generally close

to each other in the learned vector space. We keep pre-trained word embeddings frozen

during training. Thus, at test time, for words (preterminal rules) that are unseen during

training, our tvc-PCFG can exploit similarities in the embedding space to estimate

rule probabilities.

3.5.2 Experiments

3.5.2.1 Data Sets and Evaluation

We use MSCOCO captioning data set (Lin et al., 2014; Chen et al., 2015) as the

source domain and conduct proximate-domain transfer and remote-domain transfer

experiments. For proximate-domain transfer, we consider Flickr30k (Flickr; Young
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Split Answers Email Newsgroup Reviews Weblog All (Enweb)

train 2353 3362 1648 2565 1451 11379

dev 565 767 368 622 245 2567

test 569 759 371 626 334 2659

Table 3.4: Five subdomains of the English Web Treebank (Bies et al., 2012).

et al. (2014)). For remote-domain transfer, we consider Wall Street Journal (WSJ)

and Brown portions of the Penn Treebank (Marcus et al., 1999), and the English Web

Treebank (Enweb; Bies et al. (2012)). Note that Brown and Enweb consist of 8 and

5 subdomains, respectively, so we will be actually performing remote-domain transfer

on 14 text domains (see below for details).

Flickr is an image captioning dataset. While the images of Flickr and MSCOCO are

all sourced from Flickr, they focus on different aspects,5 so do their captions. Though

the guidelines for collecting MSCOCO captions (Chen et al., 2015) are inspired by

those of Flickr (Hodosh et al., 2013; Young et al., 2014), due to the differences in the

instructions, the statistics of the collected captions tend to be different, e.g., Flickr test

captions are slightly longer than MSCOCO training captions (i.e., 12.4 vs 10.5 tokens

on average). Nevertheless, Flickr is close to MSCOCO and thus we choose Flickr

captions for proximate-domain transfer. Since Flickr does not contain gold phrase

structures of captions, we follow the experimental settings of vc-PCFG and parse all

the captions with Benepar (Kitaev and Klein, 2018).

WSJ is a news corpus and the central part of the Penn Treebank resource (Marcus

et al., 1999). Sentences in WSJ have been manually annotated with phrase structures.

We use WSJ for remote-domain transfer; sentences in newswire and image captions are

very different as evident, for example, from the divergences in distributions of tokens,

syntactic fragments, and sentence lengths (20.4 vs 10.5 tokens on average).

Brown is also part of the Penn Treebank resource and consists of manually parsed

sentences from 8 domains, which cover various genres such as lore, biography, fiction,

and humor (Marcus et al., 1999). We divide the sentences in each domain into three

parts: around 70% of the sentences for training, 15% for development, and 15% for

5Flickr images focus on people and animals that perform some actions (Hodosh et al., 2013; Young
et al., 2014; Plummer et al., 2015) while MSCOCO covers more diverse object categories (up to 80) and
focuses on multiple-object images (Lin et al., 2014; Chen et al., 2015).
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test. We further merge the training, development, and test subsets across domains

and create a mixed-domain Brown (see Table 3.3). The average length of Brown test

sentences is much longer than MSCOCO training captions, i.e., 17.1 vs 10.5 tokens.

Since all these subdomains differ in terms of genre from image captions, we use them

for remote-domain transfer.

Enweb is short for English Web Treebank and consists of sentences from 5 domains:

weblogs, newsgroups, email, reviews, and question-answers (Bies et al., 2012). Each

of these domains contains sentences that have been manually annotated with syntactic

structures. We divide sentences in each domain in a similar way as we divide Brown

sentences. We also create a mixed-domain Enweb (see Table 3.4). Enweb test sen-

tences are slightly longer than MSCOCO training captions, i.e., 13.9 vs 10.5 tokens on

average. Since they belong to genres different from image captions, we use them for

remote-domain transfer.

3.5.2.2 Model Configurations

Transfer learning models. We use the same implementations of the text-only parser

c-PCFG and the visually-grounded version vc-PCFG as Zhao and Titov (2020) but

replace their word embeddings with pre-trained GloVe embeddings (models are dubbed

t(v)c-PCFG). We follow the setups in Zhao and Titov (2020) to learn and evaluate

t(v)c-PCFG.6 To measure model performance, we resort to unlabeled corpus-level

F1 (C-F1) and sentence-level F1 (S-F1), which are equivalent to recall in unsupervised

grammar induction.

Domain-specific vocabulary. For each corpus, we keep the top 10,000 frequent

words in the corresponding training set as the vocabulary. In training and test, to-

kens outside of the given vocabulary are treated as a special “<unk>” token (short for

“unknown”). We share the vocabulary of each mixed domain among its subdomains,

e.g., the 8 subdomains of Brown shares the vocabulary of the mixed domain Brown,

similarly for Enweb.

Test-time vocabulary. At test time, we use domain-specific vocabulary rather than

the training-time vocabulary (i.e., the MSCOCO vocabulary). The reasons for doing so

include: (1) domain-specific vocabulary is likely to cover more target-domain words

6https://github.com/zhaoyanpeng/cpcfg and https://github.com/zhaoyanpeng/xcfg.
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Model NP VP PP SBAR ADJP ADVP C-F1 S-F1

Left Branching 33.2 0.0 0.0 4.9 0.0 0.0 15.1 15.7

Right Branching 23.8 91.5 63.0 96.0 18.3 76.7 42.4 42.8

Random Trees 32.8±0.5 18.4±0.4 24.4±0.3 17.7±1.7 26.8±2.6 20.9±1.5 24.2±0.3 24.6±0.2

c-PCFG † 43.0±8.6 85.0±2.6 78.4±5.6 90.6±2.1 36.6±21 87.4±1.0 53.6±4.7 53.7±4.6

vc-PCFG † 54.9±14 83.2±3.9 80.9±7.9 89.0±2.0 38.8±25 86.3±4.1 59.3±8.2 59.4±8.3

tc-PCFG ∗ 31.8±13.5 60.0±25.5 54.5±14.0 73.0±18.5 39.3±23.0 59.5±19.4 38.7±2.6 38.8±2.6

tvc-PCFG ∗ 79.1±6.0 67.8±13.7 71.4±8.5 80.7±9.2 59.1±17.9 84.9±3.0 65.7±2.1 66.3±2.1

Table 3.5: Parsing performance on MSCOCO. † indicates the results from Zhao and

Titov (2020) and ∗ indicates models with pre-trained GloVe word embeddings.

Model NP VP PP SBAR ADJP ADVP C-F1 S-F1

Left Branching 32.9 0.0 0.3 0.5 0.5 0.0 14.4 16.4

Right Branching 27.9 88.0 56.0 92.5 13.3 66.9 44.3 48.0

Random Trees 30.6±0.2 17.4±0.5 21.9±0.6 15.8±1.8 25.5±2.5 19.6±5.1 22.0±0.3 24.2±0.3

c-PCFG † 35.6±23.4 64.6±9.0 63.3±25.0 55.1±33.0 10.2±4.4 58.6±36.2 43.0±16.6 45.8±17.3

vc-PCFG † 33.7±20.7 61.6±6.2 46.8±26.8 40.6±37.8 12.7±9.1 39.2±39.0 38.0±15.4 40.9±15.4

tc-PCFG ∗ 29.6±15.5 58.3±19.1 58.0±12.4 66.7±9.1 38.6±27.2 55.8±15.4 38.5±2.1 40.5±2.0

tvc-PCFG ∗ 76.3±6.5 64.8±11.1 72.7±5.6 69.1±3.6 55.1±17.9 70.0±4.6 63.0±2.2 66.6±2.3

Table 3.6: Parsing performance on Flick. † indicates the results obtained by running

(v)c-PCFG on Flick; ∗ indicates the best models (w/ pre-trained GloVe word embed-

dings) trained on MSCOCO but evaluated on Flickr.

than the training-time vocabulary, and (2) this allows for fair comparison because the

baseline c-PCFG also uses domain-specific vocabulary.

3.5.3 Main Results

vc-PCFG benefits from pre-trained GloVe. We run experiments on MSCOCO

with pre-trained GloVe word embeddings (see Table 3.5). When trained on both im-

ages and text, tvc-PCFG improves over vc-PCFG (+6.9% S-F1). But when trained

only on text, tc-PCFG lags far behind c-PCFG, i.e., using pre-trained GloVe leads

to a reduction in performance.

We speculate that: this is because domain-specific lexical information is important

for grammar induction models. GloVe has been pre-trained on diverse text and may

not best reflect lexical information relevant to the domain of MSCOCO captions (e.g.,
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Model NP VP PP SBAR ADJP ADVP C-F1 S-F1

Left Branching 10.4 0.5 5.0 5.3 2.5 8.0 6.0 8.7

Right Branching 24.1 71.5 42.4 68.7 27.7 38.1 36.1 39.5

Random Trees 22.5±0.3 12.3±0.3 19.0±0.5 9.3±0.6 24.3±1.7 26.9±1.3 15.3±0.1 18.1±0.1

c-PCFG † 76.7±2.0 40.7±5.5 71.3±2.1 53.8±3.1 45.9±2.8 64.2±2.8 53.5±1.4 55.7±1.3

l10c-PCFG † 67.1±3.8 31.0±9.8 61.3±2.2 45.9±8.2 36.7±2.3 41.3±6.0 45.5±2.4 48.2±2.3

tc-PCFG ∗ 30.9±5.5 23.6±7.3 36.4±9.0 27.2±5.3 24.7±1.6 34.2±4.7 24.4±1.7 28.0±1.9

tvc-PCFG ∗ 48.6±3.7 24.8±4.1 39.4±6.5 27.2±1.1 30.2±4.6 40.4±2.0 32.0±1.2 35.3±1.3

Table 3.7: Parsing performance on WSJ. † indicates the models that are trained and

evaluated on WSJ (Zhao and Titov, 2021). The prefix “l10” indicates that the models

are trained on WSJ sentences shorter than 11 tokens but are tested on the full WSJ

test set. ∗ indicates the best models (w/ pre-trained GloVe word embeddings) trained

on MSCOCO but evaluated on WSJ.
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Figure 3.5: S-F1 numbers on different target domains. c-PCFG is trained only on the

text data of each domain’s training set. tvc-PCFG is our transfer learning model and

tc-PCFG is the transfer learning model that is trained without using visual groundings.

The squares indicate the average length of the test sentences of each domain.

wrong senses and parts of speech), so tc-PCFG underperforms c-PCFG. But visual

groundings are specific to a domain and could regularize a parser to capture domain-

specific lexical information (Zhao and Titov, 2020), so tvc-PCFG is less prone to

the same issue as in tc-PCFG; instead, it might be making the best of both visual

groundings and pre-trained GloVe, so it outperforms vc-PCFG.
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Model NP VP PP SBAR ADJP ADVP C-F1 S-F1

Left Branching 7.9 0.7 3.9 7.0 3.1 15.2 5.2 8.3

Right Branching 24.9 65.0 38.7 58.6 31.6 20.4 37.1 45.3

Random Trees 24.7±0.2 15.0±0.2 21.3±0.6 11.7±1.3 22.1±0.9 28.9±3.3 16.5±0.2 21.2±0.2

c-PCFG † 75.0±3.1 31.9±16.2 67.2±8.5 54.6±3.9 39.7±7.8 59.4±2.6 47.8±4.4 51.3±6.1

l10c-PCFG † 63.3±1.8 25.5±23.5 53.7±6.7 36.2±7.9 28.2±8.9 40.2±3.1 38.3±6.2 42.8±8.9

tc-PCFG ∗ 34.7±8.3 28.9±5.9 38.8±10.5 34.2±3.8 26.3±2.3 33.3±2.6 27.5±1.7 33.7±1.8

tvc-PCFG ∗ 58.5±4.0 29.7±2.7 44.8±6.5 34.4±1.3 32.9±3.1 38.1±1.2 35.9±1.4 41.4±1.8

Per-domain Performance of tvc-PCFG

CF 53.4±4.9 25.4±2.9 41.4±7.0 32.1±4.3 32.6±6.3 31.0±3.0 34.0±1.3 37.5±1.6

CP 64.1±3.0 31.9±3.8 49.0±8.2 41.1±1.9 34.5±3.2 39.7±7.3 37.7±1.6 44.1±2.1

CN 63.5±3.2 33.8±3.2 49.2±5.7 39.0±2.8 34.3±5.6 45.8±7.6 38.9±1.2 42.9±1.3

CM 61.4±5.5 36.4±2.9 49.6±5.5 39.5±4.5 44.8±8.6 50.0±10.2 40.0±1.0 46.3±1.3

CG 53.6±4.6 25.8±3.1 39.1±6.8 31.0±1.8 26.3±3.3 28.6±2.7 32.6±1.8 37.1±2.2

CR 52.0±3.3 24.0±2.9 39.0±6.7 25.9±3.2 26.8±3.0 34.5±7.4 31.8±0.8 35.0±1.4

CK 61.0±4.8 29.7±2.0 46.6±6.3 33.1±2.2 34.0±3.3 35.5±0.6 35.9±1.5 42.6±1.8

CL 62.2±3.9 32.6±1.6 46.4±6.3 39.7±3.4 35.3±1.7 40.5±4.2 36.7±1.4 41.3±2.0

Table 3.8: Parsing performance on Brown. † indicates the results obtained by running

c-PCFG on Brown; ∗ indicates the best models (w/ pre-trained GloVe word embed-

dings) trained on MSCOCO but evaluated on Brown.

tvc-PCFG succeeds in proximate-domain transfer. We learn tvc-PCFG from

MSCOCO and evaluate it on Flickr without further training (see Table 3.6). Our

transfer learning model achieves the best corpus- and sentence-level F1 scores on

MSCOCO. When evaluated on Flickr, it outperforms c-PCFG (+10.8% S-F1; see

Figure 3.5), so the improvements brought by visual groundings can transfer to similar

text domains.

tvc-PCFG fails in remote-domain transfer. We further evaluate the pre-trained

tvc-PCFG on remote-domain text, including WSJ, Brown, and Enweb (see Table 3.7-

3.9). On the whole, the transfer learning model tvc-PCFG underperforms c-PCFG,

which is trained individually on the training set of each target domain (see Figure 3.5).

We observe the largest S-F1 gap between tvc-PCFG and c-PCFG on WSJ (-20.4%)

and the smallest S-F1 gap on Enweb (-3.1%). This may be because of differences in

language register. Both WSJ and Enweb are different from MSCOCO at a lexical level,

but Enweb, consisting of web texts, contains informal language which is likely to be

structurally similar to that of captions.
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Model NP VP PP SBAR ADJP ADVP C-F1 S-F1

Left Branching 9.9 0.9 3.4 10.1 3.9 11.2 5.8 10.9

Right Branching 27.1 66.3 41.6 59.3 30.9 29.8 38.3 45.9

Random Trees 25.1±0.2 14.7±0.3 21.6±1.1 13.0±1.0 22.1±1.9 32.9±2.0 16.8±0.2 23.1±0.3

c-PCFG † 62.8±2.6 25.5±10.4 53.5±12.4 52.9±2.4 32.6±5.8 48.5±9.1 39.7±4.5 43.5±4.9

l10c-PCFG † 56.4±2.2 24.6±9.6 33.0±4.9 24.1±4.3 24.2±2.3 29.2±2.8 31.5±3.2 37.5±2.9

tc-PCFG ∗ 34.9±6.8 28.0±7.0 41.1±10.2 34.2±4.2 27.4±1.7 38.3±5.2 27.6±2.0 34.3±2.2

tvc-PCFG ∗ 55.0±3.9 28.6±3.6 45.4±6.1 34.9±0.4 35.1±2.5 41.4±7.1 34.6±1.5 40.4±1.6

Per-domain Performance of tvc-PCFG

Weblog 51.2±4.8 26.8±3.4 40.4±5.4 31.0±3.7 30.8±5.3 42.0±4.5 32.7±0.8 38.0±0.6

Answers 58.9±3.4 29.3±2.9 50.7±5.2 35.1±1.9 37.7±6.3 43.4±6.9 34.8±1.4 39.0±2.0

Email 52.8±3.9 26.2±3.2 42.5±6.7 32.6±3.7 32.2±6.9 35.9±8.3 33.0±1.4 40.1±1.9

Newsgroup 50.9±2.7 27.3±3.5 41.2±7.8 33.7±1.4 29.2±5.6 36.9±4.6 33.7±1.8 36.9±2.4

Reviews 61.7±5.1 31.5±4.4 52.6±6.9 42.5±3.8 38.7±6.5 42.6±5.5 37.9±1.3 44.9±1.6

Table 3.9: Parsing performance on Enweb. † indicates the results obtained by running

c-PCFG on Enweb; ∗ indicates the best models (w/ pre-trained GloVe word embed-

dings) trained on MSCOCO but evaluated on Enweb.
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(a) Comparison between c-PCFG, tvc-PCFG, and tc-PCFG on all target domains.
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(b) Comparison between c-PCFG, tvc-PCFG, and l10c-PCFG on all target domains.

Figure 3.6: c-PCFG and l10c-PCFG are trained on sentences shorter than 41

tokens and 11 tokens, respectively, tvc-PCFG is our transfer learning model, and

tc-PCFG is the transfer learning model that is trained without using visual groundings.

The squares indicate the average length of the test sentences of each target domain.



3.5. Cross-Domain Transfer of VC-PCFG 63

WSJ Brown Enweb
0

10

20

30

40

50

60

S-
F1

 (%
)

19.9

14.7
12.5

55.7 51.3 43.5

10.5 10.5 10.5

20.4
17.1

13.9

35.3 41.4 40.4

7.10 6.30 5.00

48.2 42.8 37.5

C-PCFG TVC-PCFG L10C-PCFG

Figure 3.7: c-PCFG is trained on sentences shorter than 41 tokens, l10c-PCFG is

trained on sentences shorter than 11 tokens, and tvc-PCFG is our transfer learning

model. The circles represent the average length of the sentences for training each

model; the squares indicate the average length of the test sentences of each domain.

Regarding model performance on subdomains, we observe similar trends as we

see on mixed domains. Specifically, on the subdomains of both Brown and Enweb,

c-PCFG performs best, and tvc-PCFG outperforms tc-PCFG (see Figure 3.6a).

Remote-domain training is helpful. Since the average lengths of WSJ, Brown, and

Enweb training sentences are higher than that of MSCOCO training captions, to allow

for fair comparison, for each target domain, we further train c-PCFG individually

on the training sentences of the length below 10.5, the average length of MSCOCO

training captions. We dub this model l10c-PCFG.

Surprisingly, though l10c-PCFG is individually trained only on the WSJ and

Brown sentences that are shorter than 10.5 tokens, it surpasses tvc-PCFG by 12.9%

and 1.4% S-F1, respectively (see Figure 3.7). On Enweb, while tvc-PCFG beats

l10c-PCFG (+2.9% S-F1), it does not always outperform l10c-PCFG on every run,

despite that the average length of the Enweb sentences used for training l10c-PCFG

is only 5 (cf. 10.5 tokens).

Across the remote-domain test sets, we also observe that the longer the sentences

are used for training c-PCFG, the better the performance is. For example, c-PCFG

always surpasses l10c-PCFG, and interestingly, without considering the “dataset”

variable, the improvement of l10c-PCFG over tvc-PCFG becomes larger as the av-

erage length of the sentences used for training l10c-PCFG increases: -2.9% < +1.4%

< +12.9% S-F1 with 5.0 < 6.3 < 7.1 tokens for Enweb, Brown, and WSJ, respectively.
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With regards to model performance on subdomains, again, we observe similar

trends as we see on mixed domains (see Figure 3.6b). Specifically, on the subdomains

of both Brown and Enweb, c-PCFG performs best, and tvc-PCFG underperforms

l10c-PCFG on the subdomains of Brown but outperforms l10c-PCFG on the sub-

domains of Enweb.

3.6 Subsequent Work

Since our publication on vc-PCFG (Zhao and Titov, 2020), subsequent work has

adapted our joint learning paradigm to tackle various challenging problems of unsuper-

vised structure induction. Among them, a direct application of our learning paradigm is

to induce syntactic structures from videos (Zhang et al., 2021), wherein, by analogy to

image groundings, a variety of video features (e.g., object, action, scene, audio, speech,

and OCR features) are extracted and used as the groundings of the aligned video cap-

tions. Apart from inducing phrase-structure grammars alone, Su et al. (2021) study

visually grounded constituency and dependency grammar induction with a lexicalized

PCFG parser (Zhu et al., 2020). Our learning paradigm has also been applied to joint

image and text parsing. For example, Hong et al. (2021) treat visual artificial objects

as sequences of constituent parts and extend our learning paradigm to jointly parse

objects and text. Further, Wan et al. (2022) consider natural image parsing and jointly

induce hierarchies of visual scenes and phrase structures of text. Notably, they use

object-level groundings and replace compound PCFG with a more context-dependent

parser (Drozdov et al., 2019). More recently, Lou et al. (2022) investigated graph-

based representations of images and text; they jointly learn to parse images into scene

graphs and text into dependency trees.

Compared with learning from language data alone, grounded language learning is

believed to be important for better natural language understanding (Bisk et al., 2020;

Bender and Koller, 2020). In efforts to promote grounded language learning, visual

groundings have been empirically shown to be helpful for syntactic understanding,

but it is still not entirely clear in which way and to which extent they help. Though

there have been empirical studies attempting to answer these questions, e.g., both Ko-

jima et al. (2020) and Zhao and Titov (2020) suggest that visual groundings help most

with noun phrase induction, more research from both theoretical and empirical sides is

needed, in order to investigate these problems thoroughly.
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3.7 Summary

We have presented Visually-grounded Compound PCFG (vc-PCFG) that uses com-

pound PCFG and generalizes the visually grounded grammar learning framework.

vc-PCFG exploits visual groundings via contrastive learning, with learning signals

derived from minimizing an image-text alignment loss. To tackle the issues of mislead-

ing and insufficient learning signals from purely agreement-based learning, we propose

to complement the image-text alignment loss with a loss defined on unlabeled text. We

resort to using compound PCFG which enables us to complement the alignment loss

with a language modeling objective, resulting in a fully-differentiable end-to-end visu-

ally grounded learning. We empirically show that our vc-PCFG is superior to models

that are trained only through visually grounded learning or only relying on text.

Further, we frame our proposed joint learning paradigm as a special case of multi-

objective learning and connect it with semi-supervised learning. Specifically, we op-

timize the image-text alignment objective on text that is associated with images (cf.

sentence labels) and the language modeling objective on pure text. We propose a sim-

ple approach that enables vc-PCFG to transfer to text domains beyond the training

domain. Our approach relies on pre-trained word embeddings and does not require

training on the target domain. We empirically find that vc-PCFG is able to transfer

to similar image-caption domains such as Flickr but struggles to transfer to remote

domains such as WSJ and Brown.

The major difference between our grammar-induction settings and conventional

settings is that we consider learning cues from multimodal data beyond text, which

constitutes an effort to favor grounded language learning. We focus specifically on vi-

sual groundings of text and propose a joint learning paradigm that allows for leveraging

visual groundings for learning PCFG induction models. We note that it is also possi-

ble to use other types of groundings rather than images. To a large extent, our work

suggests that general image-text pre-training and, specifically, the visual groundings

of text help with the challenging syntactic-structure induction task. Conversely, we

would like to investigate if image-structure induction benefits from textual groundings

via image-text pre-training. In Chapter 4, we will formulate an unsupervised textually-

grounded image-structure induction task. Differently from the neural-symbolic model,

i.e., vc-PCFG, which explicitly models hidden structures via latent variables, we will

devise a neural architecture that implicitly derives the induction of image structures.
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Figure 4.1: Visually Grounded Masked Language Model (vg-MlM) for unsupervised

scene graph induction. vg-MlM is trained on image-text pairs and learns directly from

natural language supervision. At test time, it infers scene graphs from images, without

access to the aligned text.

In the previous chapter, we empirically found that visual groundings of text help

with learning syntactic structures. Conversely, we would like to investigate if textual

groundings of images help with learning structured image representations. In particu-

lar, we focus on inducing scene graph representations of images.

A scene graph represents relations between objects. Given an image, scene graph

generation models detect objects (including localizing and classifying objects) and pre-

dict relations among them. The resulting scene graph representations abstract away

low-level image features and represent image contents with high-level concepts that

67
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are expressed in language (see Figure 4.1). There has been a substantial body of work

showing that scene graph representations are useful in a variety of vision tasks, in-

cluding image retrieval (Johnson et al., 2015; Schuster et al., 2015), image caption-

ing (Elliott and Keller, 2013; Yang et al., 2019; Li and Jiang, 2019; Gu et al., 2019a),

image synthesis (Johnson et al., 2018; Dhamo et al., 2020), and visual question an-

swering (Shi et al., 2019b; Hudson and Manning, 2019b,a).

Most approaches to scene graph generation adopt a supervised learning paradigm

and thus require scene graph annotations. Apart from the high cost of obtaining man-

ual annotations, the annotated scene graphs tend to be biased. Specifically, the dis-

tribution of annotated relations is heavily uneven and many relations appear only a

handful number of times in the annotated data (Krishna et al., 2017; Yao et al., 2021).

Learning from biased data further leads to biased models. While weakly-supervised

approaches have been studied, most of them mitigate only the annotation cost issue by

using image-level labels, without requiring gold bounding boxes (Zhang et al., 2017b;

Peyre et al., 2017), so the label bias issue remains. A possible solution to the issue

is to use distant supervision, e.g., mining pseudo labels from large image-captioning

datasets via an external parser (Schuster et al., 2015), but pipeline models are poten-

tially error-prone (Zhong et al., 2021; Ye and Kovashka, 2021).

In this work, we propose to learn scene graph induction models by using free-

form captions as direct supervision, without relying on linguistic preprocessing, e.g.,

converting captions into structured forms such as 〈subject, predicate, object〉 triplets.

We are partly inspired by the recent phenomenal progress in learning visual repre-

sentations from natural language supervision, which is usually in the form of image-

text pairs. Image-text data is abundantly available on the web (e.g., online posts and

tweets usually contain images and associated text) and can be curated via automatic

tools, without requiring intensive human labor (Sharma et al., 2018). In the context of

image-text pre-training, though continuous visual representations have been the main

focus (Lu et al., 2019; Li et al., 2020b; Radford et al., 2021), it has recently been shown

that more symbolic representations (e.g., via semantic segmentation and object detec-

tion) can also be learned (Xu et al., 2022; Geng et al., 2023). Motivated by this line

of work, we focus on learning structured image representation (i.e., scene graphs) via

image-text pre-training.

The challenges of inducing scene graphs from image-text pairs are two-fold: in-

ducing object representations and aligning each object (pair) to a textual concept that

is expressed as a word. Object representations are usually produced by using a pre-
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trained object detector, but it is also possible to obtain them via unsupervised semantic

segmentation (Burgess et al., 2019; Locatello et al., 2020). Given object representa-

tions, the next step1 is to classify individual objects and assign relations to pairs of

objects, i.e., aligning objects and object pairs to words that best describe them. In

annotated scene graphs, two main clusters of words have been distinguished: entities

for referring to objects and predicates for referring to visual relations. Since we learn

directly from captions, we do not use prior knowledge about word clusters in learning

and thus work in a more challenging setting.

We propose vg-MlM, short for Visually Grounded Masked Language Model,

for object and relation classification. vg-MlM has an encoder-decoder architecture.

Given object embeddings, the encoder produces a contextualized representation for

each pair of objects. The decoder implements masked language modeling and con-

ditions on the outputs of the encoder. We design a special computational mechanism

such that (1) at training time, vg-MlM predicts target words conditioning on both vi-

sual and textual contexts; and (2) at test time, vg-MlM is able to make predictions for

each object (pair), without access to captions (see Figure 4.2).

To study our model, we create CLEVR-TV, an artificial image-captioning dataset

built off CLEVR (Johnson et al., 2017). CLEVR-TV consists of descriptions of re-

lations among abstract 3D shapes. By using abstract objects, we are able to focus

on visual relation induction in isolation. We predict an object category for each ob-

ject and assign a relation to each pair of objects. We propose automatic evaluation

metrics to quantify model performance in terms of object and relation classification

accuracy. By experimenting with different methods for visual object encoding, we find

that symbolic object representation is important for vg-MlM to achieve reasonable

performance. Our experiments also suggest that vg-MlM is hard to optimize, e.g.,

vg-MlM is sensitive to hyperparameters such as the learning rate.

4.1 Related Work

Visual Relationship Detection. Visual relations capture interactions among objects

in an image and are important for representing and understanding detailed visual se-

mantics. Early approaches to modeling visual relations have focused on spatial rela-

tions, which are generally overly generic, e.g., “above”, “near”, and “around” (Gal-

1In principle, inducing object representations and aligning them to words can be formulated as mul-
titask learning and learned jointly.
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leguillos et al., 2008; Gould et al., 2008; Kulkarni et al., 2011). More complex visual

relations have been studied in the literature of human-object interactions (Desai et al.,

2010; Chao et al., 2015; Ramanathan et al., 2015), referential expression comprehen-

sion (Mao et al., 2016; Yu et al., 2016; Hu et al., 2017), and visual phrase detec-

tion (Sadeghi and Farhadi, 2011). To automatically induce diverse relations between

arbitrary objects, previous work has formulated a more general task called visual re-

lationship detection (VRD; (Lu et al., 2016)). VRD aims to predict triplets of the

form 〈subject, predicate, object〉. It involves localizing pairs of objects (i.e., subject

and object) as bounding boxes, labeling objects, and assigning a relation (i.e., pred-

icate) to each pair. Differently from VRD, which targets pairwise relation detection,

scene graph generation (SGG; (Xu et al., 2017)) is introduced to induce scene graphs

as a whole. In essence, SGG is simply a redefinition of VRD, but from a modeling

perspective, it is proposed to emphasize the aspect of reasoning with surrounding con-

texts (Xu et al., 2017), while previous approaches to VRD make predictions for each

object pair independently (Lu et al., 2016).

(Weakely) Supervised Scene Graph Generation. Supervised approaches to scene

graph generation have been dominant (Lu et al., 2016; Zhang et al., 2017a; Yu et al.,

2017; Li et al., 2017; Newell and Deng, 2017; Yang et al., 2018; Li et al., 2018; Woo

et al., 2018), presumably because of the availability of human-annotated scene graphs

such as the Scene Graph dataset (Johnson et al., 2015), the Visual Relationship Detec-

tion dataset (Lu et al., 2016), and the Visual Genome dataset (Krishna et al., 2017).

Among them, Visual Genome has been widely used, but it has been found that the

scene graphs in Visual Genome have noisy and sparse annotations (Xu et al., 2017)

and exhibit strong structural regularities (Zellers et al., 2018), presenting a great ob-

stacle to learning reliable and generalizable supervised models. To tackle these chal-

lenges, previous work has resorted to different strategies, such as data refinement (Xu

et al., 2017), multitask learning (Li et al., 2017), regularized learning with linguistic

knowledge (Lu et al., 2016; Yu et al., 2017), exploiting correlations between relations

and object labels (Dai et al., 2017a; Zellers et al., 2018; Chen et al., 2019), learning

from commonsense knowledge (Gu et al., 2019b; Zareian et al., 2020a), and debiasing

based on counterfactual analysis (Tang et al., 2020), to name but a few.

Despite the impressive development of supervised learning approaches, they are

inherently limited due to the reliance on expensive human annotations. A popular

strategy for mitigating the need for labeled data is to use weakly-supervised learning.
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Unlike supervised approaches, which assume localized scene graphs and thus require

bounding box annotations, most weakly-supervised methods relax the assumption by

assuming unlocalized scene graphs (i.e., image-level object and relation labels) and

thus avoid costly manually-annotated bounding boxes. To obtain object proposals,

some of the prior weakly-supervised approaches rely on pre-trained detectors (Peyre

et al., 2017; Baldassarre et al., 2020; Zareian et al., 2020b; Shi et al., 2021), and others

jointly learn an object proposal module and a relation detector (Zhang et al., 2017b).

Learning Visual Representations from Natural Language Supervision. In the area

of visual representation learning, a recent breakthrough is to learn general-purpose vi-

sual representations from natural language supervision (Lu et al., 2019; Zhou et al.,

2020; Su et al., 2020; Li et al., 2020b). Natural language supervision has been pri-

marily in the form of parallel images and text, which are abundant on the web and

thus have led to the development of large-scale image-text pre-training (Radford et al.,

2021; Jia et al., 2021). Apart from learning continuous visual representations, natural

language supervision has also been shown to be helpful for learning more symbolic

representations via, for example, object detection (Sadeghi and Farhadi, 2011; Kamath

et al., 2021) and segmentation (Li et al., 2022a; Xu et al., 2022). But little work has

been carried out to learn more complex structured visual representations (e.g., scene

graphs) from natural language supervision. Those that have used image-text pairs in

scene graph generation usually require preprocessing text. For example, Yao et al.

(2021) and Zhong et al. (2021) use a rule-based parser (Schuster et al., 2015) to extract

〈subject, predicate, object〉 triplets from image captions, and curate pseudo labels by

aligning the noisy triplets with gold object annotations. Ye and Kovashka (2021) use

the same parser to parse captions into graph-based semantic structures and use them as

the source of supervision. While we also use image captions, we directly learn from

them, without converting them into structured forms.

4.2 Problem Statement

Scene Graph. A scene graph is a directed graph where each node represents a vi-

sual object and each directed edge represents the relation between an object pair (see

Figure 4.1). Formally, we define a scene graph as a 3-tuple G = (O,P ,R ), where

• O is a finite set of objects in a given image. Each object is labeled with a category

such as “pigeon”, “grass”, and “flower”, and is associated with a bounding box.
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There might be multiple objects labeled with the same category in the given image

(e.g., “man.01” and “man.02”); they can be distinguished from each other by their

bounding boxes;

• P is a finite set of predicates such as “sniff”, “under”, and “sit-in”. The special

predicate “null” ∈ P indicates no relation;

• R is a finite set of triplets in the form of (o, p,o′), where o,o′ ∈ O and p ∈ P . Each

triplet indicates that one object o is related to the other object o′ via the relation p.

For example, (pigeon, sniff, flower).

Problem Formulation. Assuming a dataset D = {(v(i), t(i))|1≤ i≤ N} consisting of

N pairs of image v and caption t, our goal is to learn a scene graph induction model

from D. We consider a novel unsupervised learning setting and contrast it with previ-

ous learning settings in the following two important respects:

• We provide object representations. To obtain object representations, we assume

that a pre-trained object detector is available. The assumption is practical because

object detection has been widely studied (Girshick, 2015; Ren et al., 2015; He

et al., 2017) and there are off-the-shelf performant detectors (Wu et al., 2019).

Most weakly-supervised learning approaches also use a pre-trained detector, but

some of them use extra object label distributions predicted by the detector (Peyre

et al., 2017; Baldassarre et al., 2020), while we do not;

• We do not use image-level object labels and relation labels. Image-level captions

are the only source of supervision. Unlike previous work, which uses unlocalized

gold scene graphs or parses captions to create image-level pseudo labels, we learn

directly from captions. At inference time, a model should make predictions (ob-

ject and relation classification) conditioning on only images, without access to the

aligned captions.

4.3 Scene Graph Induction Model

4.3.1 Visually Grounded Masked Language Model

Conceptually, a scene graph induction model predicts object categories for individual

objects and assigns relations to object pairs, so it is desirable to have two separate sets
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Figure 4.2: Visually Grounded Masked Language Model (vg-MlM). Left: vg-MlM

has an encoder-decoder architecture. We customize a two-head Transformer decoder

layer (see Figure 4.3), which stacks above the standard Transformer decoder. Right: At

inference time, vg-MlM classifies individual objects and assigns relations to individual

pairs, without access to the aligned text.

of labels for objects and relations, respectively. But, in our setting, we aim to learn

directly from captions, so we assume that all the labels are contained in captions,2

but we do not use the prior knowledge about these labels during learning. While this

assumption poses a challenge for inference, it leads to the same setting as that used

for image-text pre-training and allows for tapping into a large body of work in that

area. Specifically, we draw inspiration from masked multimodal learning (Lu et al.,

2019; Zhou et al., 2020). Observing that the object and relation classification can

be formulated as predicting a target word given certain visual objects, we propose

vg-MlM3 for unsupervised scene graph induction.

Though both encoder-decoder and decoder-only architectures would suffice, we

adopt a Transformer encoder-decoder architecture because separating the encoder from

the decoder lets us inject different architectural biases into them. As we will ex-

pand on in Section 4.3.2, these architectural biases are the key to enabling classify-

2For example, the caption “the pigeon sniffs the flower” contains two object labels “pigeon” and
“flower”, and a relation label “sniffs”. At inference time, we may post-process inferred labels and use
their base forms, e.g., “sniffs” will be replaced by “sniff”.

3Visual-image-conditioned causal language modeling is another option, but the left-side contexts of
a token do not necessarily contain all the relevant information needed for predicting the token, especially
for English that tends to have a subject-verb-object word order, while masked language modeling does
not have this limitation. Take the caption “the pigeon sniffs the flower”, when predicting “sniffs”, it is
desirable to know both the left-side entity “pigeon” and the right-side entity “flower” because this not
only narrows down possible targets but also guides the model to attend to relevant visual objects, i.e.,
visual “pigeon” and “flower” segments. Nevertheless, it is possible to jointly perform masked language
modeling and causal language modeling as in Zhou et al. (2020).
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ing objects and relations conditioning on solely visual objects. We learn vg-MlM

by optimizing a masked language modeling objective. Formally, given a training set

D = {(v(i), t(i))|1≤ i≤ N}, we maximize the following conditional log-likelihood:

L(D;θ) =
N∑

i=1

∑
j∈M (i)

log p(t(i)j |v
(i), t(i)−M ;θ) , (4.1)

where M represents a set of random token indices with max(M ) ≤ |t| (the length of

the caption t), t j denotes j-th token of t, and t−M indicates the caption with t j (for

every j ∈M ) masked out, i.e., replaced by a special symbol “MASK”. For example,

if the caption t is “the pigeon sniffs the flower” and M = {2,4}, t−M will be “the

MASK sniffs MASK flower”. Intuitively, vg-MlM is trained to predict a target token

t j conditioning on both visual contexts v, which are encoded by the encoder, and textual

contexts t−M , which are encoded by the decoder.

4.3.2 VG-MLM for Scene Graph Induction

One of our goals is to infer the most probable relation for a pair of objects, without

access to captions. Suppose an L-layer Transformer encoder outputs no contextualized

object representations oL+1
1 ,oL+1

2 , . . . ,oL+1
no
∈ Rdm . At inference time, we solve the

following task:

argmax
r

p(r|oL+1
i ,oL+1

j ;θ) . (4.2)

But, during training, the only assumption we have made about vg-MlM is that it

predicts a target word conditioning on both visual contexts (i.e., objects) and textual

contexts. Let us assume a single random token with the index k in a caption t is masked

out, the learning task with a single image-text pair is formalized as:

argmax
θ

log p(tk|t−k,oL+1
1:no

;θ) , (4.3)

where t−k indicates the caption with the k-th token masked out, similarly to t−M .

Here the problem is that the inference model is inconsistent with the model defined

by Equation 4.3. To solve the problem, we tailor vg-MlM to make it capable of

(1) inferring a distribution over relations rather than over the whole vocabulary, (2)

making inferences conditioning on individual pairs of objects rather than on all the

individual objects, and (3) inferring relation distributions conditioning on only visual

objects rather than on both visual objects and textual contexts. Below we expand on

our solutions to achieving these goals at inference time.
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decoder layer except that we replace the standard cross-attention module with our cus-

tomized two-head cross-attention module (see Figure 4.4).

Inferring Relation Distributions. We assume that the vocabulary subsumes all the

object and relation labels. But, since we do not distinguish them during learning,

vg-MlM always predicts distributions over the whole vocabulary. At inference time,

to focus on a specific set of words, e.g., relation words in relation classification, we

simply reset the logits that correspond to non-relation words to “− inf”, i.e., ignoring

all the non-relation words. In doing so, we need to identify all relation words in the

vocabulary. Practically, we detect all the predicates and treat them as relation words.

Conditioning on Object Pairs. To keep consistent with the inference setting, where

vg-MlM predicts relations conditioning on individual pairs of objects, we first con-

struct vg-MlM to condition on all the individual pairs of objects during training. A

simple way to represent object pairs is to concatenate the vector representations of the

two objects for each pair. But, usually, not all the pairs are equally predictive of a target

word, so it is desirable to prioritize object pairs by assigning a predictiveness score to

each pair. Moreover, since the semantic roles of two objects determine the relations
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Figure 4.4: The two-head cross-attention module takes a contextualized word repre-

sentation x8 and contextualized object representations o1:5 as the inputs. It uses the

x to compute the query and all o’s to compute the key and value (see Equation 4.4).

Unlike the standard attention mechanism, which summarizes all the individual objects

as a single vector, our module uses object pairs u(i, j) (the concatenation of the repre-

sentations of two objects i and j (see Equation 4.6)). Each pair (i, j) is associated with

a predictiveness score c(i, j) and independently performs a prediction p(w|x8,u(i, j)),

we instead summarize the predictions by using the predictiveness scores (see Equa-

tion 4.8). The final part of the diagram illustrates how we compute predictiveness scores

from the attention scores of the two attention heads (see Equation 4.6).

between them,4 it is desirable to learn two sets of object representations to indicate the

“subject” role and the “object” role, respectively.

We realize all the desiderata by using a two-head cross-attention mechanism. Fol-

lowing the standard attention mechanism, each attention head computes query q, key

k, and value v:

qk = WQxk , ki = WKoL+1
i , vi = WV oL+1

i , (4.4)

where xk ∈ Rdm is output by the self-attention module of the two-head decoder layer

and indicates the contextualized representation at the position k of t−k (see Figure 4.3).

WQ,WK,WV ∈ Rdh×dm (with dh = dm
2 ) are learnable parameters and head-specific.

Given q and k, the attention scores are computed as:

ci =
qk

T ·ki√
dh

with 1≤ i≤ no . (4.5)

4For example, assuming “cube” is the subject, and “sphere” is the object, and the relation between
them is “in-front-of”, switching the roles of the two objects will change the relation into “behind”.
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We use the value representations {vs
i} from one head as the “subject” representa-

tions of objects, and the attention scores {cs
i} as the confidence of assigning the “sub-

ject” role to the corresponding objects. From the other head, we obtain the “object”

representations {vo
j} and the associated attention scores {co

j}. Then the representation

u(i, j) of an object pair (i, j) and the associated predictiveness score c(i, j) are given by:

u(i, j) = [vs
i : vo

j ] , c(i, j) = cs
i + co

j , (4.6)

where i, j ∈ [1,no] and [:] indicates vector concatenation.5

Our decoder architecture follows that of the standard Transformer decoder except

that, in the final layer, we replace the standard cross-attention mechanism with our

customized two-head cross-attention mechanism (see Figure 4.2 and 4.3). Intuitively,

we are implicitly assuming that: given the textual contexts of tk and visual contexts

oL+1
1:no

, the model should be able to infer object pairs that are most predictive of tk and

assign higher scores to them.

Decoupling Object Pairs. Given representations of object pairs {u(i, j)} and the as-

sociated predictiveness scores {c(i, j)} (1≤ i, j ≤ no), by analogy to the standard atten-

tion mechanism, we would summarize visual contexts by averaging {u(i, j)} according

to the normalized predictiveness scores: ĉ(i, j) = exp
(

c(i, j)
)
/
∑

i, j exp
(

c(i, j)
)

, merge

textual contexts xk with the summarized visual contexts, and infer a distribution over

the vocabulary. Formally,

p(w|xk,oL+1
1:no

;θ) = h

xk +
∑
i, j

ĉ(i, j) ·u(i, j)

 , (4.7)

where h(·) is implemented as a residual layer followed by the softmax activation func-

tion. But this couples all the pairs of objects. A simple solution to this issue is to move

the sum operator outside of h(·):

p(w|xk,oL+1
1:no

;θ) =
∑
i, j

ĉ(i, j) ·h
(

xk +u(i, j)
)
. (4.8)

Intuitively, for each pair u(i, j), we merge it with the textual contexts xk and infer a dis-

tribution over the vocabulary, then we average all the inferred distributions according

to the normalized predictiveness scores {ĉ(i, j)}.
5Note that i= j implies that the pair is composed of an object and its replication, so it is equivalent to

an individual object. This will be useful for object labeling, which is conditioned on individual objects.
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Conditioning on Only Visual Objects. At inference time, Equation 4.8 enables in-

ference conditioning on a given pair of objects:

p(w|xk,oL+1
i ,oL+1

j ;θ) = ĉ(i, j) ·h
(

xk +u(i, j)
)
, (4.9)

but still, it relies on the textual contexts xk in two different ways: (1) for the outer

scalar ĉ(i, j), which is computed by using xk, we can simply drop it; and (2) for the

inner xk, since it is merged with the pair via addition, we can also drop it. This leads

to an inference procedure that is not conditioned on textual contexts:

p(w|oL+1
i ,oL+1

j ;θ) = h
(

u(i, j)
)
. (4.10)

But the textual contexts of tk, which are encoded in xk, are predictive of tk in gen-

eral, dropping xk at inference time is likely to lead to a less accurate estimate of the

word distribution for a given pair. A possible strategy for retaining the informative

textual contexts encoded in xk is to distill them into the representations of object pairs.

Specifically, we randomly mix-up xk and u(i, j) during training:6

p(w|xk,oL+1
1:no

;θ) =
∑
i, j

ĉ(i, j) ·h
(

f d p
t (xk)1[train]+ f d p

v (u(i, j))
)
, (4.11)

where f d p
t (·) and f d p

v (·) are dropout functions applied to textual contexts and visual

contexts, respectively. 1[train] is an indicator function and evaluates to 1 only at training

time. Intuitively, when part of xk that is predictive of a target is masked out, to maintain

accurate predictions, u has to fill in the missing part.

4.3.3 Encoding Objects

We have so far discussed the decoder of vg-MlM, and specifically, the tailored cross-

attention mechanism, which relies on contextualized object representations output by

the encoder of vg-MlM. In this section, we elaborate on the encoder (Section 4.3.3.1),

and describe ways of representing object positions (Section 4.3.3.2) and encoding sym-

bolic visual objects (Section 4.3.3.3).

4.3.3.1 Contextualized Object Representations

Suppose no objects are initially embedded as do-dimensional continuous vectors de-

noted by o1,o2, . . . ,ono , respectively, and each object is associated with a positional

6We also tried the manifold mixup technique (Zhang et al., 2018; Verma et al., 2019) but did not
observe improvements.
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Figure 4.5: Object embedder. The above illustrates visual object representations via

a pre-trained VGG model. Below is an example of symbolic object representations (“:”

indicates vector concatenation).

embedding e ∈ Rdb . For each object, we concatenate oi and ei, then we apply a

linear map f : Rdo+de → Rdm and input the resultant object representations to an L-

layer Transformer encoder. Following the multi-head attention mechanism, in the l-th

Transformer layer, given an object representation ol
i ∈ Rdm and for every ol

j ∈ Rdm

(i, j ∈ [1,no]), an attention head estimates the importance of ol
j to ol

i as:

si, j =
qi

T ·k j√
dh

with qi = WQ
l ol

i ,k j = WK
l ol

j , (4.12)

from which the i-th context-aware object representation is computed as:

ol+1
i =

no∑
j=1

ŝi, j ·vl
j with vl

j = WV
l ol

j , ŝi, j =
exp(si, j)∑no
j=1 exp(si, j)

. (4.13)

In the above formulations, we have used head- and layer-specific learnable parameters

WQ
l ,W

K
l ,W

V
l ∈R

dh×dm to transform object embeddings into query q, key k, and value

v. Suppose there are nh heads in a Transformer encoder layer and dh = dm/nh, the

Transformer encoder layer will output ol+1
i = [ol

i,1;ol
i,2; . . . ;ol

i,nh
], which is the concate-

nation of the i-th object representations from the nh heads. A Transformer encoder

may have multiple layers. In this case, the outputs ol+1 from the last layer l will be

input to the next layer.



80 Chapter 4. Textually Grounded Scene Graph Induction

4.3.3.2 Positional Representations

We represent object positions as normalized bounding boxes, which are 4-dimensional

vectors, e.g., (x1/W,y1/H,x2/W,y2/H), where (W,H) is the image size of the form

(width, height), and (x1,y1), (x2,y2) are the upper left and bottom right coordinates of

a bounding box, respectively. Each 4-dimensional vector is further transformed into

de-dimensional positional embedding e via a learnable linear map: f : R4→ Rdb .

4.3.3.3 Object Representations

An important concept of scene graphs is symbolic object modeling, i.e., we abstract

away detailed visual features of objects and represent them as symbolic units, i.e.,

object labels such as “dog” and “bird”. Following the common practice, we would

use a pre-trained detector to encode visual objects as continuous representations, while

generally performant in terms of detection accuracy, since the detected bounding boxes

usually do not contain exact objects, extracting object features from rectangular regions

inevitably results in noisy object representations. Moreover, since an object usually

has different appearances in different images, the extracted visual representations are

generally specific to an image. Thus, object embeddings obtained from a detector defy

the reusability concept of symbolic representations. To study our model, we instead

consider two alternatives for object embedding. These alternatives are compatible with

CLEVR images (Johnson et al., 2017), an artificial image set we use for model study.

Symbolic Object Representations. Prior to training with visual object represen-

tations, we also consider a simpler setting: learning vg-MlM with symbolic object

representations. To this end, we represent objects in such a way that symbolic object

representations are ensured. Our idea is to represent an object with four attribute val-

ues since each object can be characterized by four attributes. Specifically, we create

an object template “〈size〉 〈color〉 〈material〉 〈shape〉”, and substituting the attribute

variables with the attribute values of an object gives rise to a symbolic object represen-

tation, e.g., “small red rubber sphere”. To encode objects into continuous representa-

tions, we learn a finite set of attribute value embeddings. These embeddings are shared

across objects and images and thus meet the goal of reusability. We concatenate the

embeddings of the four attribute values of an object to obtain its symbolic representa-

tion. By using symbolic object representations, we essentially obtain an upper bound

on the performance of our model.
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Attribute Value

Shape cylinder, sphere, cube

Size large, small

Material metal, rubber

Color gray, red, blue, cyan, green, brown, purple, yellow

Relationship front, behind, right, left

Table 4.1: Object attributes and relationships in CLEVR-TV.

Visual Object Representations. Visual object representations encoded by a pre-

trained detector are inevitably noisy. One possible way to reduce the noise is to use

an object segmenter. A segmenter produces object regions that roughly encapsulate

exact objects and contain less noisy pixels than bounding boxes. For CLEVR images,

we can actually obtain gold object segmentation; encoding each object segment via

a pre-trained image encoder presumably gives rise to less noisy object embeddings.

Practically, for each object segment, we first create a canvas that has the same size as

the original image, then we copy the object to the canvas and ensure that it is in the

same position as in the original image. Finally, we use a pre-trained image encoder to

encode individual objects (see Figure 4.5).

4.4 CLEVR-TV: An Image-Captioning Dataset

Prior to applying vg-MlM to natural images, we would like to learn and test it on

artificial data, which helps validate the effectiveness of our model design. In doing

so, we propose CLEVR-TV, an artificial dataset for learning scene graph induction

models from language supervision. CLEVR-TV consists of image-text pairs and builds

upon CLEVR, a diagnostic dataset for evaluating visual reasoning capabilities of visual

question-answering systems (Johnson et al., 2017). The text in CLEVR-TV describes

relations between visual objects. The images in CLEVR-TV are composed of abstract

3D shapes. By focusing on abstract objects, we try to isolate relational reasoning from

visual regularities, e.g., the co-occurrence of two objects “man” and “horse” is likely

to entail the “riding” relation, while abstract objects minimize regularities of this kind.
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Figure 4.6: An example CLEVR-TV image. We only consider captions that describe

the relations between two objects, e.g., “there is a cylinder on the left of the green ball”.

4.4.1 Image Generation

Following CLEVR (Johnson et al., 2017), we render images from randomly sampled

scene graphs by using Blender (Blender Online Community, 2016). A scene graph

represents objects as nodes and relations as edges. Each object is annotated with shape,

size, material, and color and is related to other objects via four spatial relations, i.e.,

“front”, “behind”, “left”, and “right” (see Table 4.1). A scene graph contains all the

information necessary for rendering an image.

4.4.2 Caption Generation

We are interested in automatically generating diverse relational descriptions. In doing

so, we draw inspiration from CLEVR and generate captions from the corresponding

functional programs, which can be executed on scene graphs. A functional program is

composed of elementary building blocks such as counting, querying, and comparing

functions. Suppose the following functional program that requires a shape variable 〈S〉

as the input and produces a shape output 〈A〉:

〈A〉 := query_shape(left_of(filter_shape(〈S〉,scene()))) ,

where scene() returns the scene graph representation of an image, and the elementary

functions filter_shape(), left_of(), and query_shape() return a list of objects. There

are multiple ways of instantiating the program such as (1) “there is a 〈A〉 on the left of

the 〈S〉”, and (2) “there is a 〈S〉; the 〈A〉 is on the left of it”. These instantiations are

called caption templates. To generate captions, we simply replace the variables 〈S〉 and

〈A〉 with valid assignments. For example, the two caption templates may lead to the

following captions: “there is a cylinder on the left of the cube" and “there is a cube; a
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cylinder is on the left of it”.7

We generate captions by roughly following the same procedure as was used for

generating CLEVR question-answer pairs. Specifically, given the gold scene graph

of an image, we select a functional program and execute it on the scene graph to ob-

tain groups of valid variable assignments (e.g., 〈S〉:= cube and 〈A〉:= cylinder in the

aforementioned captions are a group of valid assignments). To generate captions, we

randomly select a group of assignments and a caption template that corresponds to the

program, then we substitute the variables in the caption template with the assignments.

To increase caption diversity, CLEVR defines a set of synonyms for some attribute

values, e.g., “metal” is associated with {metallic, metal, shiny}, and the assignment

bound to a variable will be randomly replaced by one of its synonyms.

4.5 Experiments

4.5.1 Evaluation Metrics

The goal of scene graph induction models is to label individual objects and assign a

relation to each object pair, thus, in evaluation, we are interested in precisions of object

labeling and relation prediction.

4.5.1.1 Object Labeling

At inference time, vg-MlM requires an object pair as the input (see Equation 4.10).

To enable inference conditioning on individual objects, we create an object pair by

concatenating the representations of an object and its copy.

We compute per-attribute precision. Conceptually, for a given attribute A, we only

focus on the distribution (i.e., sA) of its admissible assignments (i.e., H (A)) and find

the most probable assignment from the admissible assignments (argmaxk sA
k ). Since

an attribute value can be described in different ways (e.g., “metal” can be described

as “metal”, “metallic”, and “shiny”), we count it as a correct prediction as long as the

prediction is one of the synonyms (i.e., Â(o)) of the value of the attribute A. For exam-

ple, suppose the material of an object is “metal”, a prediction “metallic” is considered

correct because it is a synonym of “metal”.

Formally, for each attribute A ∈ {shape,size,material,color}, we denote the set of

values that can be assigned to A by H (A) (e.g., H (A) = {large, tiny,big,small} with

7https://github.com/zhaoyanpeng/clevr-ed.
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A = “shape”). Given an object, suppose the logits (i.e., unnormalized log probabilities)

of the inferred categorical distribution over the vocabulary V is s ∈ R|V |. For a given

attribute A, we focus on only its valid assignments H (A), so we reset the logits that

correspond to the words that are not in H (A) to “− inf”, and indicate the resultant

logits as sA. Then the attribute-specific precision over N objects is computed as:

psame
A =

1
N

N∑
i=1

1[argmaxk sA
k∈Â(oi)]

, (4.14)

where Â(o) accepts an input object o and returns the indices of all the synonyms of the

value of the object’s attribute A. For example, suppose A = “material” and an object’s

material is “metal”, Â(o) will return the indices of “metal”, “metallic”, and “shiny”,

which are the synonyms of “metal”.

We can further generalize the metric to any pair of objects oi and o j:

pA =
1

N2

N∑
i=1

N∑
j=1

1[argmaxk sA
k∈Â(oi)∪Â(o j)]

. (4.15)

4.5.1.2 Relation Prediction

We compute the precision of relation prediction in a similar way as we compute the

precision of attribute prediction. Note that the four spatial relations in CLEVR-TV are

composed of two pairs of opposite relations: (left, right) and (front, behind). Given

an object pair, only one relation is valid when considering two opposite relations (e.g.,

either “left” or “right”). But, if we consider the four relations together, there will be

two valid relations, which come from the two pairs, respectively. For example, an

object can be in front and to the left of another object at the same time, i.e., there are

two gold relation labels for an object pair, but we only predict a single label, which is

the most probable label. To resolve this issue, we compute precisions for the two pairs

of relations, respectively.

A remaining problem is that relations are sensitive to the roles of the participating

objects. When developing our model, we specifically assume the first object and the

second object are assigned the “subject” role and the “object” role, respectively (see

Equation 4.6), but since we are working with unsupervised learning, a learned model

may switch the assumed role assignments and reverse the relation, i.e., the model may

assign the “subject” role to the second object and the “object” role to the first ob-

ject. Consequently, the relation between the two objects will also be reversed, e.g.,
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(os
1, left_of,o0

2) ⇔ (os
2, right_of,oo

1). Thus, we need to consider both cases in evalu-

ation. Specifically, we first hypothesize default role assignments (defined by Equa-

tion 4.6), then we compute a precision pnull
R provided that the hypothesis is true and a

precision preject
R given that the hypothesis is false:

pnull
R =

1
|H (R)|

∑
r∈H (R)

1
N2

N∑
i=1

N∑
j=1

1[argmaxk sR
k∈R̂(r)] , (4.16)

preject
R =

1
|H (R)|

∑
r∈H (R)

1
N2

N∑
i=1

N∑
j=1

1[argmaxk sR
k∈R̂(r̄)] , (4.17)

where R ∈ {LR,FB} with H (LR) = {left, right} and H (FB) = {front,behind}, r ∈
H (R) and r̄ is opposite to r (e.g., r = “left” and r̄ = “right”), and R̂(r) returns the

indices of the synonyms of r. Finally, the precision for a pair of opposite relations is

computed as:

PR = max{Pnull
R ,Preject

R } . (4.18)

Intuitively, for a given pair (i, j) with the gold label r, the model should predict

r if the hypothesis is true; otherwise, it should predict the opposite relation r̄ be-

cause switching role assignments reverses the relation. For each case, we estimate

the model’s prediction precision and use the higher precision as the quantification of

model performance.

4.5.2 Datasets and Baselines

Dataset. The training set of CLEVR-TV consists of 32102 images and 96064 cap-

tions, and the test set of CLEVR-TV consists of 1000 images. The distribution of the

four relations, i.e., “left”, “right”, “front”, and “behind”, is roughly uniform.

Baseline. Since our evaluation metrics are conditioned on attributes/relations, we

consider a baseline model that relies on conditional sampling. Specifically, given a

pair of objects, for each attribute, we randomly sample one of the values that can be

assigned to the attribute; for each pair of opposite relations, we randomly sample a

relation from the pair of opposite relations.

4.5.3 Settings and Hyperparameters

Standard Transformer Encoder Layers. The encoder and the decoder have 1 and

2 standard Transformer encoder layers, respectively. We set the number of attention
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heads nh = 4 and the input feature dimension dm = 512. We use the GeLU activation

function (Hendrycks and Gimpel, 2016) and disable dropout in the standard Trans-

former encoder layers.8

Decoder Inputs. Both word embeddings and learnable positional embeddings are

256-dimensional. We concatenate word embeddings and the corresponding positional

embeddings as the inputs to the decoder. Following the convention (Devlin et al.,

2019), we randomly mask out 15% of tokens.

Encoder Inputs. When using symbolic object embeddings, we only need gold bound-

ing boxes and object names (e.g., “small yellow rubber cube”). We embed each at-

tribute value (e.g., “yellow”) as a 64-dimensional vector, so each object embedding will

be 256-dimensional. To obtain visual object embeddings, we use gold object segmen-

tation and encode each object into a 4096-dimensional vector by using a pre-trained

VGG9 model (Simonyan and Zisserman, 2015). We set the dimension of objects’ po-

sitional embeddings de = 256.

Two-head Crossmodal Layer. We empirically set all dropout rates f d p
s = f d p

s =

f d p = 0.25.

Learning. We optimize vg-MlM with Adam, where the learning rate is 5× 10−5,

the weight decay is 10−8, and β1 = 0.9, β2 = 0.999. We use the MulTiStepLR learning

rate scheduler, where milestones are [15,36,45,50] and γ = 0.5. We train vg-MlM

for 100 epochs with a batch size of 50 and evaluate the final checkpoint.

Evaluation. For each setting, we run 5 times with different random seeds and report

the mean and standard deviation of precision values.

4.5.4 Experimental Design

The goal of our experiments is to validate the effectiveness of our model architecture.

We set out to investigate different ways of embedding objects and representing object

pairs, and the strength of language supervision because these are major factors that

affect model performance.

8https://github.com/zhaoyanpeng/sgi.
9VGG-19_BN: https://pytorch.org/vision/stable/models/vgg.html.
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Object Representations. We consider symbolic object embeddings and visual ob-

ject embeddings (see Section 4.3.3.3). Symbolic embeddings are used to estimate an

upper bound on model performance, while visual embeddings are more practical. We

indicate models that use symbolic and visual object embeddings by affixes “w/ S” and

“w/ V”, respectively.

Object Pair Representations. We have proposed to learn two sets of object repre-

sentations for the subject role and the object role, respectively (see Equation 4.6), but

a single set of object representations would also suffice. Recall that we represent a pair

as the concatenation of the representations of the two objects: u(i, j) = [oi : o j]. With a

single set of object representations, we need to additionally assume that the object oi

on the left-hand side of “:” and the object o j on the right-hand side of “:” are assigned

the subject role and the object role, respectively, i.e., role assignments are tied to the

concatenation operator “:” rather than object representations. For example, the object

oi in u(i, j) = [oi : o j] and u( j,i) = [o j : oi] has the same representation but is assigned

a “subject” role and a “object” role, respectively. In our experiments, we will use a

single set of object representations by default because this simplifies our model.

Strength of Language Supervision. Language supervision is generally weaker com-

pared to direct supervision in the form of the (subject, predicate, object) triplets. To

study how it influences the learning of our model, we vary the strength of language

supervision by using different ways of referring to objects.

• Ambiguous Captions. The automatically synthesized captions are ambiguous by

design. Specifically, to mimic natural language, which is ambiguous to some ex-

tent, when synthesizing captions, we introduce ambiguities by randomly dropping

some attributes of each object. Take the image in Figure 4.6, a synthesized caption

could be “there is a large cylinder on the left of the yellow cube”, where the “large

cylinder” may refer to either “large brown metal cylinder” or “large purple rub-

ber cylinder”. Though similar to natural language, ambiguities of this kind make

learning more difficult.

• Unambiguous Captions. We further consider five types of unambiguous captions

and group them according to how specifically the objects are referred to. (1)

FULL indicates that we use all four attributes to refer to objects when possible.

For example, the above ambiguous caption can be disambiguated as “there is a
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Figure 4.7: Per-attribute classification and relation prediction accuracy on the devel-

opment set. Results are from the best run: unambiguous FULL†. LR and FB indicate

relation prediction for the left-right pair and the front-behind pair, respectively.

large purple rubber cylinder on the left of the small yellow rubber cube”, while in

captions like “the purple rubber cylinder on the left of the small yellow rubber

cube is large”, we use three attributes to refer to “large purple rubber cylinder” be-

cause we would like models to infer “large” from the contexts; and (2) ≤ n (where

n ∈ {1,2,3,4}) indicates that we use up to n attributes to refer to objects. As n

decreases, there are fewer captions that are unambiguous.

4.5.5 Main Results

Unambiguous captions are helpful. Compared to “Ambiguous”, unambiguous FULL

achieves perfect or nearly perfect object classification performance and demonstrates

a decent relation prediction precision for the front-behind pair (i.e., 78.5%). Thus,

unambiguous language descriptions make learning easier.

The more specific object descriptions, the better. We vary the strength of lan-

guage supervision by using different maximum numbers of attributes to refer to ob-

jects. For relation prediction, considering the variance of performance, using more

attributes does not give rise to significant improvements, e.g., “≤ 4” and “≤ 1” have a

similar mean precision (e.g., 53% for the front-behind pair), though “≤ 1” only uses

around 60% of the training examples that “≤ 4” uses. But, for object classification, us-
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ing more attributes leads to higher precision. This is unsurprising because using more

attributes gives rise to stronger supervision.

Relation prediction relies on object classification. Figure 4.7 illustrates object

classification and relation prediction accuracy after each training epoch. Interestingly,

only after object classification performance stabilizes (e.g., from the 15-th epoch), does

relation prediction performance tend to plateau, i.e., the model first learns to map ob-

jects to their labels in captions, then it learns to infer relations between objects.

Symbolic object representations are helpful. Compared to vg-MlM (w/ V), which

uses visual object representations, vg-MlM (w/ S) performs better in general, indi-

cating that symbolic object representations are the key to achieving good performance.

Nevertheless, visual object representations (w/ V) result in nearly perfect object classi-

fication for all the attributes except “color” and “material”, presumably because these

two attributes have more valid assignments, i.e., 8 for “color” and 5 for “material”,

while other attributes have fewer than 5.

Causal language modeling does not necessarily help. We additionally optimize

a causal language modeling (CLM) objective during training. Compared to vg-MlM

(w/ S), though vg-MlM (w/ S+CLM) also achieves nearly perfect object classifica-

tion, it does not improve relation prediction. As discussed before, masked language

modeling alone should be adequate for learning mappings between words and their

visual counterparts (see Footnote 3).

4.6 Summary

We have presented a novel setting for unsupervised scene graph induction, where a

scene graph induction model is trained on image-text pairs and learns from only image-

level captions. We propose an image-conditioned masked language model (vg-MlM)

to tackle the task. vg-MlM adopts a Transformer encoder-decoder architecture. We

tailor a multi-head attention module to connect the object encoder and caption decoder.

The crossmodal module, by virtue of its architecture design, enables vg-MlM to in-

fer scene graphs from images without relying on text. We create CLEVR-TV, which

is an artificial image-captioning dataset, to learn and study vg-MlM, and propose

automatic evaluation metrics to quantify the performance of vg-MlM. Though we
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empirically find that vg-MlM can achieve reasonable performance when using sym-

bolic object representations, we also observe that vg-MlM is unstable and sensitive

to hyperparameters.

In the future, we plan to improve the proposed vg-MlM in the following respects:

• Exploring alternative model architectures. The architectural biases, which are

implemented in vg-MlM, might be inappropriate and account for the difficulties

of optimization;

• Jointly classifying objects and predicting relations. Currently we label objects

and predict relations independently, but when working with natural images, know-

ing object labels arguably helps with relation prediction. For example, given

an object pair: (man, book), the relation between them is more likely to be

“read”/“hold” rather than “eat”/“ride”. This type of commonsense knowledge

has been exploited in previous work (Lu et al., 2016; Zareian et al., 2020a). We

would expect vg-MlM to be able to derive it from abundant text, without rely-

ing on external knowledge bases. For example, we may substitute the decoder

of vg-MlM with a pre-trained masked language model (Petroni et al., 2019).

We have so far discussed unsupervised text- and image-structure induction. We

considered novel settings with the goal of learning structure-induction models from

multimodal data. To tackle the challenges arising from the new settings, we designed

end-to-end neural models that follow neural-symbolic and connectionist paradigms,

i.e., neural-symbolic vc-PCFG and structure-aware vg-MlM.

The reasons that we have been focusing on visual and textual modalities are two-

fold: (1) unsupervised structure induction is a fundamental problem in both natural

language and computer vision communities. There has been a considerable body of

research on this problem, providing well-justified structured formalisms, promising

models, and plausible benchmarks. When extending the single-modality setting to the

multimodal setting, we can tap into established work and focus primarily on techniques

for exploiting learning cues specified in multimodal data; and (2) aligned image-text

data is abundantly available and easy to scale up. Apart from existing annotated large-

scale image-text resources from the image-captioning area, image-text co-occurrences

are relatively frequent on the web and, in principle, can be curated at a large scale via

automatic approaches (Sharma et al., 2018). Thus, the proposed bimodal image-text

learning setting introduces little to no annotation cost; accordingly, it aligns with our

ultimate goal of achieving fully unsupervised learning.
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Besides dominant visual and textual modalities, there are other important data

modalities providing indispensable perspectives of the physical world, e.g., audio. But

unlike images and text, which have abundant co-occurrences, many other modality

pairs lack sufficient and easy-to-curate co-occurrence data. For example, non-speech

audio (i.e., environmental sound) is rarely associated with informative natural language

descriptions. This data scarcity issue potentially presents an obstacle to using multi-

modal pre-training techniques, which usually require millions of training pairs (Rad-

ford et al., 2021; Jia et al., 2021; Akbari et al., 2021). In Chapter 5, we will look closer

at this problem and develop unsupervised curation methods to solve it.



Chapter 5

Unsupervised Audio-Text Alignment

Induction

screaming and splashing people screaming  
on the water slide

Figure 5.1: vip-AnT pivots audio and text via visual imagination.

In the previous chapters, we studied the problems of unsupervised structure induction

that arise particularly from natural language and visual image understanding. We in-

troduced novel learning settings so that we can use multimodal learning approaches to

tackle these problems. An important reason that we focus on textual and visual modal-

ities is that there are abundantly available image-text pairs for multimodal learning,

thus requiring little to no annotation effort when applying multimodal learning tech-

niques to unsupervised structure induction. However, differently from image-text co-

occurrences, many other modality pairs lack sufficient and high-quality co-occurrence

data. This data scarcity issue poses a grand challenge for using multimodal learning

paradigms (e.g., contrastive image-text pre-training and multimodal masked language

modeling), which tend to be rather data-hungry. In this chapter, we address the is-

sue of scarce multimodal alignments and focus specifically on the alignment between

93
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engine, rain, and cheers

…it has some fantastic slides with 
exciting names like The Nucleus, that 
is an indoor water roller-coaster…

screaming and splashing

People shout in the splashing water.
https://uniacco.com/blog/15-best-indoor-water-parks-in-the-uk

People shout in the splashing water.

(video, audio)

(image, text)

(audio, text)

?
Figure 5.2: Video-audio and image-text co-occurrences are abundantly available on the

web to support the learning of video-audio alignment and image-text alignment (e.g.,

via video-audio and image-text pre-training), but audio-text co-occurrences are not.

non-speech audio (i.e., environmental sound) and natural language descriptions.

Environmental sound provides rich perspectives on the physical world. For ex-

ample, if we hear: joyful laughing, a playful scream, and a splash; we not only can

visualize literal objects/actions that might have given rise to the audio scene, but also,

we can reason about plausible higher-level facets, e.g., a child speeding down a water

slide at a water park, splashing through the water (see Figure 5.1).

Machines capable of parsing, representing, and describing such environmental

sound hold practical promise. For example, according to the National Association

of the Deaf’s captioning guide, accessible audio caption generation systems should

go beyond speech recognition (i.e., identifying speakers and transcribing the literal

content of their speech) and provide the textual description of all the sound effects,

e.g., “a large group of people talking excitedly at a party”, in order to provide the full

information contained in that audio.1

1nad.org’s captioning guide; Gernsbacher (2015) discusses the benefits of video captions beyond
d/Deaf users.
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The dominant paradigm for studying machine hearing (Lyon, 2010) has been re-

lying on human-annotated audio-text data, where text is either free-form audio de-

scriptions (e.g., “the sound of heavy rain”) or tagsets (Salamon et al., 2014; Gemmeke

et al., 2017; Kim et al., 2019a; Drossos et al., 2020). But existing supervised audio-

text resources are limited. While some audio-text co-occurences can be sourced from

audio-tag co-occurrences (Font et al., 2013) or from video captioning data (Rohrbach

et al., 2015; Xu et al., 2016; Oncescu et al., 2021a), they are either not sufficiently

related to environmental sound or limited in their scale and coverage.

In this paper, we study large-scale audio-text alignment without paired audio-text

(AT) data. Inspired by pivot-based models for unsupervised machine translation (Wu

and Wang, 2007; Utiyama and Isahara, 2007), we propose vip-AnT, short for VIsually

Pivoted Audio and(N) Text. vip-AnT uses images as a pivot modality to connect

audio and text. It parallels our motivating example: hearing a sound, humans can

visually imagine the associated situation and literally describe it. Pivoting is practi-

cally viable because there are abundantly available image-text (VT) and video-audio

(VA) co-occurrences on the web, from which bimodal correspondence models can be

trained (see Figure 5.2). By linking audio and text implicitly via the combination of

the VT and VA models, we enable zero-resource connection between audio and text,

i.e., vip-AnT can reason about audio-text connections despite never having observed

these modalities co-occur explicitly.

We evaluate on zero-shot audio-text retrieval and zero-shot audio classification. On

the Clotho caption retrieval task (Drossos et al., 2020), without any parallel AT data,

vip-AnT surpasses the supervised state of the art by 2.2% R@1; on zero-shot audio

classification tasks, it establishes new state of the arts, achieving 57.1% accuracy on

ESC50 (Piczak, 2015) and 44.7% accuracy on US8K (Salamon et al., 2014). We also

show that the zero-resource pivoting AT model vip-AnT can be improved by:

• Unsupervised curation. Whereby noisy AT pairs are explicitly mined from the

pivoting model and serve as additional training data (e.g., +5.7% on ESC50 and

+9.3% on US8K);

• Few-shot curation. Whereby a small number of human-annotated audio caption

pairs are made available at training time (e.g., a few hundred pairs increase the

zero-shot audio classification accuracy by 8% on US8K).

However, for ESC-50, according to the empirical scaling relationship we find, it

would require around 221 ≈ 2M aligned audio-text pairs for the zero-shot model to
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Model
AE

Initialization
Objective AT Supervision

VT

Alignment

Zero-shot AT

Retrieval

MMV (Alayrac et al., 2020) Random Lbi-bi None Trainable ✗

VATT (Akbari et al., 2021) Random Lbi-bi None Trainable ✗

AudioCLIP (Guzhov et al., 2022) ImageNet Ltri 2M Audio Tags Trainable ✗

Wav2CLIP (Wu et al., 2022) Random Lbi-bi None Frozen ✗

vip-AnT (ours) Image CLIP Lbi-bi None Frozen ✓

vip-AnT +AT (ours) Image CLIP Lbi-bi Caption Curation Frozen ✓

Table 5.1: Survey of recent prior work studying for tri-modal (images, audio, and text)

representation learning. AE is short for Audio Encoder. Some work experiments with

more than one objective, we report the best or the one it advocates. Importantly, we

report zero-shot audio-text retrieval between audio and full-sentence text descriptions,

along with scaling laws associated with that setup.

match human parity on ESC50 under our setup, which is an order-of-magnitude more

than the largest currently-available audio-text corpus of Kim et al. (2019a).

5.1 Related Work

Supervised audio representation learning. While automatic speech recognition

has been a core focus of the audio processing community, environment sound clas-

sification has emerged as a new challenge and is drawing more attention (Salamon

et al., 2014; Piczak, 2015; Gemmeke et al., 2017). Some prior work in learning sound

event representations is supervised by category labels (Dai et al., 2017b; Boddapati

et al., 2017; Kumar et al., 2018; Guzhov et al., 2021; Gong et al., 2021). Others use

weaker forms of supervision for tagging Kumar and Raj (2017); Kong et al. (2018) and

localization McFee et al. (2018); Kim and Pardo (2019).

Learning audio representations from visual imagination. There have been two

main paradigms for using visual information to derive audio representations. In the

two-stage setup, an image encoder is first pre-trained; these weights are used as the

initialization of the supervised audio model (Guzhov et al., 2021; Gong et al., 2021).

The other adopts contrastive learning: it exploits the image-audio alignment inherent

in videos and learns audio and image/video representations jointly (Korbar et al., 2018;

Wang et al., 2021; Nagrani et al., 2021). We use insights from both directions by (1)
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using CLIP’s image encoder, which has been pre-trained on image-text pairs (Radford

et al., 2021), to initialize an audio encoder and (2) using contrastive pre-training on

image-audio pairs. During training, we do not require any labeled images or audio.

Tri-modal learning of audio-text alignment. Our work extends recent work that

generalizes the bi-modal contrastive learning to a tri-modal setting (Alayrac et al.,

2020; Akbari et al., 2021). While they also connect audio and text implicitly by using

images as a pivot, the quality of this audio-text alignment has rarely been studied. To

our knowledge, we present the first comprehensive evaluation of the inferred audio-text

alignment via zero-shot retrieval/classification.

The works closest to ours are AudioCLIP (Guzhov et al., 2022) and Wav2CLIP (Wu

et al., 2022). AudioCLIP’s pre-training setup is similar to ours, but requires human-

annotated textual labels of audio, while ours does not. Wav2CLIP is concurrent with

our work; while similar-in-spirit, our model not only performs significantly better, but

also, we more closely explore methods for improving audio-text alignment, e.g., unsu-

pervised curation.

Pivot-based alignment models. The pivoting idea for alignment learning can date

back to Brown et al. (1991). Language pivots (Wu and Wang, 2007; Utiyama and Isa-

hara, 2007) and image pivots (Specia et al., 2016; Hitschler et al., 2016; Nakayama and

Nishida, 2017) have been explored in zero-resource machine translation. Pivot-based

models have also been shown to be helpful in learning image-text alignment (Li et al.,

2020b). Differently from the previous uni-modal (i.e., language) and bi-modal (i.e.,

vision and language) learning settings, we focus on a tri-modal setting and propose to

use visual images as a pivot to bridge audio and text.

5.2 Model

We first formalize tri-modal learning by assuming available co-occurrence data for

every pair of modalities (Section 5.2.1). Then we present bi-bi-modal pre-training as

an alternative when there is no paired audio-text data, and implement vip-AnT via

bi-bi-modal pre-training (Section 5.2.2). Finally, we describe model variants for cases

of varying AT supervision (Section 5.2.3).
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Figure 5.3: Learning paradigm of vip-AnT.

5.2.1 Tri-modal Representation Learning

Tri-modal representation learning between images, audio, and text aims to derive rep-

resentations from co-occurrence patterns among the three modalities (Alayrac et al.,

2020; Akbari et al., 2021). We consider a simple tri-modal representation space, which

relies on encoding functions gV : V → V, gA : A→ A, and gT : T → T to map images

v, audio a, and text t (v ∈ V,a ∈ A, and t ∈ T ), respectively, to a shared vector space:

vvv,aaa, ttt ∈ Rd (vvv ∈ V,aaa ∈ A, and ttt ∈ T). Instead of pre-specifying the precise semantics

of this continuous space, vector similarities across modalities are optimized to recon-

struct co-occurrence patterns in training corpora, i.e., two vectors should have a higher

dot product if they are more likely to co-occur. We use contrastive learning with the

InfoNCE loss (Sohn, 2016; van den Oord et al., 2018):

Lcst(A,B) =
∑

i

exps(aaa(i),bbb(i))∑
aaa exps(aaa,bbb(i))

+
exps(aaa(i),bbb(i))∑

bbb exps(aaa(i),bbb)
, (5.1)

where A,B are two sets of data points from two different modal domains, respectively;

aaa(i),bbb(i) are vector representations of the co-occurring pair (a(i),b(i)) which are en-

coded by gA(a(i)) and gB(b(i)), respectively; s(aaa,bbb) computes the similarity between aaa

and bbb, which we take to be scaled cosine similarity.

If we had access to co-occurrence data between all pairs of modalities, we could

optimize the tri-modal loss:

Ltri(V,A,T ) = Lcst(V,A)+Lcst(A,T )+Lcst(V,T ) . (5.2)

5.2.2 Visually Pivoted Audio and Text

Differently from image-text and image-audio pairs, which are abundantly available on

the web, audio-text data is scarce. Instead of Equation 5.2, in vip-AnT, we consider a
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“bi-bi-modal” loss, which does not require parallel AT data:

Lbi-bi(V,A,T ) = Lcst(V,A)+Lcst(V,T ) . (5.3)

The image encoder is shared between the VA alignment model (i.e., Lcst(V,A)) and

the VT alignment model (i.e., Lcst(V,T )) and thus provides a zero-resource connection

between audio and text in the tri-modal embedding space implicitly.

5.2.2.1 Model Architecture

Image and text encoders. Instead of learning gV and gT from scratch, we build

on a pre-trained CLIP model, which has been pre-trained on WebImageText (WIT),

a dataset of 400 million image-text pairs gathered from the internet (Radford et al.,

2021). CLIP has been shown highly performant on VT tasks, e.g., zero-shot image

classification. We use the ViT-B/32 model in this work, which consists of a 12-layer

vision Transformer (ViT) and a 12-layer language Transformer (Vaswani et al., 2017;

Dosovitskiy et al., 2021). Given CLIP’s strong VT alignment, we use its image encoder

as gV and text encoder as gT . During learning, gV and gT are kept frozen and thus the

joint VT representation space is untouched (see Figure 5.3). We minimize only the

first loss term of Equation 5.3:

min
ΘA

Lcst(V,A) , (5.4)

where ΘA are the trainable parameters of the audio encoder gA.

Audio encoder. Our audio encoder has the same vision Transformer architecture

as CLIP’s image encoder (ViT-B/32). In Section 5.3, we show that initializing the

audio encoder with CLIP’s visual weights significantly improves convergence speed

and accuracy. The architectural modifications, which enable the use of visual CLIP’s

architecture for audio, include (see Figure 5.4 for an illustration):2

• We customize the convolution stride to allow for overlaps between neighbor patches

of Spectrogram features of audio. ViT uses the same convolution stride as the ker-

nel size, so it encodes non-overlapped image regions, while we set the convolution

stride as half of the kernel size to compute cross-correlation between patches.

• In the input embedding layer, we average the kernel weights of the convolution

layer along the input channel to account for 1-channel Mel-filter bank features of

audio (cf. RGB channels of images).
2https://github.com/zhaoyanpeng/vipant.
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Figure 5.4: Left: three-channel images versus one-channel Spectrogram features of

audio. We use ViT to encode images and audio. ViT uses a convolution layer to encode

non-overlapped image patches into a sequence of image tokens, but for audio, we

modify the convolution stride to allow for overlaps between neighbor patches. Note that

the convolutional layers of both ViT and our model do not use padding. Right: adapting

the convolution layer of ViT for audio encoding. For simplicity’s sake, we omit the output

channels of kernel weights and positional embeddings.

• We up-sample the 2-dimensional positional embeddings of image tokens to account

for longer audio token sequences. Practically, this is done via bilinear interpola-

tion (Gonzalez and Woods, 2018) (see the right part of Figure 5.4).

5.2.2.2 Bi-bi-modal Pre-training Details

Video-audio co-occurences. To optimize Equation 5.4, we gather VA co-occurrences

from AudioSet (AS; Gemmeke et al. (2017)),3 which contains temporally aligned au-

dio and video frames from 10-second clips gathered from around 2 million YouTube

videos. To construct aligned image-audio pairs from AS, we adopt a sparse sampling

approach (Lei et al., 2021): we first, extract four equal-spaced video frames from each

clip. Then, during training, we randomly sample a frame from the four, and treat it

as co-occurring with the corresponding audio clip. At test time, we always use the

second video frame as the middle frame to construct image-audio pairs. We use the

unbalanced training set, which consists of around 2 million video clips, to pre-train the

audio encoder. Since AudioSet does not provide an official validation set, we validate

the audio encoder and tune model hyperparameters on the balanced training set.

3https://github.com/zhaoyanpeng/audioset-dl.
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STAT. AudioSet ESC50 US8K AudioCaps Clotho

# Train 2041789 (unbalanced) 2000 (5-fold) 8732 (10-fold) 44118 (×1 caption) 3839 (dev-train)

# Dev 22160 (balanced) 1045 (dev-val)

# Val 441 (×5 caption) 1045 (dev-test)

# Test 20371 (balanced) 860 (×5 caption) 1043 (withheld)

# Class 527 50 10 5 captions/audio

Duration 10s 5s 0-4s 10s 15-30s

Task Multi-label CLF Multi-class CLF Multi-class CLF Captioning Captioning

Source YouTube Freesound Freesound YouTube (AudioSet) Freesound

Table 5.2: Statistics of the data used in this paper. CLF is the abbreviation of “clas-

sification”. In AudioSet (Gemmeke et al., 2017) audio clips come from distinct videos.

Balanced split means that there are at least 59 samples for each of the 527 sound

classes. We managed to download 18,036 out of 22,160 videos in the balanced train-

ing split, 16,416 out of 20,371 videos in the test/validation split, and 1,715,367 out of

2,041,789 videos in the unbalanced split.
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Figure 5.5: Image→ Audio retrieval performance per image-audio pre-training epoch.

We conduct this evaluation on the AS balanced training set. “CLIP” and “Rand” indicate

that the audio encoder is initialized from CLIP’s image encoder and has random initial-

ization, respectively.

Audio preprocessing. We use Kaldi (Povey et al., 2011) to create Mel-filter bank

features (FBANK) from the raw audio signals. Specifically, we use the Hanning win-

dow, 128 triangular Mel-frequency bins, and a 10-millisecond frameshift. We always

use the first audio channel when an audio clip has more than one channel. We apply

two normalizations: (1) before applying Kaldi, we subtract the mean from the raw
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audio signals; and (2) we compute the mean and standard deviation of FBANK on

the unbalanced AS training set, and then normalize the FBANK of each audio clip.

For data augmentation, inspired by Gong et al. (2021), we use frequency masking and

time masking: we randomly mask out one-fifth FBANK along the time dimension and

one-fourth FBANK along the frequency dimension during training.

Training dynamics. The architecture of our audio encoder follows the vision Trans-

former of CLIP (ViT-B/32, see Radford et al. (2021) for more details). For the trade-

off of efficiency and efficacy, we set the convolution stride to 16×24. This results in

around 300 audio tokens for a kernel size of 32× 32 and an input size of 1000× 128

(all in the form of time× frequency). We optimize the model with LARS (You et al.,

2017), where the initial learning rates for model weights and model biases are set to

2e-1 and 4.8e-3, respectively. We pre-train our model on 4 NVIDIA Quadro RTX

8000 GPUs and for 25 epochs. We empirically set the batch size to 432 to fit the GPU

memory. The full pre-training can be done within 24 hours.

Evaluation. We measure the image-audio pre-training performance by retrieval pre-

cision and recall:

p =
#(relevant items among the retrieved)

#(retrieved items)
, (5.5)

r =
#(relevant items among the retrieved)

#(relevant items)
. (5.6)

Audio is relevant if it has the same set of labels as the image query, and vice versa.4

We average precisions and recalls over all samples in the balanced AS training set.

Figure 5.5 illustrates the top-1 retrieval performance with images as the query (similar

trends are observed when using audio as the query). Compared with random initial-

ization, initializing the audio encoder from CLIP’s image encoder leads to faster con-

vergence and better VA alignment. As we will see, this performance on VA retrieval

transfers to downstream AT tasks.

4We say audio has a set of labels because each audio clip in AudioSet is annotated with multiple
labels, e.g., an audio clip can be labeled with both “music” and “bark”. This definition of relevance will
lead to a large number of relevant items, i.e., a large denominator in Equation 5.6, and thus the recall
will be much smaller than the corresponding precision (see Figure 5.5).
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AC

Audio-focused Captions originate from the training captions of AudioCaps and

Clotho. We perform caption retrieval by using CLIP and the prompt “the sound

of” (1,080,078 aligned pairs).

example A balloon is rubbed quickly and slowly to make squeaking sounds.

FC

Free Captions are generated by priming GPT-J with MSCOCO captions. We

perform caption retrieval by using CLIP and the prompt “a photo of” (1,224,621

aligned pairs).

example The blue colored person is jumping on the white and yellow beach ball.

VC
Vision-focused Captions originate from MSCOCO. We perform caption re-

trieval by using CLIP and the prompt “a photo of” (1,172,276 aligned pairs).

example A sky view looking at a large parachute in the sky.

RC

Random Captions indicates that we break the gold AL alignment in AudioCaps

by randomly sampling a caption for each audio clip. They are used as a lower

bound on the quality of AL alignment (44,118 aligned pairs).

example A whoosh sound is heard loudly as a car revs its engines.

Su
pe

rv
is

ed

GL Gold textual Labels are used to construct AL pairs (120,816 aligned pairs).

example Gurgling

GC
Gold Captions from AudioCaps provide an upper bound on the quality of AL

alignment (44,118 aligned pairs).

example Children screaming in the background as the sound of water flowing by.

Table 5.3: Different ways of curating AT pairs. Gurgling is described as “the bubbling

sound of water flowing through a narrow constriction, such as from a bottle with a narrow

neck.” The example comes from this YouTube video: 1O7-QuhweZE.

5.2.3 Unsupervised and Few-Shot Curation

To improve the AT alignment beyond pivoting, we consider curating audio-text pairs,

and then performing an additional fine-tuning step by training the audio encoder with

the AT loss, i.e., Lcst(A,T ).5 During AT fine-tuning, we keep the text encoder gT

frozen and only fine-tune the audio encoder.

5Since our goal is to improve AT alignment, we primarily focus on AT fine-tuning; nonetheless, we
compare AT fine-tuning to full VAT fine-tuning as in Equation 5.2 in Section 5.3.3.
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Unsupervised curation. We consider explicitly mining AT pairs from vip-AnT.

Because this zero-resource method uses no human supervision, we refer to it as “unsu-

pervised curation”. Concretely, for each video segment in AudioSet, we extract a video

frame, and input that frame to the original CLIP image encoder. Then, we encode a

large set of candidate captions, and perform Image→ Text retrieval over them by using

the CLIP text encoder. The top candidate captions according to cosine similarity are

then paired with the audio that corresponds to the original video clip.

We consider multiple caption sources to search over. As noted by Kim et al.

(2019a), captions for images and captions for environmental audio are significantly

different in focus. We consider two vision-focused caption sets: (1) MSCOCO (Lin

et al., 2014) captions (VC); and (2) because MSCOCO captions are limited to 80 ob-

ject categories, we generate free-captions from GPT-J (Wang and Komatsuzaki, 2021)

conditioned on MSCOCO captions as a prompt (FC).6 We additionally consider audio-

focused captions from the training set of AudioCaps (Kim et al., 2019a) and Clotho

Drossos et al. (2020) (AC).7 As a baseline, we also consider a random caption align-

ment, which assigns a random caption from AC to each clip (instead of pivoting on

images). The upper half of Table 5.3 summarizes different ways of curating AT pairs

without additional supervision.

Few-shot curation. We also explore the effect of incorporating limited amounts of

AT supervision, specifically, via captions from AudioCaps (GC) and textual labels of

AudioCaps (GL) (see the bottom half of Table 5.3).

5.3 Audio-Text Experiments

We use two types of tasks to evaluate the quality of the audio-text alignments learned

by our model: AT retrieval and zero-shot audio classification.

AT retrieval. We conduct audio-text retrieval on AudioCaps and Clotho for in-domain

evaluation and out-of-domain evaluation, respectively:

6We create prompts by randomly sampling several captions from MSCOCO captions and separating
them with a newline character “\n”. Given such a prompt, GPT-J can generate text in a similar style to
MSCOCO captions. We empirically find that GPT-J can generate diverse text using novel entities and
entity combinations, presumably because we do not require that each generated caption corresponds to
a specific natural image; accordingly, GPT-J is free to use entity synonyms or hallucinate.

7We do not use the alignment of these captions — just the captions themselves.
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Model

10-second Clotho (eval) 18-second Clotho (eval)

Text→Audio Audio→Text Text→Audio Audio→Text

R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10
Z

er
o-

re
so

ur
ce

VA-Rand 1.4 7.4 3.2 13.1 1.3 7.5 3.2 13.5

vip-AnT 1.9 10.1 6.1 23.7 1.9 9.5 7.0 25.6

+AT w/ AC 5.9 26.3 8.2 30.3 6.7 29.1 7.1 30.7

+AT w/ FC 5.7 26.6 6.6 28.0 6.5 27.7 7.8 29.7

+AT w/ VC 5.2 25.2 7.0 25.9 5.5 25.6 7.6 28.2

+AT w/ RC 3.5 16.3 5.7 23.6 3.5 16.9 5.5 24.9

Z
er

o-

sh
ot +AT w/ GL 6.0 27.1 6.1 25.4 6.7 29.0 6.8 27.0

+AT w/ GC 10.2 39.0 10.3 37.2 11.1 40.5 11.8 41.0

Table 5.4: Interpolating positional embeddings to account for Clotho audios which are

longer than 10 seconds.

• AudioCaps (Kim et al., 2019a) builds on AudioSet (Gemmeke et al., 2017) and

provides captions for a subset of audio clips in AudioSet (sourced from YouTube).

As we have pre-trained the audio encoder on AudioSet, we consider audio-text

retrieval on AudioCaps as in-domain evaluation.

• Clotho (Drossos et al., 2020) consists of audio clips which have a duration of 15-

30 seconds and come from Freesound (Font et al., 2013). It has a different sound

source from AudioCaps and is used for out-of-domain evaluation.

We study the out-of-domain generalizability of our models by applying them to

Clotho directly, without further fine-tuning on it. Since Clotho audio clips (15-30s) are

longer than our pre-training audio clips (10s), to apply our pre-trained audio encoder to

Clotho audio-caption retrieval, we up-sample the pre-trained positional embeddings to

account for longer audio token sequences. Table 5.4 shows the retrieval performance

of 10-second and 18-second Clotho audio. In general, longer audio gives rise to better

audio-caption retrieval performance, so we will use up-sampling as the default setting.

Zero-shot audio classification. We consider the following three widely used datasets

for audio classification.

• ESC50 (Piczak, 2015) contains 2000 audio clips from 50 classes. Each audio clip
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has a duration of 5 seconds and a single textual label. We follow the standard k-fold

data splits.

• US8K (Salamon et al., 2014) contains 8732 audio clips from 10 classes. Each

audio clip has a duration of less than 4 seconds and a single textual label. We

follow the standard k-fold data splits.

• AudioSet (Gemmeke et al., 2017) is a benchmark dataset for multi-label classifi-

cation. AudioSet provides balanced and unbalanced training sets. The balanced set

consists of 22 thousand audio clips and the unbalanced set contains around 2 mil-

lion audio clips. It also provides 20 thousand balanced audio clips for evaluation

(more data statistics can be found in Table 5.2).

For each audio clip aaa, we first compute the cosine similarity between it and every

possible textual label in the tri-modal representation space. Then we predict the label

t with the highest similarity:

argmax
i

cos(ttt(i),aaa) . (5.7)

5.3.1 Main Results

Our prediction results for AT retrieval are given in Table 5.5 and for zero-shot classifi-

cation in Table 5.6.

Initializing with visual CLIP weights helps. Comparing VA-Rand to vip-AnT, we

see accuracy increases in all classification and retrieval setups. For example, on Audio-

Caps, vip-AnT outperforms VA-Rand by 4.5% R@1 and 13.6% R@10. This confirms

that the findings of Gong et al. (2021) carry over to unsupervised audio pre-training.

Pivoting works well for Audio→ Text. vip-AnT exhibits surprisingly strong per-

formance on AT retrieval tasks and zero-shot classification. Take AT retrieval on

Clotho, it outperforms the supervised baseline (Oncescu et al., 2021b) by 2.2% R@1

for text retrieval, without being trained or fine-tuned on Clotho, and without ever hav-

ing seen an aligned AT pair.
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Model

AudioCaps Clotho

Text→Audio Audio→Text Text→Audio Audio→Text

R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

Supervised SoTA 18.0 62.0 21.0 62.7 4.0 25.4 4.8 25.8
Z

er
o-

re
so

ur
ce

VA-Rand 1.3 7.3 5.6 24.5 1.3 7.5 3.2 13.5

vip-AnT 0.8 7.9 10.1 38.1 1.9 9.5 7.0 25.6

+AT w/ AC 9.9 45.6 15.2 52.9 6.7 29.1 7.1 30.7

+AT w/ FC 8.9 41.5 14.7 50.0 6.5 27.7 7.8 29.7

+AT w/ VC 6.9 35.7 13.5 49.4 5.5 25.6 7.6 28.2

+AT w/ RC 3.8 19.9 10.7 38.1 3.5 16.9 5.5 24.9

Z
er

o-

sh
ot +AT w/ GL 12.4 52.9 13.0 51.2 6.7 29.0 6.8 27.0

+AT w/ GC 27.7 78.0 34.3 79.7 11.1 40.5 11.8 41.0

OracleAV-CLIP 4.8 27.8 6.6 31.2

Table 5.5: Audio caption retrieval performance (%) on AudioCaps test set and Clotho

evaluation set. “Supervised SoTA” comes from Oncescu et al. (2021b). OracleAV-CLIP:

we replace audio with the corresponding image and evaluate the image-text retrieval

performance of CLIP (Radford et al., 2021). VA-Rand is the same as vip-AnT but the

audio encoder is initialized randomly, instead of from CLIP visual weights. We further

fine-tune vip-AnT on AT data curated in different fashions, e.g., AC, FC, VC, and RC

are mined explicitly from the zero-resource pivoting model (see Table 5.3 for details).

Prompting (usually) helps. Inspired by the zero-shot image classification setups of

CLIP (Radford et al., 2021), we prefix textual labels with a prompt in zero-shot audio

classification. We empirically find that the prompt “the sound of ” works well. Using

it greatly improves zero-shot multi-class classification accuracy (see Table 5.6). Take

vip-AnT, the prompt gives rise to an improvement of 7.2% on ESC50 and 6.9% on

US8K, but hurts multi-label classification performance on AS.

Random curation helps. Even when the audio-text pairs used to train that objective

are sampled entirely at random (+AT w/ RC), vip-AnT improves, e.g., R@1 for Text

→ Audio retrieval increases from 0.8% to 3.8%. We conjecture that RC at least makes

audio representations aware of and lean towards the text cluster of the joint VT rep-
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Model ESC50 US8K AS

Supervised 95.7±1.4 86.0±2.8 37.9

Z
er

o-
re

so
ur

ce
VA-Rand 37.6(33.0) 41.9(38.1) 1.7( 2.0)

vip-AnT 57.1(49.9) 44.7(37.8) 2.6( 2.8)

+AT w/ AC 62.8(55.7) 54.0(47.0) 11.6(12.3)

+AT w/ FC 62.5(58.0) 52.7(50.0) 11.2(12.2)

+AT w/ VC 61.9(58.0) 52.7(50.3) 8.9(10.7)

+AT w/ RC 51.6(36.1) 42.3(28.5) 4.1( 4.6)

Wav2CLIP 41.4 40.4

Z
er

o-
sh

ot +AT w/ GL 67.2(64.5) 62.6(61.0) 15.4(18.9)

+AT w/ GC 69.5(64.2) 71.9(67.1) 13.3(13.6)

AudioCLIP 69.4 65.3

Table 5.6: Zero-shot audio classification accuracies (%) on ESC50 and US8K and

mAPs (%) on AudioSet (AS). “Supervised” = upper bound performance of vip-AnT

when fine-tuned with supervised audio labels. In the zero-shot/zero-resource settings,

we use a prompt “the sound of ” by default (results in parenthesis are without the

prompt). “+AT” = fine-tuned vip-AnT on AT pairs with different curations. AudioCLIP

is pre-trainined using the 2 million textual labels of AudioSet; +AT w/ GL and +AT w/ GC

are trained with only 44K labels/captions. Wav2CLIP is most directly comparable to our

zero-resource pivoting model vip-AnT with unsupervised curation.

resentation space.8 While this result also holds for AS classification (+1.5% mAP),

performance decreases for ESC50 (-5.5% accuracy) and US8K (-2.4% accuracy).

Unsupervised curation is universally helpful. vip-AnT fine-tuned with unsuper-

vised audio captions (+AT w/ AC) outperforms both pivoting (vip-AnT) and random

curation (+AT w/ RC) in all cases. Thus, explicitly mining unsupervised AT pairs

can be a helpful zero-resource approach. Performance with automatically generated

captions (FC) is similar to captions written by humans (AC).

8Concretely, VA pre-training pushes audio embeddings towards the image cluster (V) of the VT
space of the pre-trained CLIP, but it does not guarantee that audio embeddings will be as close to the
text cluster (T) of the VT space as to V. Random curation provides an estimate of the text-cluster’s
distributional properties, i.e., the audio embeddings are moved on top of the distribution of the text
cluster of the VT space explicitly; surprisingly, this crude “semantic-free” alignment method improves
the quality of audio-text alignment.
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Figure 5.6: Per-class accuracy on US8K.

Supervision is still the most helpful. Fine-tuning vip-AnT on GC pairs leads to

the highest accuracies on ESC50 and US8K. However, we do not observe similar im-

provements on AS, presumably because multi-label classification is more challenging

– it requires more direct language supervision, such as audio labels. This is further

evident when we fine-tune vip-AnT on GL and achieve the highest accuracy (18.9%

mAP) on AS (see Table 5.6).

For retrieval, GL uses only audio labels as the text, and thus less dense language

supervision than GC; accordingly, it performs slightly worse than GC, but still, it gives

better AT alignment than all automatic methods. As captions become semantically

further from the audio-caption domain, e.g., GC < AC < FC < VC, the AT alignment

becomes weaker, and thus leading to worse retrieval performance. The fine-tuned

audio encoder generalizes to the out-of-domain Clotho successfully, displaying a trend

similar to AudioCaps.

Supervision improves per-class accuracy in general. We further plot zero-shot

classification accuracy for each audio class (see Figure 5.6 for US8K and Figure 5.7

for ESC50). Clearly, language supervision improves per-class accuracy in general. The

highest improvement is observed on “siren” because “siren” rarely appears in image

descriptions while GC contains a lot of textual descriptions of “vehicle” audio.
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Figure 5.7: Per-class accuracy on US8K.

Asymmetric audio-text retrieval performance. For Text→Audio retrieval, our un-

supervised pivoting model is not as good as on Audio→ Text. This could be because
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audio is intrinsically more difficult to retrieve with specificity than text in our corpus,

e.g., because sound events co-occur (a baby may cry in the street with sirens in the

background or in a room with dogs barking), there may be a broader range of captions

that accurately describe them. However, it could also be the case that AT alignment

is bounded by VT alignment because VA pre-training biases audio representations to-

wards image representations. We check this hypothesis by conducting image-text re-

trieval on AudioCaps. AudioCaps provides aligned image-audio-text triplets, so we

simply replace audio with the corresponding image. We find that the Text → Image

retrieval performance of CLIP is much better than the Text→ Audio retrieval perfor-

mance of vip-AnT (see OracleAV-CLIP in Table 5.5); it is also close to the Image

→ Text retrieval performance of CLIP, but vip-AnT exhibits a large gap between the

Text→ Audio retrieval performance and the Audio→ Text retrieval performance.

5.3.2 Level of Language Supervision

We have observed that AT fine-tuning on AT pairs mined without any additional su-

pervision (e.g., AC, FC, and VC) can improve the AT alignment, but supervised align-

ments are still the most effective. But: how much supervised data is really needed? To

understand the relationship between supervision and performance, we vary the num-

ber of gold AT pairs (i.e., training samples of AudioCaps) used for AT fine-tuning.

Unsurprisingly, fine-tuning on more aligned AT pairs results in higher audio-text re-

trieval and zero-shot classification performance (see Figure 5.8). Surprisingly, using

only 442 (around 1%) AT pairs of AudioCaps gives rise to as strong AT alignment as

VT alignment (cf. OracleAV-CLIP in Table 5.5).

As we increase the number of supervised AT pairs used during fine-tuning, we

observe a roughly linear relationship between the zero-shot performance and the log of

the number of supervised pairs, similar to Kaplan et al. (2020)’s observations regarding

Transformers. While it is not clear how reliable extrapolations from this roughly linear

trend are, we roughly estimate the amount of annotated AT pairs that is required for

the zero-shot performance to equal human parity for ESC50 of 81% Piczak (2015):

our estimate is that 221 ≈ 2M supervised audio caption pairs would be needed. We are

hopeful both (1) that larger curated audio-text datasets will become available; and (2)

that future work can improve the data efficiency of the pre-training process.
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(a) R@1 of AT retrieval on AudioCaps test set.
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(b) Zero-shot classification (CLF) on ESC50 and US8K.

Figure 5.8: Audio retrieval and zero-shot classification performance versus the level of

language supervision.

5.3.3 VAT versus AT Fine-tuning

Given caption-augmented AudioCaps audio (Kim et al., 2019a), we can improve the

pre-trained audio encoder via contrastive vision-audio-text (VAT) fine-tuning and con-

trastive audio-text (AT) fine-tuning. Figure 5.9 shows a comparison between the two

fine-tuning techniques on zero-shot ESC50 classification and AudioCaps audio re-

trieval. In general, AT fine-tuning results in better results on the two tasks.
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Figure 5.9: Comparing VAT and AT fine-tuning on zero-shot ESC50 classification and

AudioCaps audio retrieval.

5.4 Supervised Audio Classification

5.4.1 Problem Formulation

To perform supervised audio classification, we add a classification head (a linear layer)

on top of the pre-trained audio encoder. For multi-class classification, the classification

head projects the vector representation of an audio clip onto the class space. We fine-
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AS Classification

Dataset AST AST⋆ AST† vip-AnT

Unbalanced 43.4 44.7

Balanced 34.7 35.8 31.4 37.9

US8K and ESC50 Classification

Dataset AST-S AST-P CLIP vip-AnT

US8K 82.5±6.0 86.0±2.8

ESC50 88.7±0.7 95.6±0.4 89.7±1.5 95.7±1.4

Table 5.7: Multi-label classification mAPs (%) on AS and Supervised audio classifica-

tion accuracies (%) on ESC50 and US8K. AST, AST-S, and AST-P indicate the results

reported by Gong et al. (2021). We follow their suggestions and test their best model

(AST⋆) on our test set. Note that the best model has been trained on the combination

of balanced and unbalanced AS training sets. † indicates that we follow the settings

of AST and train it on our data. CLIP and vip-AnT indicate that the audio encoder is

initialized from CLIP and from vip-AnT, respectively.

tune the model by minimizing the cross-entropy loss:∑
i

log p(y(i)|aaa(i)) , (5.8)

where y(i) is the gold label of aaa(i). For supervised multi-label classification, the clas-

sification head estimates the likelihood that an audio clip has some textual label. We

thus minimize the per-label binary cross-entropy loss:∑
i

∑
l

log p(l = 1|aaa(i)) , (5.9)

where l enumerates all possible audio labels.

5.4.2 Experimental Results

ESC50 and US8K classification. We initialize the audio encoder from random ini-

tialization, CLIP, and vip-AnT, respectively. Among them, vip-AnT performs best.

It surpasses random initialization and CLIP on both datasets (see Table 5.7).9 Notably,

9We find that vip-AnT initialization leads to fast convergence, so it can bring better classification
results than other initialization methods with the same number of training epochs.
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Figure 5.10: Fine-tuning the last k = 0,2,4,6,8 layers of the pre-trained audio encoder

for supervised AS classification. mAP is measured on the AS balanced training set after

each fine-tuning epoch.

it outperforms the strong baseline AST-P on ESC50 (+0.1%), though AST-P has used

gold audio labels for supervised pre-training.

AS classification. We consider balanced and unbalanced training for AS classification

and train an individual model on the balanced set and the unbalanced set, respectively.

Since the audio encoder has been pre-trained on the unbalanced AudioSet training

set, it can be directly used without further fine-tuning. Nevertheless, we fine-tune

the last k layers of the Transformer architecture of vip-AnT and investigate whether

task-specific fine-tuning helps (see Figure 5.10). When k = 0 the model is basically a

linear probe; it inspects if contrastive image-audio pre-training learns separable audio

representations. Since the unbalanced AudioSet training set has a very skewed audio

distribution (e.g., it is dominated by music, speech, and vehicle), it is unsurprising to

see that the linear probe has a low performance, i.e., around 20% mAP.

As we increase k, i.e., fine-tune more layers, the model exhibits a tendency to over-

fit the training set. We use k = 4 as a trade-off between under-fitting and over-fitting.

Our model achieves the best mAP of 37.9% for balanced training, which surpasses

AST by 6.5% (see Table 5.7). While for unbalanced training, we find it crucial to

fine-tune the whole model. Again, our model outperforms AST (+1.4% mAP).
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Figure 5.11: Tri-modal pivotability. +AT (w/ GC) and +AT (w/ RC) indicate that vip-AnT

is further fine-tuned on GC and RC, respectively.

5.5 Analyzing Tri-modal Representations

To better understand the geometry of tri-modal embeddings of our pivoting, unsuper-

vised curation, and supervised curation, we study how AT fine-tuning influences the tri-

modal representation space. Specifically, we analyze vip-AnT (pivoting), vip-AnT

+AT (w/ RC) (unsupervised curation), and vip-AnT +AT (w/ GC) (supervised cura-

tion) using pivotability.

Audio

Image

Text
Retrieval Path

top-k top-5

start

We define pivotability as a metric that measures how likely images can pivot audio

and text. We quantify it for each aligned VAT triplet via a two-step retrieval probe.

Starting from a given audio clip, we retrieve k nearest image neighbors; for each image

neighbor, we retrieve the top 5 nearest captions. Since each audio clip has 5 gold

captions, we compute pivotability as the ratio of the number of retrieved gold captions

to 5. A gold caption may be retrieved more than once, but we always count it as 1, so

pivotability is always between 0 and 1.

We conduct this experiment on the AudioCaps test set. For each k, i.e., how many

images will be retrieved for a given audio clip, we average pivotability scores over all

test triplets (see Figure 5.11).
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+AT w/ GC
“female speech, woman speaking”, “narration, mono-

logue”, “vibration”

+AT w/ RC
“bee, wasp, etc.”, “female speech, woman speaking”,

“insect”, “narration, monologue”, “vibration”

Table 5.8: Compared against vip-AnT, the two fine-tuned versions of vip-AnT find

novel audio categories in pivotable AT pairs.

Figure 5.12: Categories of the audio that can be pivoted with text by images. The

larger text indicates that the related audio is more likely to be pivoted with text.

Which pairs are pivotable? To study what kinds of audio are more likely to be piv-

oted with text by images, we set k = 5 (i.e., 5 images will be retrieved for each given

audio clip). We consider an AT pair pivotable if at least 3 out of 5 gold captions of the

audio clip are retrieved, i.e., pivotability is equal to or larger than 0.6. Figure 5.12 il-

lustrates the categories of the audio clips in pivotable AT pairs. Unsurprisingly, speech

and vehicle audio are more pivotable because the two categories are among the top

three frequent categories in AS.10 Since AT fine-tuning improves Audio→ Image re-

trieval, we wonder if it could also help find novel categories of audio that can be pivoted

with text. We find that this is indeed the case (see Table 5.8). For example, vip-AnT

+AT (w/ GC) finds more fine-grained speech categories because most AT pairs in Au-

dioCaps are about speech. In contrast, vip-AnT +AT (w/ RC) finds two additional

novel insect categories, presumably because RC suffers from less data bias than GC.

10Music is the second most frequent category in AS. It is not shown in the figure because AudioCaps
excludes all music audio.
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5.6 Summary

We have presented vip-AnT for unsupervised audio-text alignment induction. Based

on the pivoting idea, our model learns image-text alignment and image-audio align-

ment explicitly and separately via bi-modal contrastive pre-training. The image modal-

ity is shared between the two and thus pivots audio and text in the tri-modal embed-

ding space implicitly, without using any paired audio-text data. We empirically find

that our model achieves strong performance on zero-shot audio-text tasks. We further

strengthen the audio-text alignment by using varying kinds of audio-text supervision.

Experimental results show that even unaligned audio-caption pairs can help.



Chapter 6

Conclusions

In this thesis, we have investigated unsupervised structured representation learning

in the multimodal setting. Underlying our studies is the need for interpretable and

controllable machine-learning systems with human-like compositional generalizabil-

ity. To fulfill the need, we resorted to structured representations and addressed practi-

cal yet challenging learning settings, including unsupervised learning and multimodal

learning. Unsupervised learning gets away with costly manual annotations in favor of

natural supervision, while multimodal learning encourages the incorporation of world

knowledge into machine learning systems. Together they lead to a more realistic learn-

ing setting. Revolving around the new setting, we identify and cope with several chal-

lenges. Our contributions span two dimensions: model development and data collec-

tion; the findings from each dimension can be summarized as follows:

• Model. Both neural-symbolic (hybrid) and structure-aware (connectionist) struc-

ture induction models can be augmented with and benefit from multimodal learning

(i.e., image-text alignment). We integrate combine image-text learning with text-

only grammar induction to enable a syntactic parser to learn from visual ground-

ings (Chapter 3), and we customize a neural module for scene graph induction and

integrate it into a visually-grounded masked language model (Chapter 4).

• Data. Multimodal alignment synthesis is enabled by structured representations,

e.g., we use scene graph representations of images and functional program repre-

sentations of captions to create artificial image-captioning data (Chapter 4). More-

over, multimodal alignment can be induced from naturally aligned modalities in an

unsupervised manner, e.g., we collect audio-text alignment from image-text align-

ment and image-audio alignment without using paired audio and text (Chapter 5).

119



120 Chapter 6. Conclusions

An alternative way to view our contributions is from the modeling perspective:

each of Chapters 3–5 features a model that addresses special challenges faced by

multimodal and unsupervised structured representation learning. We summarize these

models and acknowledge their limitations (Section 6.1), and further discuss future di-

rections (Section 6.2).

6.1 Summary of Models

Syntactic Parser: Visually Grounded Grammar Induction (Chapter 3). We have pre-

sented vc-PCFG, short for Visually-grounded Compound PCFG, for inducing con-

stituency grammars with visual image supervision. vc-PCFG integrate PCFG for

language modeling with contrastive image-text learning. The joint learning paradigm

allows for deriving learning signals both from text alone and from image-text align-

ment. By choosing PCFG as the parsing model, we are able to optimize vc-PCFG, a

neural-symbolic model, within an end-to-end fully-differentiable framework. We em-

pirically find that vc-PCFG improves over PCFG that is learned from text alone or

from only visual groundings.

Image Parser: Textually Grounded Scene Graph Induction (Chapter 4). We have

presented, vg-MlM, short for Visually Grounded Masked Language Model, for in-

ducing scene graphs from natural language supervision. vg-MlM has a Transformer

encoder-decoder architecture; the encoder models visual contexts, and the decoder is

responsible for masked language modeling. Since we formulate scene graph induc-

tion as a visual relation prediction task, we tailor a computational module to predict

words conditioning on object pairs, which can be integrated into vg-MlM seamlessly.

vg-MlM demonstrates decent performance on an artificial image-captioning dataset,

as measured by our proposed unsupervised evaluation metric.

Multimodal Alignment Curator: Unsupervised Audio-Text Alignment Induction

(Chapter 5). We have presented vip-AnT, short for VIsually Pivoted Audio and(N)

Text, for unsupervised curation of audio-text alignment. vip-AnT adopts a contrastive

pre-training framework, where bimodal image-text and image-audio models are trained

from abundantly available image-text and image-audio co-occurrences, respectively.

By sharing the visual modality between the two alignment models, we can link audio

and text in a trimodal vector space. We find that the learned audio-text alignment is
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capable of unsupervised zero-shot audio classification; it can be further improved by

finetuning on automatically curated audio-text data.

6.2 Future Directions

Grounded grammar induction beyond visual groundings. vc-PCFG, which is

proposed for grounded grammar induction, has been shown to be capable of exploit-

ing visual groundings, but the underlying learning paradigm of jointly optimizing a

language modeling objective and minimizing an image-text alignment loss is general-

izable to many other types of groundings. For instance, our vc-PCFG has been ex-

tended to the video-grounded setting, where diverse groundings such as audio, speech,

action, and object groundings have been used (Zhang et al., 2021). Using fine-grained

visual groundings such as objects has also led to joint induction of image and text struc-

tures (Hong et al., 2021). Despite the promising progress, rigorous studies on the role

of groundings in grammar induction are still limited, presumably because crossmodal

analysis is hard. One possible way is to slightly simplify the grounded setting, e.g.,

rather than using crossmodal groundings, we can ground the target language in a for-

eign language via supervised machine translation data. We can further perform gram-

mar induction for the foreign language, leading to a framework for bilingual grammar

induction from sentence alignment.

Scene graph induction within an end-to-end framework. vg-MlM, which is pro-

posed for scene graph induction from language supervision, relies on the assumption

that objects have been detected by using a pre-trained detector, but the pipeline-style

method is error-prone. A desirable way would be to induce objects in an unsupervised

way and integrate object induction with vg-MlM. This direction becomes especially

appealing and promising given the recent stunning progress in object-centric represen-

tation learning, e.g., MONet (Burgess et al., 2019) and SlotAttention (Locatello et al.,

2020) have demonstrated that it is possible to induce objects from pixel images alone.

Integrating an unsupervised object discovery module with vg-MlM will lead to a joint

learning paradigm similar to that of vc-PCFG. Specifically, we can jointly minimize

a reconstruction loss for object discovery and optimize the masked language modeling

objective for object and relation classification. Moreover, recent work has shown that

natural language supervision helps with unsupervised object segmentation (Xu et al.,

2022); it is promising that the two learning tasks/objectives would benefit each other,
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making the joint learning paradigm more efficient and intriguing.

Efficient neural-symbolic (hybrid) models. We have described hybrid models such

as vc-PCFG for grounded grammar induction. As latent variable models, vc-PCFG

admits tractable learning and inference via dynamic programming but still suffers from

high computational (i.e., time and space) complexities even with automatic differen-

tiation (Eisner, 2016) and parallel implementations (Rush, 2020). A future direction

would be to devise more efficient dynamic programming algorithms for learning and

inference, e.g., approximate inference with latent-variable PCFG (Cohen et al., 2013).

Alternatively, we may trade off inexact learning for efficiency. As we have discussed in

Chapter 2, though Monte Carlo sampling-based optimization methods lead to inexact

learning, they are generally more efficient, without requiring enumerating all possi-

ble latent structures. For example, rather than computing the expected crossmodal

alignment loss, we may use a random sample to estimate it when efficient sampling

algorithms exist. With the Perturb-and-MAP and straight-through (or continuous re-

laxation) techniques (Papandreou and Yuille, 2011; Bengio et al., 2013), we can still

learn discrete latent-variable models within an end-to-end differentiable framework.

Towards more practical multimodal and structured learning. We evaluated our

structure induction models only on relatively easy data. Specifically, the image cap-

tions we used for unsupervised grammar induction represent a restricted subdomain

of language data and lack syntactic diversity; and the artificial images we used in

unsupervised scene graph induction contain clear object boundaries and involve only

four spatial relations. Thus, though our experimental results suggest that: the pro-

posed multimodal neural-symbolic and structure-aware models are, in a way, effective

in inferring hidden structures and capable of exploiting crossmodal alignment, these

experiments might be relatively restrictive.

In contrast, recent self-supervised language/vision models are trained on large-

scale single-modality data and have fewer structural biases but, surprisingly, exhibit

the capability of learning structured representations. For example, (1) in the language

domain, Wu et al. (2020) show that syntactic trees can be extracted from pre-trained

BERT models (Devlin et al., 2019) and obtain parsing performance competitive to

models that have explicit structural biases (e.g., neural PCFG); and (2) in the vision

domain, Caron et al. (2021) find that visual concepts emerge in self-supervised vision

Transformers without using any symbolic representational biases. Moreover, when
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finetuned/prompted for practical tasks, these pre-trained unimodal structure-free neural

models demonstrate surprisingly strong performance and reasonable generalizability.

Nevertheless, as we have discussed in Chapter 2, multimodal learning is believed

to be one of the most important directions in machine learning (Bisk et al., 2020; Ben-

der and Koller, 2020), and more and more research has shown that multimodal learning

helps with both image and language understanding (Radford et al., 2021; Ramesh et al.,

2021; Rombach et al., 2022). In the future, we would like to extend our multimodal

models to more practical settings so that we can thoroughly examine the role of mul-

timodal learning in unsupervised structure induction. Moreover, though in some prac-

tical applications, modeling structures does not give rise to very substantial benefits

when considering both performance improvements and learning efficiency, structured

modeling is indeed needed in cases where interpretability, controllability, and gener-

alizability are the top priorities, as we have discussed at the beginning of this thesis.

We anticipate that incorporating structured modeling into current structure-free ma-

chine learning systems will improve them further, and meanwhile, we acknowledge

the learning inflexibility it may cause; future work would be well-suited to finding a

balance between structured modeling and flexible learning.
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