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Abstract

Maximilian HÜNEMÖRDER

Advances in Unsupervised Learning and Applications

Over the past few years, advances in data science, machine learning and,
in particular, unsupervised learning have enabled significant progress in ma-
ny scientific fields and even in everyday life. Unsupervised learning methods
are usually successful whenever they can be tailored to specific applications
using appropriate requirements based on domain expertise. This dissertation
shows how purely theoretical research can lead to circumstances that favor
overly optimistic results, and the advantages of application-oriented research
based on specific background knowledge. These observations apply to tradi-
tional unsupervised learning problems such as clustering, anomaly detection
and dimensionality reduction. Therefore, this thesis presents extensions of
these classical problems, such as subspace clustering and principal compo-
nent analysis, as well as several specific applications with relevant interfaces
to machine learning. Examples include password guessing using seman-
tic word embeddings and learning spatial index structures using statistical
models. In essence, this thesis shows that application-oriented research has
many advantages for current and future research.
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Abstract

Maximilian HÜNEMÖRDER

Advances in Unsupervised Learning and Applications

In den letzten Jahren haben Fortschritte in der Data Science, im maschinellen
Lernen und insbesondere im unüberwachten Lernen zu erheblichen Fortent-
wicklungen in vielen Bereichen der Wissenschaft und des täglichen Lebens
geführt. Methoden des unüberwachten Lernens sind in der Regel dann er-
folgreich, wenn sie durch geeignete, auf Expertenwissen basierende Anfor-
derungen an spezifische Anwendungen angepasst werden können. Diese
Dissertation zeigt, wie rein theoretische Forschung zu Umständen führen
kann, die allzu optimistische Ergebnisse begünstigen, und welche Vorteile
anwendungsorientierte Forschung hat, die auf spezifischem Hintergrund-
wissen basiert. Diese Beobachtungen gelten für traditionelle unüberwachte
Lernprobleme wie Clustering, Anomalieerkennung und Dimensionalitätsre-
duktion. Daher werden in diesem Beitrag Erweiterungen dieser klassischen
Probleme, wie Subspace Clustering und Hauptkomponentenanalyse, sowie
einige spezifische Anwendungen mit relevanten Schnittstellen zum maschi-
nellen Lernen vorgestellt. Beispiele sind das Erraten von Passwörtern mit
Hilfe semantischer Worteinbettungen und das Lernen von räumlichen In-
dexstrukturen mit Hilfe statistischer Modelle. Im Wesentlichen zeigt diese
Arbeit, dass anwendungsorientierte Forschung viele Vorteile für die aktuelle
und zukünftige Forschung hat.
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Chapter 1

Introduction

Das Leben ist zu kostbar, um es
dem Schicksal zu überlassen.

Walter Moers
Die 13 1/2 Leben des Käptn Blaubär

Data Science, Machine Learning, and Artificial Intelligence are no longer
just sub-disciplines of Computer Science and Statistics. These topics have be-
come ubiquitous and are ultimately permeating every part of our daily lives
and society itself. Businesses are thriving by working with big data and data
science; social media is fighting fake news with AI; journalists can work with
natural language models to break down complex issues into understandable
written text; artists can use generative models for inspiration and create new,
unseen works of art; humanities scholars can now use AI to explore topics
that data science has not been applied to before. The fourth paradigm of
science [37] has become a new paradigm for society as a whole.

By its very nature, computer science is the practical application of math-
ematics to the real world. Data science, on the other hand, as an extension of
both computer science and statistics, can be proven by application alone, sim-
ilar to other engineering fields. However, it also draws on a deep theoretical
background. As a result, data science research can make significant scientific
advances while solving real-world problems, and research can benefit from
looking at its applications. The focus of this thesis is a comprehensive study
of various methods from unsupervised learning and ML in general. This the-
sis analyses in depth a number of applications and problems in the design of
such methods.

1.1 Structure of the Thesis and Contributions

This thesis is structured in a top-down manner, as illustrated in Figure 1.1.
The remainder of this Chapter deals with an overview of the different learn-
ing paradigms of data science and machine learning. Chapter 2 will then fo-
cus on unsupervised learning and a survey of the main unsupervised tasks,
namely feature learning, clustering, and anomaly detection. Next, Chapter 2
Section 2.4 looks at issues concerning unsupervised learning and acts as a
link to Chapter 3, where two application domains for unsupervised learning,
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i.e., learned index structures and semantic word embeddings, are introduced.
Chapter 3 Section 3.3 then concerns reinforcement learning. Chapters 4 – 12
collect a series of published papers, which constitute the following main con-
tributions of this thesis:

Thesis

Unsupervised

Feature Selection / Extraction PCA Mad PCA

Clustering

partitioning

k-means

k-medoid

. . .

density
DBSCAN

. . .

subspace

axis-parallel . . .

correlation

SIDEKICK

Houghnet

CODEC

Anomaly Detection OAB

Problems
Evaluation

Overoptimism

Applications
LIS k-means as LIS

Vector Semantics SePass

Reinforcement Learning Quacks

FIGURE 1.1: Overview of the structure of this thesis. Contribu-
tions are highlighted in Bold text.

• A novel robust extension of Principal Component Analysis (Chapter 4)
and a clustering algorithm based on this extension (Chapter 5)

• Two novel subspace clustering algorithms; one based on the use of su-
pervised background knowledge (Chapter 6) and a second one based
on Hough Transform Networks (Chapter 7)

• A comprehensive benchmark suite for anomaly detection experiments
(Chapter 8)

• An examination of overoptimism in clustering algorithm research and
development (Chapter 9)

• Three applications of unsupervised learning; exploring the design of
a learned index structure for Nearest Neighbor Queries (Chapter 10),
a novel way of learning to guess passwords using semantic word em-
beddings (Chapter 11) and a new task for reinforcement learning based
on a board game (Chapter 12)

Finally, Chapter 13 will then provide a conclusion and future research
directions that can evolve from the work introduced by this thesis.
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1.2 The Paradigms of Learning

Since there are many definitions of machine learning paradigms and data
science tasks, the goal of this section and the following chapter is to provide
descriptions for all tasks relevant to this thesis. Machine learning is com-
monly divided into three main paradigms: supervised, unsupervised, and
reinforcement learning. In addition, there are many subcategories that do not
fit neatly into one of these categories: There is semi-supervised learning [22],
self-supervised learning and transfer learning [34] to name a few.

The supervised learning paradigm encompasses all data science tasks
where instances have been labeled a priori, usually by experts in the cor-
responding domain. The goal of any such a supervised learning task is then
to find a statistical process that models the relationship between these labels
Y = (y1, . . . , yn) and their corresponding data instances X = (x1, . . . , xn),
or more specifically the model estimates the conditional probability density
Pr(Y|X). [36, p. 485]

Thus, supervised learning can be thought of as "learning with a teacher",
where the model is the student and the teacher is a set of labeled training
data. Depending on the complexity of the problem, such training data usu-
ally needs to consist of a large number of x and y pairs in order to learn to
make correct predictions. The performance of the model is then evaluated on
a previously unseen data set, the test set, to ensure generalization and avoid
overfitting. The main supervised tasks are classification and regression, de-
pending on whether the labels provided are qualitative or quantitative. Al-
gorithms can range from simple methods such as k-nearest neighbors and
support vector machines to complex methods such as deep neural networks.

Unsupervised learning, i.e., learning without a teacher, deals with unla-
beled data. An in-depth survey of unsupervised learning tasks will be pro-
vided in the next Chapter, c.f. Chapter 2

While supervised and unsupervised tasks are easily categorized using la-
beled or unlabeled data, reinforcement learning does not fit into either cat-
egory. Instead of learning from labels, i.e., knowledge about the data, rein-
forcement learning is about learning from experience and is inherently tied
to its applications. Therefore, reinforcement learning will be introduced and
further discussed in Chapter 3 Section 3.3.
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Chapter 2

Unsupervised Learning

Unsupervised learning aims at finding patterns in data without supervision,
i.e., without labels. The main unifying factor of all tasks, that can be catego-
rized as unsupervised learning, is, therefore, to find an approximation that is
as close as possible to the underlying distribution of the data. Given a data
set X, the goal is to find the probability density Pr(X) 1. [36, p. 485 – 487]

This means that unsupervised learning depends heavily on assumptions
about the data set and the task. Assumptions, such as the model complex-
ity 2, the density of the distribution, the number of clusters, or more complex
ideas like the relationship between features, for example, the relationship
between individual pixels in an image. These assumptions usually vary de-
pending on the task at hand.

The following sections introduce the main unsupervised tasks relevant to
the publications included in this thesis: Feature selection and extraction, clus-
tering and anomaly detection. However, the main focus of this chapter is on
clustering, and in particular subspace clustering, as these tasks are covered
by the majority of the publications included in this thesis. The final section of
this chapter, then deals with the problems of evaluation and research of new
unsupervised methods.

2.1 Feature Selection, Extraction and Representa-
tion Learning

One of the fundamental preprocessing tasks for any data science method is
Feature Selection or Dimensionality Reduction since many downstream tasks
– both supervised and unsupervised – require well-chosen or automatically
derived features. While it is usually a reasonable choice to use hand-crafted
features derived from expert domain knowledge, the existence of such fea-
tures cannot always be assumed. In addition, the task may be too complex to
be fully understood, there may be experts with multiple differing opinions,
or the data set may simply be too large, for example, when working with a
text corpus sourced from the world wide web.

1In contrast to supervised learning, where the distribution of X is usually not as impor-
tant as the relationship between X and the corresponding labels y.

2It could be a simple linear model or a deep neural network with many layers.
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In a supervised setting, features can be transformed in a way as to fit
the ground truth and the current task. In an unsupervised setting, however,
where no ground truth is available, features must be selected according to
assumptions about the underlying distribution of the data. These features
are often assumed to be not a subset of the original attributes but a linear
or nonlinear combination of different attributes. In general, when working
with linear combinations of features, Principal Component Analysis (PCA)
is still a widely used strategy, mainly because of its simplicity. While there
are a variety of nonlinear methods such as Isomap [79], T-SNE [56], and self-
supervised representation learning methods, such as autoencoders and gen-
erative models, each method, including PCA, has different desirable proper-
ties and there is no one-size-fits-all solution to feature selection.

PCA is a mature multivariate data analysis method that dates back to the
work of Karl Pearson in 1901 [29]. While extensively studied by statisticians
in the last century, it is still relevant in the advent of data science and big data,
presumably because it is one of the most popular basic methods for feature
transformation and reduction. The goal of PCA is, given a dataset X in Rd, to
find a set of orthogonal components V that constitute a linear approximation
of X. To quote Pearson directly, its purpose is to

«represent a system of points in plane, three, or higher dimensioned
space by the "best-fitting" straight line or plane». [29, p. 559]

These components are aligned along the directions of the highest variance
and ordered from highest to lowest. The components can then be used to
reveal linear dependencies, indicate hidden correlations, transform the data,
or perform dimensionality reduction by selecting only the components rep-
resenting the highest variance and discarding the rest.

The components correspond to an affine hyperplane of rank r ≤ d, where
r is the number of components considered. PCA can then be performed using
a least-squares optimization minimizing the reconstruction error between a
projection matrix P = VrVT

r and X. However, it is usually solved by com-
puting the eigenvectors and values of the covariance matrix C or, less com-
monly, the correlation matrix of the data set. Another widely used method
for PCA is Singular Value Decomposition (SVD), as the two are mathemati-
cally closely related. [76]

One of the main problems with this basic version of PCA is that it is very
sensitive to outliers. A single extreme outlier can strongly influence the re-
sulting components, even if most other instances are distributed in a differ-
ent direction. This is due to the fact that PCA minimizes the mean squared
error, which is based on the mean and is, therefore, strongly influenced by ex-
treme values. This motivated the research presented in Chapter 4. Our goal
was to find a robust way to perform PCA that relies on only minor mod-
ifications to the classical algorithm. Based on a mathematical paper intro-
ducing coMAD, we provide a robust variant of PCA using the comedian or
coMAD matrix [48], a median-based alternative to covariance. We then fac-
torize this comedian matrix to find robust principal components analogous
to covariance-based PCA. We show that this relatively simple concept can
greatly reduce the influence of outliers on the resulting components.
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2.2 Clustering

Clustering means partitioning a data set into sets of similar instances with
respect to a chosen similarity measure while separating dissimilar instances.
The resulting subsets are called clusters. There are many subcategories of
clustering algorithms, depending on assumptions about the data set, i.e., the
similarity measure used, the type of data, and other factors. While there are
many taxonomies of clustering algorithms, the following categorization of
algorithms is relevant in the context of this thesis:

• Partition-based Clustering assumes a predetermined number of clus-
ters k and a objective function.

• Model-based Clustering, is similar to partition-based clustering but
with the additional assumption that a specific distribution generated
the clusters.

• Density-based Clustering has no fixed number of clusters but instead
requires that clusters are areas of high density seperated by areas of low
density.

• Subspace Clustering combines feature extraction with clustering to
find clusters in distinct lower-dimensional subspaces.

This list leaves out some popular categories since these are not directly re-
lated to the publications provided by this thesis, e.g., hierarchical clustering,
MeanShift, or Deep Clustering [83]

2.2.1 Partition- and Model-based Clustering

K-means is arguably the most popular clustering task and can be solved by
different algorithms, such as the homonymous k-means algorithm. Given a
data set X ∈ Rd and a target number of clusters k, the goal of k-means is
to find a set of centroids µ and the corresponding assignment vector A such
that, the objective function

Lkmeans =
n

∑
i=1

||xi − µAi ||2 (2.1)

is minimal with respect to the combination of centroids and the assign-
ments,

arg minµ,ALkmeans (2.2)

This problem is NP-hard, even considering 2-dimensional datasets [82]
and optimizing L is not convex.

The k-means problem is typically solved by the k-means algorithm, i.e., al-
ternating between assigning each instance to its nearest centroid and finding
the optimal centroids for the corresponding cluster members until conver-
gence. It can be shown that the k-means algorithm converges in finite steps,
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since both moving the centroids and reassignment lead to a lower L and
there is only a finite number of possible assignments.

The main problem of the k-means algorithm is that it is not guaranteed
to find a global minimum, instead resulting in local minima depending on
the initialization of the centroids. There are several ways to extend k-means
to find a global minimum. Simply running multiple iterations with different
initializations and using either the k-means loss or the silhouette coefficient to
compare results and select an initialization can accomplish this. Additionally,
Kmeans++ [9] is a popular method to initialize the centroids not randomly
but swayed in such a way that they are spread out in the space the data
inhabits.

K-means can also be solved using gradient descent. This may seem re-
dundant at first glance since the traditional k-means algorithm provably con-
verges. Still, gradient descent versions can be used for end-to-end differen-
tial algorithms in order to work with complex data types, such as images.
Regularization terms can be easily added to the basic k-means algorithm to
adapt the cluster definition to fit specific tasks. There are three basic variants:
Batch [17], Stochastic and Minibatch [75] k-means. In addition, k-means can
also be seen as a matrix factorization problem [12]. This means that the ma-
trix product A × C of an assignment matrix A and the centroids C become
a representation of the data X, where each point is represented by its near-
est centroid. Then using the mean squared error of the difference between
A × C and X as a Loss: L = MSE(A × C, X), this can then be solved by
gradient descent. In any case, the assignments for k-means are hard assign-
ments. Other methods that allow for soft assignments or introduce Gaussian
mixture models can be categorized as model-based clustering.

While the k-means objective function assumes Euclidean space, other par-
titioning algorithms work with various non-euclidean spaces. K-medoid al-
gorithms, for example, can be applied to euclidean data as well as to arbitrary
data. The k-medoid problem consists of finding cluster centroids, which are
themselves instances of the data set. Consequently, this works with any data
as long as a distance measure can be applied. A popular k-medoid algorithm
is PAM [67], or Partitioning Around Medoids, which solves the problem us-
ing a greedy approach. There are also CLARA [47, p. 126] and CLARANS [63,
64] as extensions of PAM. CLARA performs multiple runs of PAM on differ-
ent samples of the data set. In each run, CLARA finds the medoids for a
sample of the data set using PAM, and then assigns the rest of the data set
to these medoids. In the end, the result with the smallest average distance
to the medoid is selected. CLARANS, on the other hand, searches the entire
data space and takes samples at each step. In addition, there is some fairly
recent work on speeding up PAM 3 by Schubert et al. [73, 72].

Another issue with k-means style algorithms is that minimizing the sum
of squares error of each centroid and its corresponding cluster members in-
volves the assumption that each cluster is spherical. This can be remedied by

3and thus CLARA and CLARANS
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algorithms that combine multiple centroids – in a fashion similar to hierar-
chical clustering – to obtain arbitrarily shaped clusters, or by using a different
notion of clustering, such as density-based clustering.

2.2.2 Density-Based Clustering

Density-based clustering algorithms work under the assumption that clus-
ters are areas of high density separated by areas of low-density occurrences
of data instances. This density is usually described as the ratio of the number
of objects to the distances between the objects in a cluster. The most common
definition comes from the popular DBSCAN [28] algorithm.

Given a minimum number of points µ, and a range ϵ, core points of clus-
ters are all points that have at least µ neighbors in an ϵ-neighborhood. These
core points are then directly-density-reachable. Additionally, all points that are
part of such a core neighborhood but themselves do not have µ directly
density-reachable instances are called border points and are only density-
reachable. The advantage of this definition is that the number of clusters does
not have to be fixed, and the clusters can have any shape. In particular, DB-
SCAN can also detect noise points, which has to be done in an extra step for
k-means and other clustering algorithms.

A disadvantage is that the hyperparameters µ and ϵ need to be set, which
are not as immediately obvious for domain experts as the number of clus-
ters. Epsilon primarily depends on the distance metric used. OPTICS [7]
and HDBSCAN [21] eliminate the need to set the ϵ parameter by using a hi-
erarchical clustering approach. In addition, there are reasonable heuristics
for choosing the hyperparameters, as described, for example, by Schubert et
al. [74]

While there are other algorithms such as DenPeak [68] and DenMune [1]
that work with different definitions of density, only the definition from DB-
SCAN is relevant in the context of this thesis.

2.2.3 Subspace Clustering

Clustering high-dimensional data is a complex task, because there are many
problems that are connected to high dimensionality. These problems are col-
loquially joined under the term "The Curse of Dimensionality". Richard Bell-
man, a mathematician often credited with first using the term, put it this
way:

« [. . . ] what casts the pall over our victory celebration? It is the curse of
dimensionality, a malediction that has plagued the scientists from earli-
est days.» [14, p. 94]

Inspired by the work of Kriegel et al. [53, 52], this curse can be decom-
posed into several subproblems, that are important in the context of cluster-
ing:
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• Problem 1 - Optimization Complexity
This first sub-problem corresponds to Bellman’s original definition of
the curse, which describes a combinatorial problem that arises when
brute forcing an optimization task. Inherently, any search task becomes
more complex with each additional feature, since each feature adds an
additional degree of freedom, i.e., exponentially more possible samples
to the search space. [25, p. 5]

• Problem 2 - Sparsity and Distance Measures
As the dimensionality increases, we need more samples to "fill" a space.
If we increase the dimensionality while keeping the same number of in-
stances, the data becomes sparse. The problem is that this leads to expo-
nentially larger distances between instances, while the relative pairwise
distances tend to be the same for all samples.

• Problem 3 - Noise Features
Given the sparsity from Problem 2, we can expect that in very high-
dimensional data sets, the amount of irrelevant or noisy features should
also increase.

• Problem 4 - Feature Correlations
Similar to Problem 3, we can assume that many dimensions allow many
possible correlations between the features; depending on the tasks, any
of these correlations could be relevant to domain experts. Finding these
relevant correlations therefore becomes more complex with increasing
dimensionality.

Problem 1 is the original definition of the Curse of Dimensionality. It de-
scribes one of the main motivations behind machine learning, which is to find
simple descriptions of complex data in order to compress the dimensionality
of a high-dimensional data set. It tells us that as dimensionality increases,
it becomes infeasible to simply materialize the function, so machine learning
allows us to find a compressed function that easily fits into memory. In super-
vised learning, this also means that the higher the dimensionality of a data
set, the more training samples are needed to achieve good generalization. 4

Problem 2 is particularly problematic for any nearest neighbor based al-
gorithm, since if all pairwise distances become nearly equal, then every sam-
ple likely is the nearest neighbor of every other sample.

A common way to deal with Problem 3, i.e., a large number of noise fea-
tures, is to apply feature reduction before clustering. But while this may
solve parts of the curse, this global reduction can still remove relevant local
feature correlations, which may be crucial for certain applications, see Prob-
lem 4. The field of subspace clustering attempts to find such relationships by
combining feature extraction and clustering into a single task, i.e, not only
grouping the data into distinct clusters, but also assigning a linear subspace
to each cluster.

4This is of course also true for unsupervised learning, where the probability density func-
tion underlying the data can be better estimated the more samples we have generated by it.
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A linear subspace can be defined as a set of vectors which is a subset of a
space Rd and has the following three attributes: (i) The set must contain the
corresponding zero vector. (ii) the set must be closed under addition. (iii) The
set must be closed under scalar multiplication. This means, for example, that
a 2d hyperplane in R3 intersecting the origin spans a linear subspace because
it contains the zero vector, i.e., the origin (0, 0, 0), and every vector lying on
the hyperplane. Of course, subspaces can also intersect, which usually results
in a lower-dimensional subspace. For example, two 2d hyperplanes intersect
in a one-dimensional subspace.

Axis-Parallel Subspace Clustering

This definition of subspace clustering implies an infinite number of sub-
spaces in any space Rd, which makes a naive approach, i.e., searching each
subspace for each cluster, infeasible. A subset of algorithms therefore works
with axis-parallel subspaces, i.e., the set of subspaces of vectors where at least
one dimension is always zero (or a constant number), e.g. {(x1, x2, 5)|x ∈
R3}. In Rd this results in O(2d) possible axis-parallel subspaces. This is
also well in line with Problem 3, which suggests that noise features are in
the original feature set and can be learned to be ignored. Algorithms are
then designed to search this reduced set of subspaces in either a top-down or
bottom-up fashion. Top-down variants attempt to cluster the entire feature
space and then find subsets of dimensions that fit these clusters. Bottom-up
approaches usually start by finding clusters in individual dimensions and
then combine the dimensions in some way. These methods can then reduce
the search space by using a variant of the a priori property from frequent
item set mining.

Examples of algorithms designed to find axis-parallel subspaces are:

• CLIQUE [6], the first bottom-up axis-parallel subspace clustering al-
gorithm, works with an equal-sized grid 5. First, subspaces 6 contain-
ing clusters are identified by finding dense cells using a method with
a slight similarity to DBSCAN. Given a hyperparameter τ, they select
only cells where the ratio of the number of instances in the cell divided
by the number of total instances is greater than τ. This is repeated in a
bottom-up fashion, first for each single dimension, then for subspaces
consisting of a pair of dimensions, then for triples, and so on, while con-
stantly pruning those subspaces that contain smaller ones that do not
count as clusters, in the manner of the Apriori algorithm for frequent
item set mining. The found cells and corresponding subspaces are then
collected into clusters using a graph search algorithm that searches for
connected components of a graph of subspace cells, where each node

5While the main content of the original CLIQUE paper presents a version of CLIQUE
where the cell size is the same for each dimension, the authors mention that individual cell
sizes are also possible, although the density threshold τ will need to be adjusted

6a subspace consisting of a single hyper rectangle, i.e., a grid cell, or a collection of such
cells that are later merged into clusters
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is a cell and edges connect those cells that belong to the same subspace
cluster.

• ENCLUS [23] is similar to CLIQUE but uses entropy to find interesting
subspaces.

• MAFIA [33] is an extension of CLIQUE that replaces the equispaced
grid with an adaptive grid.

• SUBCLU [46] is a density-based axis-parallel subspace clustering algo-
rithm that works in a bottom-up fashion. The authors show that the
definition of density-connectedness from DBSCAN [28] is monotonous
with respect to subspaces, i.e., if two points in subspaces A and B are
density-connected, then they are also connected in AB as well, and con-
versly, if they are not density connected in either A or B, then the same
is true for AB. This again allows for pruning similar to the Apriori al-
gorithm.

• PROCLUS [4], the first top-down axis parallel subspace clustering al-
gorithm, is an extension of CLARANS from Section 2.2.1 and therefore
based on k-medoid clustering.

Arbitrarily Oriented Subspace Clustering

Another way to navigate the infinite possible subspaces to find relevant arbi-
trarily oriented subspace clusters is to focus on relevant correlations in sub-
sets of the data. According to Problem 4 of the Curse, the more features a
data set consists of, the higher the probability that some of them are corre-
lated. While global correlations can be found using either statistical measures
or dimensionality reduction methods such as PCA, local feature correlations
can be found by looking only at subsets of the entire data set, i.e., correlation
clusters.

In data mining, finding such clusters is usually referred to as correlation
clustering to distinguish it from axis-parallel clusters, which do not imply
any correlation between the points of the cluster. 7 On the other hand, in var-
ious research fields, especially in computer vision, the term subspace clus-
tering itself is equivalent to correlation clustering. 8 Therefore, this thesis
will use the terms correlation and subspace clustering interchangeably. Thus,
subspace clustering is the task of finding arbitrarily oriented linear subspace
clusters, which may be affine depending on the intended task. An affine sub-
space has the same properties as a linear subspace except that it does not
have to include the zero vector.

7Correlation clusters, of course, only indicate correlation; whether or not there is actual
causation must be determined by a domain expert. Also, since arbitrarily oriented subspaces
could theoretically be perfectly parallel to the original axes, correlation clustering includes
all axis-parallel subspace clusters.

8which is reasonable, since the mathematical definition of a linear subspace corresponds
to an arbitrarily oriented subspace, and axis-parallel subspaces are a special case, as men-
tioned above. Moreover, the term correlation clustering is already overloaded, since it also
refers to a task from graph mining, cf. [10].
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Examples of correlation clustering algorithms are:

• ORCLUS [5], based on PROCLUS, consists of applying k-means with
a large k, then calculating the PCA for each resulting cluster and merg-
ing clusters if they belong to similar subspaces. These three steps are
repeated until a predetermined number of clusters k is returned.

• 4C [15] is a correlation clustering method based on DBSCAN. A cluster
is defined as a correlation-connected set if the objects in the clusters are
density-connected in terms of DBSCAN and exhibit a similar linear cor-
relation. The algorithm works analogously to DBSCAN, only checking
for correlation reachability instead of density reachability. To compare
the correlation, 4C utilizes a distance measure that is closely related to
the Malahanobis [57] distance, only using an inverted covariance ma-
trix instead.

• CASH [3] relies on the Hough transform, a transformation of the orig-
inal data space into a parameter space, to find dense grid cells in the
resulting parameter space. These dense clusters then correspond to lin-
ear subspaces in the original data space.

• k-planes [18] works very similar to k-means, only using hyperplanes as
centroids for a cluster instead of the corresponding means.

Many correlation clustering methods, especially those from the data min-
ing community, are based on performing PCA at a local cluster level. An
advantage of such a PCA-based method is that it is relatively easy to derive
quantitative models, that might help explain the correlations found. Based
on the paper introducing this concept [2], Chapter 6 of this thesis provides
SIDEKICK an algorithm that extends this work to find correlation clustering
using a minimal amount of supervised background knowledge.

Another approach, Sparse Subspace Clustering (SSC) [27, 26], comes from
the computer vision community. It exploits the so-called self-expressiveness
property, i.e., any object lying in a linear subspace can be expressed by a
linear combination of other objects from the same subspace. The first step of
SSC is to find an affinity matrix that shows the similarity between all objects
in the database based on whether they belong to the same linear combination.
In the second step, this affinity matrix has to be separated into clusters using
a different clustering algorithm to obtain a subspace clustering. Typically,
spectral clustering is used. A disadvantage of SSC is that the affinity matrix
depends on the size of the data set, which means that SSC does not scale well.
However, it handles noisy data well by applying a sparsity constraint to the
objective function.

In Chapter 7, this thesis provides a novel subspace clustering algorithm
based on Houghnets [11]. It is designed to be a stepping stone between the
computer vision and data mining approaches for subspace clustering. This
approach uses a loss that essentially fits k hyperplanes in such a way that
each object is at least considered to be part of one of the hyperplanes us-
ing soft assignment, similar to a model-based approach. We show that our
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method is more robust against outliers than other correlation clustering al-
gorithms while running much faster than SSC. Additionally, this work com-
pares some of the different subspace clustering algorithms, which were men-
tioned above.

2.3 Anomaly Detection

The overall performance of any data science task can be affected by anoma-
lies and outliers in the data set. These are objects or groups of objects that
are very far from the normal 9 rest of the data, in one way or another. These
could be noise measurements from a power surge in an instrument or ran-
dom snapshots when working with image data, for example. These anoma-
lous data objects can then affect statistical measures in unwanted ways, such
as the mean, and consequently other measures that depend on the mean,
such as PCA, see Section 2.1 in this chapter. One way to deal with such out-
liers consists of extending any existing algorithm to ignore them. However,
generic anomaly detection methods can remove these objects before solv-
ing the original task. Although anomaly detection is traditionally thought
of as an unsupervised task, it is often not so easy to pigeonhole it into a
single learning paradigm. Anomaly detection can be unsupervised, semi-
supervised, or supervised, depending on the exact application.

Unsupervised anomaly detection is often referred to as outlier detection.
Since this is an unsupervised task, there are no labels for normal or anoma-
lous data. Consequently, there must be some assumption about the nature
of such an outlier. For example, the notion of what constitutes an outlier can
be based on density, as in the case of the Local Outlier Factor [19]. Another
way to define outlier detection is based on a contamination parameter ϵ, for
example this can be done when using Isolation Forests [54]. The task then
becomes finding the ϵ percent of instances that are least likely to have been
generated by the same statistical process as the normal part of the data. In
a real-world application, this would mean that to be extra sure of produc-
tion quality, the worst 10% of items produced on a production line would be
discarded, or at least sorted out for more detailed evaluation.

Supervised anomaly detection is a highly unbalanced classification prob-
lem, where a small class of instances is labeled as anomalous and a large class
of instances is labeled as normal. By using some way to deal with this im-
balance, any classification algorithm can be used to classify objects as either
normal or anomalous.

9The definition of what data is normal is generally not definitive. For example, normal
data can be defined by similarity, i.e., instances that are close together versus insular objects
that are far from all others, or it can be determined by frequency of occurrence, i.e., events
that occur frequently versus events that occur only once or very rarely. But sometimes cer-
tain rare circumstances also can be known to be normal. So usually the notion of normality
should be defined depending on the application and domain expertise.
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Finally, semi-supervised anomaly detection 10, is probably the setting that
shows up most often in real-world applications. Here, the input to the algo-
rithm is a set of objects labeled as normal data, but no objects labeled as
anomalous. The task is to find a function that describes the normal data
as well as possible. Then, any unknown samples that do not fit this learned
function well can be labeled as potential outliers. An example of such a semi-
supervised algorithm is the one-class SVM [71]. Using the same industrial
example as before, it would be easy to keep track of the normal items during
production, since these are only the ones that are shipped and not returned,
a simple method to generate labels for the normal data. Then an algorithm
trained on these normal objects can sort out any articles that are not similar,
and the resulting normal articles could be used to have more data to feed the
algorithm.

These examples show that anomaly detection is inherently closely related
to its real-world application. To facilitate research on anomaly detection in
a real-world setting, we introduce a benchmark framework OAB, Chapter 8,
that allows users to quickly evaluate newly designed anomaly detection al-
gorithms and compare them to related algorithms on tabular and image data.

2.4 Problems of Unsupervised Learning

When researching unsupervised algorithms, especially clustering, one often
encounters problems with the evaluation of novel algorithms. There are gen-
erally two types of evaluation measures for clustering, internal and external,
and both suffer from similar problems. Internal measures, such as the silhou-
ette coefficient, are often implicitly or explicitly optimized by the objective
functions of clustering algorithms, and will therefore overestimate the per-
formance of the corresponding algorithms. As a result, while these measures
can adequately show how different variations, initializations, or hyperpa-
rameter settings of the same algorithm perform in comparison to each other,
they are not as well suited for comparing different algorithms.

External measures, conversely, work with a priori labels and therefore
seem to be better for comparing different clustering algorithms. However,
using a single labeling for a data set can also have the same problem as an
internal measure, since this single partitioning may fit a certain assumption
behind a chosen algorithm better than another label concerning a different
aspect of the data. For example, k-means assumes that there are k clusters in
the data set and that their compactness can be reasonably minimized by Least
Square Loss (LSL). However, instances in real-world data sets may have dif-
ferent connotations, and therefore different possible groupings, depending

10Semi-supervised anomaly detection is sometimes referred to as novelty detection, al-
though novelty detection can also refer to whether the anomalies are already in the data set
or whether only new data points are being analyzed
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on the application. Reducing this to a single class labeling and then design-
ing clustering algorithms based on it seems like a long and complex form of
supervised learning. 11

In Chapter 9, in order to illustrate such problems, we took a simple pub-
lished clustering algorithm, ROCK [13], and tried to implicitly overestimate
its performance by using hyperparameter optimization strategies to fit the
optimal data set to the clustering algorithm instead of changing the design of
ROCK. We have shown that it is relatively easy for a researcher to inadver-
tently find a version of a data set in which the chosen algorithm outperforms
all competitors. This can lead to publications that overestimate the perfor-
mance of a clustering algorithm that may work on a theoretical data set, but
do not hold up in real-world applications. This means that it is beneficial
to combine the application and research of unsupervised learning methods.
The next chapter discusses a collection of such possible application areas.

11An extreme example of this problem is the MNIST dataset and similar image datasets
regularly used in deep clustering research. The commonly used labeling allows only a single
interpretation of the data set, grouping by the number shown. It is quite easy to imagine a
different labeling based on handwriting style.



17

Chapter 3

Applications

One solution to the over-optimism described at the end of the last Chapter
is to design unsupervised algorithms specifically for a particular application.
Specific application domains and data types allow for strong assumptions,
which is especially important for unsupervised learning. For this reason,
unsupervised methods have been successful with data types such as image,
text, or graph data. This chapter highlights some interesting application do-
mains and the contributions of this thesis to them.

3.1 Learned Index Structures

Database Indexing is one of the standard topics in data mining research.
However, the community has recently been shaken by the introduction of
learned index structures (LIS). The concept of LIS was introduced by Kraska
et al. [51] in 2018. The authors state that, from a certain perspective, database
index structures can be viewed as statistical models. Database indexes are
data structures designed to speed up database queries. Different types of
index structures are better at speeding up different types of queries. How-
ever, different data distributions can also affect query execution speed. While
traditional methods take this into account to some degree – for example, B-
trees can have smaller leaf nodes in places where indexes are closer together
– improving or replacing them with a machine learning model can help in-
dexes fit the intended dataset more accurately. While there are speed im-
provements over other traditional index structures, the main advantage is
the smaller model size, since smaller index structures lead to faster database
management systems [49, 58, 31].

In general, an index structure is designed to work on a set of distinct keys
S ⊂ U , where U is usually the set of natural numbers but may also be the
set of possible strings or dates, for example, as long as the index values can
be ordered. An index structure is required to be able to perform various
queries using S: Usually, these are membership queries: member(x) = TRUE
if x ∈ S else FALSE, i.e., whether the key exists in the set and range queries:
range(x, y) = S ∩ [ x, y ], i.e., return the set of possible keys between x and y,
that exist in the index set S. [31, 66]

A trivial solution to perform these queries is a binary search or a binary
search tree (BST). The B-tree, an extension of BSTs, is still a commonly used
index structure for DBMSs. While in a BST each node can have only two
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children, a B-tree allows more than two children, thus reducing the height of
the resulting search tree. The leaf nodes of a B-tree are all at the same level
and contain the actual keys. The combination of these two attributes makes
B-trees well suited for indexing, since finding a particular leaf node usually
means following a single path through the tree. Both reducing the height
and keeping all leaf nodes at the same level reduce the length of this path
and therefore improve query execution speed.

To solve this indexing problem with a learned model, one can use the
rank(x) function, i.e., the number of elements of S smaller than x. We can
now learn a function f (x), that approximates rank(x), utilizing a supervised
regression model with the sorted array S as the input and rank(x) as the la-
bels and minimizing the absolute training error L = ∑n

i=0 | f (xi)− rank(xi)|.
The membership query then becomes member(x) = TRUE if S[ f (x)] = x
and the range query becomes finding f (x), i.e., finding the approximate rank
f (x) and then iterating over S, until y is found. [31, 66]

Note that this LIS can be easily extended so that it is not approximate by
using the training error. This is because the train set, i.e., the collection of
keys on which the LIS is trained, is the same as the test set, i.e., the set of keys
on which the LIS is later queried. This means that the training errors can be
used to guarantee that the data is within the predicted rank plus error range.
This usually significantly smaller range can then be searched using binary
search, for example.

While this task is straightforward when considering an auto-incremented
index attribute with no missing keys – then the solution is as simple as using
rank(x) as the index itself – LIS are able to outperform traditional index struc-
tures if the keys are of a different data type, e.g., the timestamp of the entry.
There might be more import dates, i.e., on some days there might be a lot of
entries and on other days not so many. An example might be an incident log
for a support ticket system.

Typically, one would not use a single model for an index, but rather a tree
of models, i.e., ensemble learning using a mixture of experts.

Kraska et al. [38] present two other examples of one-dimensional indices
that can be replaced or extended by different types of ML models:

• Hashmaps, which are typically used for point queries, can also be re-
placed by a piecewise linear model and even avoid collisions, some-
times better than traditional hash functions, although the authors found
that this is only possible if the model can overfit 1 the data [69]

• Bloom filters are designed for membership queries only, i.e., to decide
whether a key exists. False positives are possible. False negatives, how-
ever, are not. This can be improved by using a binary classifier before
applying the Bloom filter to filter out even more candidates. While the

1Since the train and test set are the same, overfitting is not always a bad thing concerning
LIS
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classifier will produce both false positives and false negatives, the re-
sulting false negatives can be filtered again by the bloom filter. Subse-
quent papers [61, 81] add multiple steps of bloom filters and classifiers
to improve the performance.

All of these examples are one-dimensional index structures. However,
multidimensional indexes are needed when performing spatial queries, such
as nearest neighbor queries. In this case, the previously discussed methods
do not work because these methods rely on ordered keys, and for indexes
of more than one dimension, there is usually no natural order. Traditional
examples of index structures that solve this spatial data problem include R-
trees [35], Z-orderings and vector quantization [70], and Locality Sensitive
Hashing [32], among others.

Some related work has been published on learning multidimensional in-
dex structures, such as Flood [62]. However, these approaches usually pro-
duce a lot of overhead, so in the paper presented in chapter 10, we show that
a multidimensional index structure can be as simple as using k-means and
a classifier in combination. We use k-means to partition the data and a clas-
sifier to predict the corresponding cluster containing the query object. Our
approach is similar to the learned metric index of Slanináková et al. [8, 77],
published independently around the same time.

Finally, index structures are not the only building block of a database
management system that could be replaced by a statistical model. The field of
instance optimization explores self-tuning DBMSs and is an exciting glimpse
into the future of database management systems. [50]

3.2 Vector Semantics and Password Guessing

It has been over 100 years since Markov introduced n-gram models and the
concept of treating language as a statistical process. The advent of deep learn-
ing and massive text corpora built from the World Wide Web allows for using
the same concept to mathematically encode the meaning of words into con-
tinuous vector spaces, where semantically similar words have similar rep-
resentations. Now, anyone can generate almost too convincingly human-
sounding text with projects like ChatGPT 2. [45, p. 55, 56]

Two words are usually considered semantically similar because they are
often associated in some way. However, semantic similarity does not mean
that two words have the same meaning. While there are synonyms, i.e., two
words that mean the same, other associations include antonyms, i.e., words
that have opposite meanings like hot/cold, words from the same semantic
field, i.e., concerning a similar topic, for example, cat and dogs, hypernyms,
i.e., one word is an umbrella term that includes the other one, like animal and
cat, words that have the same connotation, i.e., positive, negative, or any
kind of sentiment, i.e., happy or sad, and many more. [45, p. 105]

In 1957 Osgood et al. [65], while studying the different connotations of
words, asked people to rate words in three different aspects and noted that

2https://openai.com/blog/chatgpt/, visited 12.01.2023

https://openai.com/blog/chatgpt/
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this resulted in each word having a three-dimensional vector representation.
The combination of Osgood’s intuition and the concept that words are se-
mantically similar depending on how often they are used together, and vice
versa, gave rise to vector semantic models. These continuous vector spaces,
which combine such seemingly diametrical concepts of vector mathematics
and word semantics, are called word embeddings. [45, p. 106]

However, in order to create a word embedding one does not always need
to create a survey and ask random people to annotate each word. Using a
co-occurrence matrix instead, such as a term-document matrix, one can use
unsupervised 3 learning methods to learn semantic vector representations for
each word. A term-document matrix column contains one column per dis-
tinct word that occurs anywhere in a corpus 4 and one row for each docu-
ment in the corpus. This usually results in sparse data since corpora typically
contain tens of thousands of different words, and corpora trained from the
Internet typically contain millions of web pages, i.e., documents.

A common baseline model to turn this sparse matrix of ones and zeros
into a proper vector space is tf-idf, which is short for term-frequency-inverse-
document-frequency, a method of scoring a word based on its total number of
occurrences relative to the number of documents in which it appears. How-
ever, tf-idf still results in a sparse representation, and embedding models
usually aim to find a dense vector representation of the co-occurrence ma-
trix. In addition, to using a simple matrix factorization, popular embedding
models include:

• word2vec [59] a method that, given a target word, uses a sampling
strategy to create positive examples from words that occur in the same
context and negative examples from the rest of the vocabulary, and then
trains a logistic regression model that aims to maximize the similarity of
the positive word pairs and minimize the similarity of the target word
and the negative examples. The weights of this model can then be used
as embeddings.

• Fasttext [16, 43, 44], a similar algorithm to word2vec, which uses smaller
components of words, so-called n-grams, instead of complete words.
This allows fasttext to create representations for out-of-vocabulary wor-
ds.

A common feature of these methods is that they produce static embed-
dings, i.e., each word has a single vector representation. However, with more
modern techniques, e.g. BERT [24], it is possible to find context-specific word
embeddings, i.e., a word can have multiple representations depending on the
context.

Based on the concept of unsupervised semantic word embeddings, this
thesis contributes a novel method for password guessing in Chapter 3.2.

3Or more specifically self-supervised, i.e., using a supervised method on an unsupervised
task, by using the input itself as a label.

4A text corpus is a collection of text documents that is used to analyze or learn from a
particular language, multiple languages, or particular dialects
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While the field of password guessing has already been combined with natu-
ral language models, our approach is the first to use static word embeddings
to find unknown passwords based on their semantic similarity to a leaked
password list.

3.3 Reinforcement Learning

Reinforcement Learning is the third primary learning paradigm because it is
neither supervised nor unsupervised. Instead, it focuses on learning from in-
teracting with an environment. In essence, an agent or agents interact with an
environment and perform actions to maximize some reward that is returned
when an action is submitted to the environment. The core of the reinforce-
ment learning problem is to define this reward. Therefore, an obvious appli-
cation of reinforcement learning is board- and video game AI, since there are
usually well-defined rules, obvious winners, clear winning conditions, and
obvious rewards for actions. In addition, the number of possible actions to
take at any given time is usually relatively small, while the number of possi-
ble game states is often large. However, reinforcement learning has also been
successfully applied outside of the context of gaming, for example, to find a
novel way to compute matrix multiplication, which requires fewer steps than
any previously human-designed method [30]. A more detailed review of re-
inforcement learning algorithms is beyond the scope of this thesis. Instead,
see Reinforcement Learning: An Introduction by Richard Sutton et al. [78].

In chapter 12 we provide a novel task for reinforcement learning in the
form of a popular German board game. It is a challenging task for reinforce-
ment learning methods because it offers a large number of different rule com-
binations, which usually do not adapt well to changes in the environment.
We provide an environment for training reinforcement learning algorithms
and show that it is possible to learn a reasonable strategy for a single rule
combination using reinforcement learning. In the future, we aim to add sup-
port for different rule combinations.
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Chapter 4

On coMADs and Principal
Component Analysis

This chapter consists of a preprint version of the following publication:
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USA, October 2-4, 2019, Proceedings. Ed. by Giuseppe Amato, Claudio Gen-
naro, Vincent Oria, and Milos Radovanovic. Vol. 11807. Lecture Notes in
Computer Science. Springer, 2019, pp. 273–280. DOI: 10.1007/978-3-030-
32047-8_24. URL: https://doi.org/10.1007/978-3-030-32047-8_24
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Abstract. Principal Component Analysis (PCA) is a popular method
for linear dimensionality reduction. It is often used to discover hidden
correlations or to facilitate the interpretation and visualization of data.
However, it is liable to suffer from outliers. Strong outliers can skew the
principal components and as a consequence lead to a higher reconstruc-
tion loss. While there exist several sophisticated approaches to make the
PCA more robust, we present an approach which is intriguingly simple:
we replace the covariance matrix by a so-called coMAD matrix. The first
experiments show that PCA based on the coMAD matrix is more robust
towards outliers.

Keywords: Covariance · coMAD · Principal Component Analysis.

1 Introduction

When dealing with vast amounts of data and a large number of features perform-
ing principal component analysis (PCA)[5] is a common approach. PCA yields
the principal components, i.e. the directions of highest variance in the data. Fur-
thermore, PCA can be used to reveal hidden correlations and is sometimes used
to detect arbitrary oriented linear correlated clusters. For example it is used in
correlation clustering algorithms like 4C[2] or ORCLUS[1]. However PCA based
on the covariance matrix is highly sensity towards outliers, particularly strong
ones, can have an impact on the resulting principal components. This is due to
the fact that outliers can influence the mean for each of the features of a data
set. That is why in statistics the median is used as a robust measure against
outliers. For the measure of dispersion of a feature the so called median absolute
deviation from the median, short MAD, is the method of choice. In this work
we propose to use a coMAD matrix instead of a covariance matrix on which the
eigenvalues and eigenvectors are computed. We will elaborate on the MAD and
the coMAD matrix in detail. In our first tests it can be seen that with heavy noise
the principal components of a PCA are heavily deflected, while those resulting
from a PCA based on the coMAD remain stable.

2 Related Work

There are many approaches to make the PCA more robust towards noise. With
the term robust, we understand the following: Given data where a significant
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amount of the objects exhibits a linear correlation and some objects are outliers.
The method is considered as robust, if the increasing number as well as increas-
ing distance of outliers, does not significantly affect the direction of computed
principal components in comparison to the case where there would be no out-
liers in the data set. In the work of [6] the authors develop a theory of Robust
Principal Component Analysis (RPCA) and describe a robust M-estimation al-
gorithm for capturing linear multivariate representations of high dimensional
data, exemplary on images. M-estimators are a class of extremum estimators
which can be regarded as a generalization of maximum-likelihood estimation.
The authors further state that while methods such as RANSAC and Least Me-
dian Squares are more robust compared to M-estimation, it is not clear how to
apply the techniques efficiently on high-dimensional data. In another work [4]
the authors propose the ROBPCA method which combines the concept of a so-
called ’projection pursuit’ with a robust scatter matrix estimation on which the
eigenvectors and eigenvalues are computed. Their method relies on several crite-
ria and definitions. They use e.g. for the computation of outlierness the so called
Stahel-Donoho affine-invariant outlyingness. They further compute a reweighted
mean and covariance matrix based on the Rousseeuw and Van Driessen consis-
tency factor. In another work [7] a generative RPCA model is proposed which
relies on the Bayesian framework in which data noise is modelled as a mixture
of Gaussians (MoG).

While all of the mentioned methods rely on various more complex and so-
phisticated methods, we challenge the task of robust PCA by asking: What if
we exchange the covariance matrix against a coMAD matrix? Since the sim-
ple median and MAD is robust against outliers, the coMAD and MAD-PCA
should be, too. In the following section we first define the coMAD and contrast
it against the covariance. Then we support our claim in the experimental evalu-
ation section, in which we also elaborate briefly on a metric we use to measure
the robustness of our method in which we compare the reconstruction errors
from a coMAD-based PCA against the covariance-based solution. We later on
critically question the appropriateness of the MAE evaluation. Our approach is
based on the MAD and the comedian as defined in the work of [3]. However we
have taken the liberty of renaming the comedian to coMAD since the covariance
is traditionally not named the ’comean’.

3 MAD and coMAD

Given a data matrix D where each of its rows represents a data record and its
columns represent the features (A1, ..., Ad). The first step of performing PC is
computing the covariance matrix Σ, which is defined as:

ΣD =




var(A1) · · · cov(A1, Ad)
...

. . .
...

cov(Ad, A1) · · · var(Ad)
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With covariance being

cov(Ai, Aj) := E(((Ai − E(Ai))(Aj − E(Aj)))

For the case that Ai = Aj it is defined as the variance var(Ai) = E((Ai −
E(Ai))

2) = E((Aj−E(Ai))
2) = var(Aj). The covariance is thus a generalization

of the variance. At this point it can be seen that from each of the features the
expected value E (mean) is subtracted. The mean however is sensitive towards
outliers which skew the mean value significantly. A more robust measure is the
median. The analogon to the variance is the median absolute deviation from the
median (MAD) which is defined as:

mad(Ai) = med(|Ai −med(Ai)|)

We can now generalize MAD like the covariance is a generalization of the
variance. Then the coMAD can be defined as:

com(Ai, Aj) := med((Ai −med(Ai))(Aj −med(Aj)))

Like cov(Ai, Aj), com(Ai, Aj) is also a measure of covariance. Therefore,
building on the definition of the coMAD, we can define a coMAD matrix Λ:

ΛD =



com(A1, A1) · · · com(A1, Ad)

...
. . .

...
com(Ad, A1) · · · com(Ad, Ad)




Now we can perform PCA using ΛD instead of ΣD, i.e. the eigenvalues and
their corresponding eigenvectors of the coMad-matrix are computed.

While we shall see later in the experimental section the effects of noise on a
covariance and a coMAD-based PCA, we further ask in this work-in-progress if
there is a way to quantify the quality of the different methods. For this purpose
we shall elaborate first on what happens after the eigenpairs (eigenvector, eigen-
value) of a PCA are computed. The eigenvectors are put into an eigenvector
matrix U where each column corresponds to an eigenvector. What we do now is
to use the eigenvectors with the k-largest eigenvalues, where k is widely noted
in the literature as the number of principal components which cover more than
85% of the variance as a rule of thumb. The percentage of variance in a given
dataset is explained by the following ration for each of the eigenvalue λi:

ϕ(k) =

∑k
i=1 λi∑d
i=1 λi

We discard as an example the second principal component of a performed
PCA, which yields Uk=1. We project now the dataD down to a lower dimensional
representation Y through:

Y = D · Uk=i
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If we now want to reconstruct the data back to its original two-dimensional
representation we achieve this with:

Z = Y · Uk=i

This procedure of projecting the data (D) down to a lower dimension (Y ) and
reconstructing (Z) it gives us the opportunity to compute the Mean Absolute
Error (MAE) which is defined as:

MAE(D,Z) =

∑n
i=1 |di − zi|

n

, where di ∈ D, zi ∈ Z and n denoted the number of objects for which holds
n = |D| = |Z|.

4 Experiments and Discussion

To provide an intuition, we apply this method on the following toy examples as
seen in Figure 41. In Figure 4 (a) we have a data set with a subset of objects
which clearly exhibits a linear correlation. To this data set we added three out-
liers. On the left side it can be observed that the principal components of a PCA
using the covariance matrix are deflected towards the direction of the three out-
liers. In contrast the principal components from the coMAD-based PCA remain
with barely noticable deflection in the direction of the objects belonging to the
linear correlation. If we add now a fourth outlier which is even more apart, one
can observe in Figure 4 (b) that the deflection of the principal components of a
covariance-based PCA increases, exhibiting an by far larger eigenvalue. The co-
MAD variant remains again barely affected. In Figure 4 (c) and (d) we increase
the distance of the fourth outlier, being more distant to the other outliers as
well as to the linear correlated objects. In Figure 4 (d) the deflection is massive
in the case of the covariance-based PCA, while principal components of the co-
MAD variant remain robust. These simple synthetic experiments reveal that a
coMAD-based PCA excels regarding robustness against noise.

In a next step we conduct experiments on different data sets comparing the re-
sulting MAE for the covariance and for the coMAD variant. For each of the data
sets we repeat the MAE computation for choosing a range from k = 1, ..., k = d
principal components. The reason for this approach is twofold: first, one can
observe how the MAE decreases per data set by increasing the number of princi-
pal components. Second: one can observe certain number of eigenvectors which
result in an increase or decrease of the MAE. For all the experiments we used
the data sets offered by the sklearn2 library.

1 We used python with several libraries. The code can be found at:
https://github.com/huenemoerder/MAD-PCA

2 https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
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(a) three outliers (b) four outliers I

(c) four outliers II (d) four outliers III

Fig. 1. PCA using covariance vs. coMAD matrices

Fig. 2. MAE with increasing number of principal components on the synthetic s-curve
data set. orange: coMAD variant; blue: covariance variant

28 Chapter 4. On coMADs and Principal Component Analysis



6 D. Kazempour, M.A.X. Hünemörder and T. Seidl

We begin as a first experiment on a synthetic data set. We generated an
s-curve (50 samples, 3 features, 20 gaussian noise, random state = 42) without
outliers. By that we have a null-case where we would not expect the coMAD
to surpass the covariance approach at all. This data set has been chosen for its
inherently non-linear shape. In Fig.2 we see on the horizontal axis the number of
principal components and on the vertical axis the MAE. The coMAD approach
is mostly the same like the covariance method, since we do not have outliers but
just an increase of noise. However taking the first two principal components, the
MAE is by around 25 units lower for the covariance method compared to the
coMAD.

Fig. 3. MAE with increasing number of principal components on the iris data set.
orange: coMAD variant; blue: covariance variant

The second experiment is conducted on the iris data set (450 samples, 4
features). In Fig.3 it can be seen significant differences in the MAE between
the covariance and coMAD PCA variants. Taking the first principal component
yields an lower MAE for the coMAD variant compared to the covariance version.
For the second principal component we get already a visible difference where the
covariance excels in comparison to the coMAD-based PCA. However, the im-
provement of the MAE from the covariance approach reduces drastically with
the third principal component. It remains for future work to further investigate
the reasons for why in the coMAD yields a lower MAE for the second principal
component and a higher for the third PC compared to the covariance-based ap-
proach.

Since iris is small with regards to number of features as well as number of
samples, we move in our next experiment to a larger scale. We test now both
approaches on the pendigit data set which represents handwritten digits con-
taining over 1797 samples in total, and 64 features. The results can be observed
in Fig.4 . Here we observe that the MAE of the coMAD variant is marginally

Chapter 4. On coMADs and Principal Component Analysis 29



On coMADs and Principal Component Analysis 7

Fig. 4. MAE with increasing number of principal components on the digits data set.
orange: coMAD variant; blue: covariance variant

higher compared to the covariance version. This observation raises several ques-
tions: 1. Is the coMAD PCA inferior to the covariance PCA? The answer is:
it depends. In the synthetic experiments one could clearly observe that the co-
MAD based method is superior. It is resilient towards outliers. But why do we
get worse MAE results compared to the covariance variant? If we think of what
happens in the case of the reconstruction error we recognize the following: It
turns out that the MAE is lower for the covariance based approach since we
obtain principal components which are heavily deflected. While this deflection is
bad, since it means that it does not represent the direction of linear correlated
objects in the data set, it is good for the reconstruction, since it means that the
deflected principal component minimizes the distance from the outliers to the
principal components, and as such, minimizes the error. The observed behaviors
regarding the reconstruction are therefore expected. However, we may question
at this point whether the MAE itself is a good measure for our purpose. The
MAE is suitable if we want to evaluate of how well the detected principal com-
ponents minimize the distance to each data object in the data set. However, it
does not reflect how well the principal components maintain a small distance of
the objects belonging to a linear correlation.

5 Conclusion and Future Work

In this work-in-progress we have presented the coMAD in context of PCA. Based
on the idea that a median is more robust compared to mean we defined a coMAD
matrix on which a PCA is performed. The idea is intriguingly simple compared to
competing methods. Experimental results show that the coMAD approach yields
principal components which seem unaffected by any noise, while the covariance-
based PCA experiences heavy deflection of its resulting principal components.

The potential of the coMAD for PCA may reveal in future work, when for
correlation clustering methods such as 4C the coMAD is used instead of the
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covariance. Especially in the 4C scenario where for each data object within an
ε-radius a PCA is conducted, we have a small sample size of objects, making it
especially prone to just a small number of noise. It also remains to future work
to further study those cases where the coMAD approach delivers higher as well
as a lower MAE compared to the covariance variant. Detecting and characteriz-
ing those cases opens the scene for the development of novel approaches dealing
with such special cases. Further it remains of special interest to develop criteria
to evaluate the quality of a coMAD-based PCA against a covariance variant,
since the MAE does not satisfy the task of determining the resilience of princi-
pal components against noise, but rather quantifies the quality of the principal
components with regards to the minimization of the distance to all objects in
the data set. We hope to kindle with this work future research on the coMAD.
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Abstract. The coMAD (co-median absolute deviation) is a measure
for the joint median of two random variables. Previous experiments have
shown that a coMAD-based PCA is more robust towards noise and out-
liers, yielding eigenvectors which represent linear correlation better than
its covariance-based competitors. In this preliminary work we introduce
CODEC - COrrelations in DEnse Clusters - a method for detecting lin-
ear correlations in dense clusters utilizing a coMAD-based PCA. The
idea of CODEC is intriguingly simple: first a density-based clustering is
performed using the well established clustering method DBSCAN. Then
on each of the clusters PCA is performed. Instead of using the covariance
matrix we use the coMAD matrix as a basis for performing PCA.

Keywords: Comedian · Correlation Clustering · Principal Component
Analysis · CoMAD.

1 Introduction

As Data Analysis is becoming more and more important in recent years, a mul-
titude of possible interesting properties of datasets have emerged. Clustering,
which constitutes a huge field of data analysis with diverse sub-categories, lever-
ages these properties to find sets of points which are similar to each other, but
dissimilar to points of other sets or clusters. This similarity can be based on
density, on the distance to centroids, or how well they fit to a certain distribu-
tion. On the other hand, points which are correlated only in certain dimensions
can also be interpreted as similiar, which is covered by subspace and correlation
clustering algorithms. Surprisingly only few algorithms combine both concepts,
and, to the best of our knowledge, none of them investigate found clusters further
regarding possible correlations. Especially density-based clusters, which can be
of any shape, can contain correlated data (rather than centroid-based clusters
for example, which tend to have similar extensions in every dimension). Thus,
we introduce CODEC, a new prototype algorithm which finds correlations in
density-based clusters found by DBSCAN using an improved version of PCA to

Copyright c©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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account for dispersions. We have found that using the coMAD matrix instead
of the covariance matrix, we find less distorted main components of correlation
clusters.

We provide an overview over related work in Section 2, including an intro-
duction of the improved PCA using the coMAD (co-median absolute deviation)
matrix. In Section 3 the algorithm is explained in detail and tested in Section 4.
Section 5 concludes this short paper and gives ideas for future work.

2 Related Work

There already exist several sophisticated methods which detect linear correlated
clusters, such as ORCLUS[2], 4C[3] or CASH[1]. ORCLUS and 4C rely on Princi-
pal Component Analysis (PCA). ORCLUS combines the PCA with k-Means and
4C uses PCA and a DBSCAN[4]-like approach. In this work-in-progress, we aim
to harness the robustness of the coMad, orginally introduced as the “comedian”
in [5] to detect linear correlations in dense clusters.

3 Method

Since the coMAD is one of the core elements of our method, we will first elab-
orate on the definition of the coMAD. Suppose we are given a data matrix D
of dimensionality d, where the rows represent a data record and their respective
columns represent the features (A1, ..., Ad). If we consider the variance, its anal-
ogon in the median context would be the median absolute deviation from the
median (MAD):

mad(Ai) = med(|Ai −med(Ai)|)
Then the analogon to the covariance is the coMAD which is a generalization

of the MAD:

com(Ai, Aj) := med((Ai −med(Ai))(Aj −med(Aj)))

Finally we use the definition of the coMAD to construct the coMAD matrix
Λ known as:

ΛD =




mad(A1) · · · com(A1, Ad)
...

. . .
...

com(Ad, A1) · · · mad(Ad)




Based on the coMAD matrix Λ the PCA is performed which yields the cor-
responding eigenpairs.

Our algorithm then proceeds as follows: First, dense clusters are detected by
applying DBSCAN on the data set. Then on each of the dense clusters PCA
is applied, using the coMAD instead of the covariance matrix. As a result we
obtain a set of eigenvectors for each cluster, which show the direction of linear
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correlations within the clusters. The intuition here is that instead of the direc-
tion of highest variance (which would be the classical result using the covariance
matrix), the eigenvectors now point in the direction of the highest MAD, there-
fore the direction where most points are situated. This leads to the PCA being
less contaminated by noise points that diverge from the main direction of linear
correlation.

One may think that a dense cluster should already be almost without any
noise. This however depends on the density of the clusters which is implicitly
determined by the choice of the hyperparameters of DBSCAN, namely ε-range
and minpts for the minimum number of objects required to be located within
an ε-range. The larger the ε-ranges and the lower minpts, the less dense are
clusters. Further the so called ’border points’ can, depending on the ε-range,
have similar effects as outliers and therefore skew the principal components of a
PCA. In Section 4 we show a case where PCA based on the covariance matrix
yields skewed results compared to PCA using the coMAD matrix.

4 Experiments

As a first experiment of our preliminary work, we constructed a data set with
four clusters exhibiting linear correlations, both locally and globally, as it can be
seen in Figure 1 (top left). Furthermore, each of these clusters are not perfectly
linearly correlated but studded with noise. From a high-level view one could
state that the noise should not have any impact on the result of the PCA.
However, if we apply a covariance-based PCA on each of the dense clusters, the
resulting eigenvectors are significantly skewed, as it can be seen in Figure 1 (top
right). Especially in the blue cluster the noise leads to a massive distortion of
the expected direction. The effects of using a coMAD-based approach become
visible in Figure 1 (bottom), where despite the noise the detected eigenvectors
remain robust. The algorithm and data generator used for the experiment were
implemented in python and are publically available 1.

5 Conclusion and Future Work

In summary we developed a method to find correlations in density-based clus-
ters accurately and robust to noise and jitter. We showed that using the co-
MAD matrix for PCA delivers more intuitive results than using the covariance
matrix, especially for real-world data which is usually not correlated perfectly.
We plan to examine further combinations of correlation clustering and density-
based clustering in future work. Investigating the trade-off between efficiency of
the computation and improvement of the results using the coMAD matrix is a
further subject of future work.

1 https://github.com/huenemoerder/CODEC
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Fig. 1. Top left: test data set; top right: the computed eigenvectors with a covariance-
based PCA; bottom: the computed eigenvectors with a coMAD-based PCA
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Abstract. While explainable AI (XAI) is gaining in popularity, other more traditional ma-
chine learning algorithms can also benefit from increased explainability. A semi-supervised
approach to correlation clustering opens up a promising design space that might provide such
explainability to correlation clustering algorithms. In this work, semi-supervised linear cor-
relation clustering is defined as the task of finding arbitrary oriented subspace clusters using
only a small sample of supervised background knowledge provided by a domain experts. This
work describes a first foray into this novel approach and provides an implementation of a
basic algorithm to perform this task. We have found that even a small amount of supervised
background knowledge can significantly improve the quality of correlation clustering in gen-
eral. With confidence it can be stated, the results of this work have the potential to inspire
several more semi-supervised approaches to correlation clustering in the future.

Keywords: clustering, subspace, correlation, semi-supervised, background knowledge

1 Introduction

Explainable Artificial Intelligence (XAI) is rapidly gaining popularity among the data science com-
munity [6]. XAI is mainly motivated by the fact that neural networks, especially deep neural net-
works are often times treated as ”black boxes”, i.e. procedures and errors can be close to impossible
to be comprehended by humans [8]. This creates problems that are interdisciplinary and manifold.
For example, one major issue is the lack of trust in machine learning algorithms, both concerning
the input and the results. XAI could help to build trust in AI, not only concerning the general
population, but also researchers from domains other than computer science, i.e. users of such algo-
rithms [8]. Even these domain experts want to be assured that the results they are seeing are direct
and uncontaminated answers to their input and therefore require explainable results and processes
[13]. But outside of AI and deep learning, other data mining tasks and algorithms could also benefit
from increased explainability [14].

Exploring the design space at the core of this work, a semi-supervised approach to correla-
tion clustering, has the potential of producing explainable correlation clustering algorithms. In this
context linear correlation clustering is defined as the task of finding arbitrary oriented subspace
clusters [15]. This is, firstly, because quantitative models explaining the results of correlation clus-
tering algorithms can easily be derived and made interpretable by domain experts [2]. Secondly,
because semi-supervised algorithms such as constrained k-means clustering and similar algorithms
allow for background knowledge driven machine learning, i.e. human ideas and opinions can in-
fluence the results of such algorithms. This allows domain experts to more accurately raise their
intended queries towards the data [9]. Since to the best of our knowledge there has not been any

40 Chapter 6. SIDEKICK



2 Hünemörder and Kazempour, et al.

semi-supervised algorithm that tackles the data mining task of correlation clustering, the goal of
this work is to design, implement and evaluate an algorithm that detects linear correlated clusters
given a small subset of a priori labeled data instances. The major contributions of this work are
the introduction of SIDEKICK (SupervIseD Expert Knowledge Influenced Correlation Clustering),
a first semi-supervised correlation clustering algorithm and a novel notion of correlation in the
context of clustering (φ-correlated clusters).

2 Related Work

Since we are introducing the first linear correlation clustering algorithm that considers supervised
background knowledge, we owe definitions as well as an overview on the related work in both fields,
namely (a) linear correlation clustering and (b) clustering with supervised background knowledge.
The task of linear correlation clustering is defined as finding clusters within a given data set that
are located within interesting subspaces which are arbitrarily oriented [15]. It further means that
the data objects within each of the clusters exhibit a linear correlation between a subset of their
features. In this context a broad range of related work exists. ORCLUS [7] was the first of its kind
tailored for detection of such clusters, followed by other algorithms such as 4C [10], HiCO [5], ERiC
[4], COPAC [3] and CASH [1].

All named methods so far excel at certain aspects, but are not capable of dealing with supervised
background knowledge. This is an aspect which our method is addressing. On the other hand there
are semi-supervised methods for other types of clustering. Such clustering tasks, where results are
influenced by semantic decisions by domain experts or data analysts are called constrained clustering
tasks. The earliest algorithm tackling this task, Constrained K-means, performs a variation of
the classic k-means algorithm under the restriction that instances have to be members of their
corresponding clusters using a must-link constraint and two instances are not allowed to be in
the same cluster, i.e. a cannot-link constraint [19]. There are multiple categories of constraints. At
the time of this work we know of other contributions introducing instance-level, cluster-level and
model-level constraints. Instance-level constraints are constraints specified between two instances,
for example the must-link and cannot-link constraints from above. Cluster-level constraints are
specified for multiple instances belonging to a cluster. For example ε- and δ-constraints [11]. Model-
level constraints use a different approach. Here a user is shown the result of a certain clustering
algorithm. Then the user can decide whether they like this specific result or not. If they do not like
it, the algorithm is repeated but with automatic constraints that ensure that the result does not
resemble the undesired results from earlier iterations [12].

2.1 Deriving Quantitative Models for Correlation Clusters

The main inspiration and basis of SIDEKICK is a 2006 paper with the title ”Deriving Quantitative
Models for Correlation Clusters” [2]. The primary idea behind this publication was to add an
additional post-processing step to existing correlation clustering algorithms. In essence, a model
is derived by using PCA on each cluster. The smallest number of Eigenvectors of this cluster Ci
that explain a percentage higher than a predefined threshold α are called strong Eigenvectors V̌C
of VC . The remaining Eigenvectors are the weak Eigenvectors V̂C of VC . The the weak eigenvectors
are used to derive a Hesse Normal Form hyperplane equation system, that can be solved by Gauß-
Jordan Elimiation for better readabiltiy. The paper also suggests a method of using the generated
models to predict the cluster membership of additional instances. In order to predict the cluster
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membership of an arbitrary point p the distance between p and the correlation hyperplane of each
Cluster Ci needs to be calculated. The distance is equal to the length of the vector between the
orthogonal projection of p onto the correlation hyperplane and the point p itself. The projection
can be calculated using the strong eigenvectors s1, s2, ..., sλεV̌Ci

and the point, both normalized by
the mean vector c̄i, in the following fashion:

d(p, Ci) = ||p−
λ∑

j=1

〈p, sj〉sj ||

By calculating the distance of all cluster instances to the corresponding hyperplane the standard
deviation σi can be derived. Assuming that the deviations of each cluster Ci fit to a Gaussian
Distribution Gi, we can derive an equation to calculate the probability of a point p belonging to a
distribution of a certain cluster Ci:

Gi(p, σi) =
1

σi
√

2π
e−

(d(p, Ci))
2

2σ2
P (Ci|p, σi) =

Gi(p, σi)∑n
j=1Gj(p, σj)

3 Semi-Supervised Correlation Clustering

As stated in the introduction, the goal of this work is to design an algorithm that provides a solution
to a very specific problem. A domain expert has found correlations in a R-dimensional database
DR and specified certain instances which belong to these different correlations. The set of sets of
the instances belonging to a correlation is called the background knowledge BK, while each single
correlation cluster derived from the background knowledge is denoted as BKi. The cardinality of
BKi is thought to be significantly smaller than the cardinality of DR. While the dimensionality of
BK is equal to R, the correlation dimensionality of each individual background knowledge cluster
λBKi

has to be strictly smaller than R. Simply said the task is to utilize the background knowledge
provided by a domain expert to decide which other unlabeled instances in D belong to each of the
correlation clusters BKi, while adhering to the restrictions set by the expert knowledge. To be more
concise, the opinion of the domain expert is extrapolated and applied to D\{BK}.

This task can be designated as semi-supervised, because it is an traditionally unsupervised task
– correlation clustering – but includes preexisting supervised expert knowledge that influences the
results. Additionally the resulting models can be simplified as described in subsection 2.1 and the
domain expert can compare the models derived from the expert knowledge to the results. Thereby
they receive feedback about how accurately the correlations can be extrapolated onto the unlabeled
instances and how much the resulting model deviates from their provided background knowledge.
Furthermore all subspace clustering algorithms are usually categorized as either top down or bottom
up, because of the circular dependency inherent to the task [15]. In the case of semi-supervised
correlation clustering the background knowledge already provides an a priori clustering. Thus the
algorithm can work similarly to top-down algorithms using the background knowledge as a starting
point. The task we are left with is finding the relevant subspace for each cluster and searching for
other instances that are situated in these subspaces. In order to find these subspaces and predict
additional points, this work contains a semi-supervised extension of the algorithm from subsection
2.1.
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3.1 SIDEKICK

SIDEKICK follows four main steps. At the beginning we calculate the correlation hyperplanes
for each background knowledge cluster using the algorithm from [2], which corresponds to de-
rive model(X). Additionally in accordance with section 2.1 the standard deviation σ of distances
between the cluster instances and the corresponding correlation hyperplane is calculated for each
cluster. Each correlation cluster Ci is thereby clearly defined by its model, which is at this point
defined as consisting of its eigenvectors – split into weak and strong (i.e. ) – and the standard devi-
ation σi and mean vector µi. The strong eigenvectors are needed to calculate the distance between
an instance and the hyperplane. The standard deviation is needed to derive the normal distribution
that is assumed to have produced the noise along the weak components. In summary:

1. Derive the underlying models for the each of the ground truth clusters
2. Predict the labels for all unlabeled instances
3. Assign either all or a subset of the predicted instances to their corresponding cluster
4. Deriving updated models for each resulting cluster and simplifying the hyperplane equation to

highlight the underlying correlations

3.2 Unlimited SIDEKICK

The basic algorithm is called unlimited SIDEKICK since at step 3 all unlabeled instances are added
to their corresponding cluster. This performs well with highly correlated clusters. Generally if a
cluster is 100% correlated, i.e. it only possesses variance along the strong components SIDEKICK
is expected to classify unlabeled instances correctly, even when only using a background knowledge
consisting very few instances. However, missclassifications at the intersections of different clusters
can occur, but only in cases where the correct membership of an instance is indeterminable anyways.
Generally the Winner-Takes-All principle is applied, i.e. every instance is always classified as a
member of the most probable cluster. On the other hand the biggest short-coming of the unlimited
SIDEKICK algorithm is that whenever there are instances that were generated by a process not
belonging to a cluster that was included in the background knowledge, almost all of these outliers
are added to the cluster with the highest variance along the weak components, i.e. the lowest
density along the weak components. This effect can be explained by the properties of the Gaussian
distributions that are used to assign instances to a cluster. A slight difference of σ between two
clusters has a huge impact on the normalized probability for a single instance and thereby it will
be classified as highly likely to belong to the first cluster, even though it most probably does not
belong to either correlation. In conclusion the resulting problem is how to find a suitable subset of
the predicted points for each cluster to be assigned.

3.3 φ-correlated SIDEKICK

Our approach to solve this problem is to work with the definition of strong components and α from
[2]. Then only using a new hyperparameter φ and the sum of the strong eigenvalues ě of a background
knowledge cluster, we can approximate the standard deviation l along the weak components of the
resulting cluster:

l =

√
(

1

φ
− 1) ·

∑

∀ei∈ě
ei
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This cluster is then φ-correlated, in accordance to the original definition of α. Which is the
minimum ratio of the total variance that can be explained by the strong components. Using the
eigenvalues e of a cluster it holds: ∑λ

i=1 ei∑d
i=1 ei

≥ α

Additionally, the number of strong components is equal to the correlation dimensionality λ of a
cluster. That means, if the variance of the weak components becomes to high, they might become
strong components. Therefore, the maximum variance ê that the weak eigenvectors can explain
while still resulting in a φ-correlated cluster is therefore equal to

ê =
ě

φ
− ě

According to the Three Sigma Rule [17] about 68% of all instances belonging to a normal
distribution are situated within a distance of one standard deviation from the mean and 99.7% at
triple the standard deviation. That means if we only include the subset of instances for which the
distances are lower than three times the square root of this variance, we can find about 99.7% of the
instances that would be included in a normal distribution of a cluster that is φ-correlated. Which
would mean that step 3 of SIDEKICK now involves only the subset of the predicted instances
that are part of a certain correlation with a strength of φ. Therefore, as long as the direction of
the hyperplane is close to the background knowledge, a domain expert can now specify the exact
strength of correlation they are searching for.

3.4 Runtime Complexity

If we denote n as the total number of instances, c as the total number of clusters and bk as the
amount of instances used as background knowledge the complexity of SIDEKICK for all clusters
can be computed as O(c · n), if bk is significantly smaller than n or O(c · bk2) if not. We came to
this conclusion by simplifying the overall runtime complexity per cluster, that can be computed as
the sum of the complexities of:

– Performing PCA on the background knowledge; Using Power Iteration [16] this would be O(bk2)

– Computing the standard deviation of the distances between the background knowledge objects
and their corresponding clusters; This is O(bk)

– Computing the probability of each object belonging to a cluster model; This is O(2(n− bk)) for
each unlabeled object, since we need to make two computations per object (c.f. Section 2.1)

In summary the overall complexity can be denoted as:

c∑

i

(

PCA︷ ︸︸ ︷
O(bk2

i ) +

Compute standard deviation︷ ︸︸ ︷
O(bki) +

Probability for single cluster︷ ︸︸ ︷
O(n− bki) +

Normalized Probability over all clusters︷ ︸︸ ︷
O(n− bki))

The different variants only add a single step with a complexity of O(n) and therefore do not
have a significant effect on the overall complexity.
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4 Experiments and Discussion

In this section we evaluate SIDEKICK using two synthetic data sets. One data set contains 3000
three dimensional instances segmented into six linear correlated clusters, five with a correlation
dimensionality of one and a single cluster with a correlation dimensionality of two. What makes
this data set especially challenging is the fact that the linear correlated clusters exhibit different
densities. The second data set is equal to the first one, except for a set of 1250 randomly generated
outlier objects that were added to it. Using these two datasets we compared SIDEKICK against
five established correlation clustering algorithms from the related work section (Section 2). Suitable
Hyperparameter settings for each of the five algorithms have been determined through either a
grid-based or a sequential scan (ERiC) for both data sets. The experiments were conducted using
the ELKI [18] data mining framework. Furthermore, we have provided all the hyperparameter
settings in Tables 1 and 2 and made the source code for SIDEKICK and the test data sets publicly
available1 to ensure reproducibility. Table 1 illustrates that the correlation clustering algorithm 4C
achieved the best results with an Adjusted Rand Index (ARI) of 78,93%. When we used the same
hyperparameter settings on the data set that contains outliers, 4C remained the best performing
correlation clustering algorithm. Its ARI decreased from 0.7893 to 0.7074 while other competing
methods achieve a by far lower ARI score as seen in Table 2.

Table 1: ARI results and hyperparameter settings of competitive methods on the synthetic data set

Dataset Algorithm ARI Hyperparameter Settings

without noise CASH 0.5998 minpts: 370, maxlvl: 20, jitter: 2.5

without noise 4C 0.7893 ε: 8.0, minpts: 15

without noise COPAC 0.5691 ε: 8.0, minpts: 15, kNN: 81

without noise ORCLUS 0.7351 k: 6, l:2

without noise ERiC 0.2260 k: 6

Table 2: ARI results and hyperparameter settings of competitive methods on the synthetic data set
with noise

Dataset Algorithm ARI Hyperparameter Settings

with noise CASH 0.5348 minpts: 400, maxlvl: 30, jitter: 4.5

with noise 4C 0.7074 ε: 8.0, minpts: 15

with noise COPAC 0.3786 ε: 8.0, minpts: 15, kNN: 89

with noise ORCLUS 0.2465 k: 6, l:2

with noise ERiC 0.146 k: 6

1 https://github.com/huenemoerder/SIDEKICK
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Table 3: ARI results and hyperparameter settings of SIDEKICK on the synthetic data set with and
without noise

Setting Algorithm Average ARI Max. ARI Min. ARI Variance ARI

Without noise, 0.99 BK Unlimited 0.9569 1.0000 0.5634 0.0064

With noise, 0.99 BK φ 0.6957 0.9644 0.2941 0.0248

With noise, 0.96 BK φ 0.9381 0.9747 0.8568 0.0007

To evaluate SIDEKICK we started by using only unlimited SIDEKICK to cluster the data set
without outliers, since all other variants were specifically designed to deal with outliers. We chose
the background knowledge randomly from each cluster, mimicking a domain scientists expertise.
To avoid the influence of the random choice, we repeated the experiment one hundred times using
different random seeds. Our method achieved an average ARI of 95%. To cluster the the data set
that contains outliers, we used the φ algorithm, setting φ individually for each cluster. We started
by using only 1% background knowledge per cluster, which equals to 3 instances per cluster. This
yielded an average ARI of 69% with a variance of 2% which means it was on average as good as
4C. When we increased the amount of background knowledge to 4%, which means that we used 20
instances as domain expert knowledge per cluster, the average ARI rose to 93%. This is superior
to any of the state-of-the-art correlation clustering methods in our experiments. Even in the worst
case, we got an ARI of 85%, which is still above any of the competing methods.

Finally we want to highlight, that it was not our intention to show whether SIDEKICK is better
than any of its competitors, since these competitors do not use any background knowledge. Rather
the core message we want to convey is, that even a small amount of background knowledge is
sufficient to boost the performance of solving a correlation clustering task significantly. Adding a
further hyperparameter like φ can increase the robustness against noise and outliers.

5 Conclusion and Future Work

In conclusion the algorithm discussed in this work demonstrates the prospects of a semi-supervised
approach to correlation clustering. As we have seen and discussed in the experiments using just a
small amount of background knowledge can drastically improve the results of solving a correlation
clustering task. Therefore any correlation clustering algorithm could theoretically benefit from such
background knowledge.

Generally, SIDEKICK and its different variants should provide a useful toolkit for data explo-
ration. In relation to the different variants of SIDEKICK itself we have learned that when working
with a data set without outliers unlimited SIDEKICK is always the best choice. When working with
a data set that contains many outliers choosing individual φ’s for each cluster should be the best
solution. The only complication that revealed itself is the dependence on correct background knowl-
edge. But, firstly, this is intentional, because the goal of the algorithm was to trust the knowledge of
the domain experts and only change it slightly at best. Secondly, this conclusion is somewhat dimin-
ished by the fact that during evaluation, the background knowledge for each cluster was sampled
randomly from that cluster. Background knowledge provided by humans should usually be much
closer to the truth and thereby provide better results even when using small amounts of instances
as background knowledge.
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Abstract—Subspace clustering constitutes a fundamental task
in data mining and unsupervised machine learning with myriad
applications. We present a novel approach to subspace clustering
that detects affine hyperplanes in a given arbitrary-dimensional
dataset by explicitly parametrizing them and optimizing their
parameters using gradient updates w.r.t. a differentiable loss
function. The explicit parametrization allows our model to avoid
the exponential search space incurred by models relying on
an explicit Hough transform to detect subspaces by searching
for high-density points in parameter space. Compared to other
existing approaches, our method is highly scalable, can be trained
very efficiently on a GPU, is applicable to out-of-sample data, and
is amenable to anytime scenarios since training can be stopped at
any time and convergence is usually fast. The model can further
be viewed as a linear neural network layer and trained end-to-end
with an autoencoder to detect arbitrary non-linear correlations.
We provide empirical results on a wide array of synthetic datasets
with different characteristics following a rigorous evaluation
protocol. Our results demonstrate the advantageous properties
of our model and additionally reveal that it is particularly robust
to jitter and noise present in the data.

Index Terms—Subspace Clustering, Neural Networks

I. INTRODUCTION

Clustering constitutes a fundamental task in data mining
and unsupervised learning. Applications range from data pre-
processing for downstream tasks to grouping similar data ob-
jects, such as measurement points, text documents, or images.
Clusters in real-world data often do not appear in the full-
dimensional data space but are rather situated in individual
lower-dimensional subspaces. Subspace clustering algorithms
[1], [2] aim at detecting such clusters.

We present a novel approach to finding such subspace clus-
ters in arbitrary-dimensional datasets by explicitly parametriz-
ing affine hyperplanes and optimizing their parameters using
gradient updates w.r.t. a differentiable loss function. This
explicit parametrization avoids the exponential search space

This work has been partially funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors
of this work take full responsibilities for its content.

faced by traditional Hough transform-based subspace cluster-
ing methods. Such methods explicitly transform the feature
space to a parameter space and search this space for high-
density regions. In addition to scalability problems, the search
procedure is error-prone. On the other hand, our method
fits hyperplanes directly in the data space, instead of first
translating the points to parameter space and subsequently
translating the detected hyperplanes back to the original space.
By explicitly shifting hyperplanes in data space, our model
also implicitly moves through parameter space without materi-
alizing it. This connection between the data and the parameter
space is visualized in Figure 1.

The explicit parametrization and differentiable loss function
lead to an interpretation of our model as a linear neural
network layer with a specific activation function that can
be trained using gradient-based optimization. Consequently,
our method is highly scalable and can be trained highly
efficiently on a GPU. Training time is linear, and space on the
GPU can even be reduced to a constant size by performing
update steps only on small mini-batches of the whole dataset.
Further, the training procedure can be stopped at any time,
and intermediate results can be reported, such that our model
is naturally amenable to anytime scenarios. Our model could
further be combined and trained end-to-end together with an
autoencoder to detect non-linear clusters and is able to cluster
out-of-sample points by simply assigning them to their closest
hyperplanes.

II. RELATED WORK

Various subspace clustering algorithms have been proposed
in different research communities. In the data mining commu-
nity, different variations of the subspace clustering problem
have been considered, e.g., based on whether the subspaces
are required to be axis-aligned. We refer here to subspace
clustering in its more general form, where each cluster corre-
sponds to an affine subspace. This setting is also often referred
to as arbitrarily-oriented subspace clustering or correlation
clustering in the data mining literature [1]. This includes the
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(a) Data Space (b) Parameter Space

Fig. 1: Our methods iteratively shifts hyperplanes in the data space. Each hyperplace corresponds to a point in parameter
space. While our method implicitly moves along a trajectory in parameter space, other Hough transform based methods rely
on detection of dense regions.

algorithm CASH [3], which detects affine subspaces using a
Hough transform. Data points are mapped into a parameter
space, in which dense regions are detected using a grid-
based search. Dense regions correspond to hyperplanes in the
original space that contain many of the data points. In order
to identify clusters of lower dimensionality, the algorithm
is applied recursively on the already detected hyperplanes.
However, the search procedure is error-prone and does not
scale well. In comparison, our method performs robust and
scalable optimization in the data space. Also very closely
related to our approach, k-Planes [4] fits hyperplanes using
k-Means-like optimization. Points are iteratively assigned to
their respective closest hyperplanes, and hyperplanes are fit to
the points assigned to them. In comparison, our method per-
forms gradient-based optimization, which turns out to be less
sensitive to initialization, more robust, and avoids eigenvector
computations for fitting hyperplanes. ORCLUS [5] also relies
on k-Means-style optimization, but starts with a higher number
of clusters and incrementally merges these seed clusters and
reduces their dimensionalities until k clusters are left. 4C [6]
follows a density-based clustering approach [7] to link smaller
subspace clusters based on the similarities of their bases. This
makes it unnecessary to specify the number of clusters in
advance. Similarly, COPAC [8] relies on local correlations to
group points with similar local correlations in a bottom-up
fashion. Some further algorithms explore different more spe-
cific directions, such as hierarchical subspace clustering [9],
[10], detecting a single optimal subspace for clustering [11],
or detecting non-linear correlations in datasets [12]. While our
algorithm already provides explicit subspace representations,
another work [13] focuses on deriving such representations for

methods that are not explicitly parameterized. This work has
also been extended to employ a small set of existing labels for
semi-supervised clustering [14]. A semi-supervised extension
of our method constitutes an interesting potential direction for
future work.

In addition to the data mining community, subspace cluster-
ing algorithms have been investigated in the machine learning,
and computer vision communities [2]. Typical applications
considered in this context include different image clustering
tasks, such as face or digit clustering and motion segmentation.
Self-expressive algorithms [2] have gained particular attention
recently. These algorithms rely on the idea that points in
the same subspace can be represented as linear combinations
of each other. The corresponding coefficients are learned
and collected in a quadratic coefficient matrix that can be
converted to a subspace-affinity matrix, which finally can be
clustered using spectral clustering. Most of these algorithms,
including a pioneering algorithm, SSC [15], consider linear
subspace clusters, i.e., subspaces that contain the origin. Affine
subspaces can be detected by adding an additional constraint
to the optimization problem. A major downside of these
algorithms is that they do not scale well. While more scalable
variants have been proposed [16], [17], it is not clear how
the affinity constraint could be handled during optimization,
which potentially limits applicability. On the other hand, these
algorithms can be easily combined with other neural network
models to detect non-linear clusters [17], [18]. Similarly, our
proposed algorithm is highly scalable and efficient and can
potentially be combined with an autoencoder to detect non-
linear clusters.
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III. IMPLICIT HOUGH TRANSFORM NEURAL NETWORKS

Given a data matrix X ∈ Rn×d, where each row corre-
sponds to a point in a d-dimensional ambient space, we aim
at partitioning the n data points into K subspace clusters.
Thereby, each cluster is represented by a lower-dimensional
subspace of the ambient space. While we assume that different
subspaces may have different numbers of dimensions, we
model each cluster as an affine hyperplane of dimension d−1.
This allows our model to be agnostic of the actual subspace
dimensions. Intuitively, our algorithm fits hyperplanes by
iteratively shifting them through the data space, where they
are attracted by the data points. Training can be performed
with linear time and constant space complexity and turns out
to be very robust.

Formally, an affine hyperplane can be represented by a
normal vector w ∈ Rd, and an offset b ∈ R. The hyperplane
then corresponds to the (d− 1)-dimensional space orthogonal
to w. The offset b allows for shifting the hyperplane away
from the origin. Given a set of K hyperplanes, the parameters
can be collected in a weight matrix W ∈ Rd×K and an offset
vector b ∈ RK .

To quantify the error incurred by representing a given
dataset by a set of hyperplanes, our model requires a differen-
tiable loss function and, in turn, a notion of distance between
points and hyperplanes. The distance between a point xi and
a hyperplane (wj , bj) can be measured in terms of the signed
orthogonal projection distance

pdistij = xTi
wj
||wj ||2

− bj . (1)

The sign of this expression indicates on which side of the
hyperplane xi is located. A value of zero indicates that the
point is located directly on the hyperplane. To obtain a proper
distance function, one could simply consider the absolute
value. To additionally obtain a similarity function, we apply
an activation function

simij =
1

1 +
(

pdistij
λ

)2 . (2)

The square leads to stronger localization, such that points
closer to a hyperplane exert a stronger attraction. Compared to,
e.g., a radial basis function, the tail of this activation function
is longer, such that more distant points can still attract a
hyperplane. The length of the tail can be controlled by a hyper-
parameter λ. Pairwise similarities between all n points and K
hyperplanes can be efficiently computed in matrix form:

S =
1

1 +
(
XW̃−b
σλ

)2 ∈ Rn×K , (3)

where W̃ results from W by L2-normalizing all columns.
Compared to Equation 2, we additionally normalize the raw
projection distances by their standard deviation σ. This allows
our model to adapt to the structure of the dataset and to
obtain more flexibility compared to a fixed parameter λ.

The similarity function is scaled to (0, 1], where a maximum
value indicates that the respective point lies directly on the
hyperplane. The cluster assignment for xi is given as

yi = argmax
j=1,...,K

sij . (4)

A suitable loss function to be minimized by our model
should be differentiable and minimal when each point fits
perfectly into at least one hyperplane. For a point xi, the
latter property can be expressed by taking the product of the
distances 1 − sij to all hyperplanes j = 1, . . . ,K. If xi lies
exactly on one hyperplane, the loss is minimal. Further, xi can
still lie on or close to multiple hyperplanes without incurring a
higher loss. This property is desirable since subspace clusters
can often intersect. Accordingly, we consider the following
loss function w.r.t. a dataset X:

L(X) =
1

n

n∑

i=1

K∏

j=1

(1− sij). (5)

This function is differentiable and can be minimized with
standard gradient descent algorithms. We employ the Adam
[19] optimizer, which is a common choice for training neural
network models and which we observed to perform better than
simple stochastic gradient descent. In fact, our model can be
interpreted as a single linear neural network layer, where S
constitutes the layer output for a given input X and W and
b correspond to the layer’s trainable parameters. This further
allows our model to be combined and trained end-to-end with
an autoencoder model to detect clusters in a learned feature
space.

Additionally, we can perform gradient updates with small
mini-batches sampled from the whole dataset, such that the
model only operates on a small subset of the whole dataset at
any given time. This leads to a constant-size memory footprint
and allows our model to potentially scale to arbitrarily-sized
datasets. The only requirement is that mini-batches are still
representative of the structure of the whole dataset, which
is usually the case if they are sufficiently large and sampled
uniformly at random. As a further advantage, our model can
be trained very efficiently on a GPU.

Finally, we wish to point out that similar activation and loss
functions as above were used by an existing approach [20]
to line detection in images. However, the distance function
considered by the authors does not rely on distance normal-
ization by the standard deviation, and the loss function uses an
additional exponent. Further, optimization is performed using
a custom training algorithm, and applications are limited to
line detection based on 2-dimensional image coordinates.

IV. EXPERIMENTS

We evaluate our model, which we will refer to as HoughNet
in the following, on a wide array of different datasets with
different characteristics and compare it against 5 established
subspace clustering algorithms, each based on different as-
sumptions and relying on different techniques. Most closely
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Fig. 2: 2P1L dataset with varying amounts of jitter and noise.

related to our approach are CASH [3] and k-Planes [4]. We
further compare against ORCLUS [5], 4C [6], and SSC [15].
Our model was implemented using PyTorch [21] and was
trained on GPU. All remaining models were trained on CPU.
SSC was implemented using the CVXPY library [22]. For
CASH, ORCLUS, and 4C, we rely on the ELKI framework
[23]. All experiments were performed on a machine with
32 CPU cores, 128GB RAM and a single NVIDIA GeForce
RTX 2080 Ti GPU with 12GB GPU memory. In the spirit of

reproducible research, we make our code publicly available 1.

A. Datasets

To gain deeper insights into the capabilities HoughNet
in different environments, we construct different synthetic
datasets with different characteristics. The first base dataset,
2P1L, consists of two 2-dim. and one 1-dim. subspace in
a 3-dim. ambient space. Each cluster contains 1000 points,

1https://github.com/buschju/houghnet
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and the data is normalized to the interval [−1, 1]3. Different
cluster dimensions and intersections between clusters already
pose challenges to subspace clustering algorithms. Since real-
world data usually does not fit exactly into subspaces, we
add different types of errors that make the clustering task
more challenging. First, we add jitter to make the clusters
more blurry and increase the size of their intersections. In
total, six increasing levels are considered. Secondly, we add
increasing amounts of uniform noise, considering six different
levels ranging from 0% to 50%. In the most extreme case, half
of the dataset consists of random noise. The resulting grid of
36 datasets is visualized in Figure 2.

To investigate the ability of HoughNet and the competing
methods to detect subspace clusters in higher-dimensional
spaces, we additionally construct three high-dimensional
datasets. In particular, we consider a 100-dim. ambient space
and plant three randomly sampled subspace clusters with
different dimensionalities. We refer to this base dataset as
HighD and consider three different settings: (1) Three low-
dim. clusters, (2) three medium-dimensional clusters, and (3)
three high-dimensional clusters. The cluster dimensionalities
are indicated in Table I. As for the first dataset, we sample
1000 points per cluster and normalize the data to [−1, 1]100.
To make the clustering task more challenging, we add random
jitter of up to 0.03 and 30% noise.

In total, we consider 39 datasets, each with different char-
acteristics. We restrict ourselves to synthetic datasets to get
a more solid understanding of the capabilities of different
algorithms in a controlled environment and leave a more ex-
tensive evaluation on further synthetic and real-world datasets
for future work.

B. Experimental Setup

To ensure a meaningful and fair comparison, we follow a
rigorous evaluation protocol. Clustering performance is deter-
mined w.r.t. the ground truth labels and measured in terms of
accuracy (ACC), adjusted Rand index (ARI), and normalized
mutual information (NMI). We only evaluate whether actual
cluster points are assigned correctly and ignore noise points
during evaluation. If an algorithm predicts a noise label for
some points, we collect these points in an additional noise
cluster. For each algorithm, the optimal hyper-parameters are
determined using a grid search for each dataset individually.
All details can be found in the provided code. Some data-
specific hyper-parameters are fixed for all algorithms: The
maximum cluster dimensionality is set to d−1, the maximum
jitter is set to 0.05, and the correct number of clusters is
supplied to all algorithms except 4C. For HoughNet, we use
a fixed batch size of 100 and a fixed learning rate of 0.1 and
only optimize λ over {0.1, 0.2, . . . , 0.9}. HoughNet, ORCLUS,
and k-Planes are executed 10 times with different random
initializations, and the mean and standard deviation over all
runs are reported for all scores. Since the remaining algorithms
are deterministic, we can only report a single score.

C. Clustering Performance

Clustering performance on 2P1L is reported in Figure 3.
It can be observed that HoughNet consistently provides the
highest clustering performance, especially in settings with
higher noise levels. Clustering results are highly stable for
lower noise levels. With increasing noise, variance in the clus-
tering performance increases. Performance slowly degrades
as jitter is increased. CASH performs notably worse, even
when no jitter or noise is present in the data. Performance
degrades further with increasing noise and especially jitter.
This indicates that optimization in data space as performed
by HoughNet is much more stable and more robust to noise
and especially jitter, compared to dense region detection in
parameter space. Similarly, as for HoughNet, the performance
of k-Planes slowly degrades as jitter is increased. However,
k-Planes is much more vulnerable to noise. Since k-Planes
uses the same clustering model as HoughNet, this indicates
that the k-Means-like optimization procedure is much less
stable and robust to noise than gradient-based minimization of
the differentiable loss function employed by HoughNet. Base
performance of ORCLUS is very low, but the algorithm is very
robust to jitter and also relatively robust to noise. 4C provides a
similar base performance as CASH but is very robust to noise
as long as jitter is low. With increasing jitter, performance
degrades quickly. SSC provides the lowest base performance
among all competitors but surprisingly seems to provide more
stable results for higher values of jitter. A possible reason for
this behavior is that SSC struggles to connect smaller sub-
clusters with spectral clustering and that these clusters can be
linked in some cases with jitter or noise points.

In summary, HoughNet provides comparatively high clus-
tering performance in all considered settings and, compared
to competing algorithms, is highly robust to jitter and noise,
and provides stable performance over different random initial-
izations.

D. Clustering in High-Dimensional Spaces

In many applications, subspace clusters are hidden in a
higher-dimensional ambient space. To evaluate clustering per-
formance in higher-dimensional settings, we further compare
all algorithms on the three variants of the HighD dataset
presented in Section IV-A. Rather surprisingly, SSC is able
to recover the subspace clusters perfectly in all settings. On
the other hand, it needs to run for over 12 hours in one setting,
while all other algorithms, except CASH, provide results within
seconds. Results for CASH could not be reported since the
algorithm did not terminate after more than 24 hours, even
after drastically reducing the search depth and increasing the
minimum number of points per cluster. Among the algorithms
apart from SSC, HoughNet provides the best performance
by a considerable margin. While it is not able to match the
performance of SSC, it can still provide reasonable clustering
performance and can scale to large datasets that can not be
processed within reasonable resource limits with SSC.
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Fig. 3: Clustering results on the 2P1L dataset under varying jitter and noise.
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E. Convergence and Anytime Clustering

While HoughNet provides high clustering performance,
we additionally wish to examine its scalability and speed
of convergence. To this end, we construct two additional
datasets based on 2P1L and HighD with jitter 0.03 and
20% noise, where we sample 10.000 points per cluster. For
HighD, we generate 3 clusters with dimensions 6, 8, and 10.
We compare against k-Planes, since both algorithms rely on
iterative optimize to fit hyperplane clusters. Again, we run
both algorithms with 10 different random initializations and
report the mean performance over all runs. In Figure 4, it
can be observed that HoughNet almost converges already after
a single training epoch, i.e., after iterating over the whole
dataset a single time. This happens within less than a second.
Subsequent training epochs can improve performance only
slightly, and 10 epochs take only a few seconds. We attribute
the quick convergence to the fact that the model performs
multiple update steps on different mini-batches during each
epoch. These mini-batches allow our model to observe and
update based on different varieties of the data within a single
training epoch. Training can, in principle, be stopped at any
time, even during an epoch. HoughNet is thus potentially very
well suited for anytime subspace clustering as well. K-Planes
on the other hand, requires much more time per iteration
since it needs to compute an eigenvector for each cluster.
Convergence is also much slower. On the HighD dataset,
performance even drops initially.

V. CONCLUSION

We presented a novel subspace clustering algorithm that
fits affine hyperplanes to a given arbitrary-dimensional dataset
using gradient updates from a differentiable loss function. This
procedure can be interpreted as an implicit Hough transform,
where hyperplanes are fitted directly in the data space rather
than performing a dense region search in parameter space.
Compared to existing approaches, our model is highly robust
to jitter and noise, is highly scalable, can be efficiently trained
on a GPU, converges fast and is amenable to anytime set-
tings, and performs reasonably well even in high-dimensional
spaces. These properties were empirically observed on 39 dif-
ferent synthetic datasets following a rigorous evaluation proto-
col. In future work, we plan to improve performance on high-
dimensional datasets by reducing the dimensionalities of the
hyperplanes to better adapt to lower-dimensional subspaces.
We further plan to extend our model with a convolutional
autoencoder to evaluate it on image clustering benchmarks
and investigate its capability to cluster out-of-sample data.
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ACC ARI NMI Runtime (s)

Cluster Dimensions Model

[6, 8, 10]

HoughNet 90.53± 14.08 86.38± 19.61 90.54± 13.05 1.76± 0.09

ORCLUS 56.71± 15.24 37.43± 24.70 45.68± 30.27 55.14± 2.59

k-Planes 47.43± 8.21 11.75± 9.83 10.95± 8.53 7.15± 1.76

SSC 100.00± 0.00 100.00± 0.00 100.00± 0.00 13, 659.92± 0.00

4C 33.43± 0.00 0.00± 0.00 0.40± 0.00 10.69± 0.00

[48, 50, 52]

HoughNet 96.05± 3.83 89.31± 9.62 88.21± 9.16 4.20± 0.27

ORCLUS 66.67± 0.00 55.09± 3.67 69.22± 7.02 61.38± 2.32

k-Planes 36.34± 1.58 0.46± 0.43 0.47± 0.39 5.93± 1.15

SSC 100.00± 0.00 100.00± 0.00 100.00± 0.00 11, 040.02± 0.00

4C 33.33± 0.00 0.00± 0.00 0.00± 0.00 10.49± 0.00

[90, 92, 94]

HoughNet 82.48± 7.39 61.15± 13.31 68.38± 11.18 8.54± 0.22

ORCLUS 66.67± 0.00 57.13± 0.00 73.37± 0.00 66.40± 2.89

k-Planes 34.47± 0.50 0.01± 0.05 0.07± 0.04 5.55± 1.20

SSC 100.00± 0.00 100.00± 0.00 100.00± 0.00 45, 694.31± 0.00

4C 33.33± 0.00 0.00± 0.00 0.00± 0.00 10.59± 0.00

TABLE I: Clustering performance on the HighD dataset with different cluster dimensionalities.

0 2 4 6 8 10
Runtime (s)

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

AC
C k-Planes

HoughNet

(a) 2P1L

0 2 4 6 8 10
Runtime (s)

0.45

0.50

0.55

0.60

0.65

AC
C

k-Planes
HoughNet

(b) HighD

Fig. 4: Convergence of HoughNet and k-Planes on different datasets.

Chapter 7. Houghnet Subspace Clustering 57





59

Chapter 8

OAB - An Open Anomaly
Benchmark Framework for
Unsupervised and Semisupervised
Anomaly Detection on Image and
Tabular Data Sets

This chapter consists of a preprint version of the following publication:

©2021 IEEE. Reprinted, with permission, from Andreas Lohrer, Jan Deller,
Maximilian Hünemörder, and Peer Kröger. “OAB - An Open Anomaly Bench-
mark Framework for Unsupervised and Semisupervised Anomaly Detection
on Image and Tabular Data Sets”. In: 2021 International Conference on Data
Mining Workshops (ICDMW). 2021, pp. 991–1000. DOI: 10.1109/IC\-DM\-
W5\-34\-33.2021.00129

Statement of Originality: This idea originated in conversations between M.
Hünemörder and A. Lohrer. The proof of principle and experiments were de-
signed, implemented, and conducted as part of J. Deller’s bachelor thesis, su-
pervised by A. Lohrer. The manuscript was adapted and extended from the
bachelor thesis in a collaboration of A. Lohrer, J. Deller and M. Hünemörder
with guidance from P. Kröger.

• Conception: Hünemörder (Lead), Lohrer (Lead), Deller (Support)

• Planning: Lohrer (Lead), Deller (Lead), Hünemörder (Support)

• Execution: Deller (Lead), Lohrer (Support)

• Manuscript: Lohrer (Lead), Deller (Lead), Hünemörder (Support), Kröger
(Support)

https://doi.org/10.1109/IC\-DM\-W5\-34\-33.2021.00129
https://doi.org/10.1109/IC\-DM\-W5\-34\-33.2021.00129


OAB -
An Open Anomaly Benchmark Framework

for Unsupervised and Semisupervised
Anomaly Detection on Image and Tabular Data Sets

Andreas Lohrer †
Information Systems and Data Mining

Kiel University
24118 Kiel, Germany

Email: alo@informatik.uni-kiel.de
ORCID: 0000-0001-7834-301X

Jan Deller †
Kiel University

24118 Kiel, Germany
Email: jandeller@t-online.de

† first authors

Maximilian Hünemörder
Information Systems and Data Mining

Kiel University
24118 Kiel, Germany

Email: mah@informatik.uni-kiel.de

Peer Kröger
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Abstract—We introduce OAB, an Open Anomaly Benchmark
Framework for unsupervised and semisupervised anomaly de-
tection on image and tabular data sets, ensuring simple repro-
ducibility for existing benchmark results as well as a reliable
comparability and low-effort extensibility when new anomaly
detection algorithms or new data sets are added. While making
established methods of the most popular benchmarks easily
accessible, OAB generalizes the task of un- and semisupervised
anomaly benchmarking and offers besides commonly used bench-
mark data sets also semantically meaningful real-world anomaly
data sets as well as a broad range of traditional and state-of-
the-art anomaly detection algorithms. The benefit of OAB for
the research community has been demonstrated by reproducing
and extending existing benchmarks to new algorithms with very
low effort allowing researchers to focus on the actual algorithm
research.

Index Terms—Unsupervised and Semisupervised Anomaly De-
tection, Reproducibility, Benchmark, Evaluation, Datasets

I. INTRODUCTION

The increasing digitalization of processes in various do-
mains like e.g. industrial automation, healthcare, mobility and
others causes a large-scale volume of structured and unstruc-
tured data accommodating valuable knowledge and potential
for process optimizations. One of the most interesting and sim-
ilarly most domain beneficial kinds of knowledge discovery is
the detection of abnormal patterns, also known as anomalies or
outliers. ”An outlier is an observation which deviates so much
from the other observations as to arouse suspicions that it was
generated by a different mechanism.” [1] The research field of
anomaly detection demonstrates its relevance by addressing
many applications like e.g. fraud detection, network security

issues, quality monitoring, etc. and thus it is not unusual
that still numerous unsupervised and semisupervised anomaly
detection algorithms [2], [3] get continuously developed and
published. This advantageous situation of having such a
versatile range of algorithms available becomes challenging
every time when the question arises which algorithm performs
better. There are still publications with only sparse or even
no possibility for well reproducible results [4], missing an
accurate description of hyperparameters, preprocessing steps,
accessible data sets, applied sampling strategies, state of the
art algorithms or meaningful standard evaluation metrics.
Furthermore, in numerous anomaly detection benchmarks and
papers (e.g. [5]–[9], etc.) anomaly data sets are syntheti-
cally generated by downsampling individual classes of actual
classification data sets as anomalies instead of using real-
world anomaly data sets containing semantically meaningful
anomalies such as e.g. aerospace hardware parts on martian
surface images [10]. Existing anomaly benchmarks [5], [6],
[11] address all these requirements with different focus and
scope but when researchers evaluate new algorithms they often
cannot reproduce the results of competing algorithms. So they
tend to conduct their experiments still individually instead of
using existing benchmarks leading to not actually comparable
results which makes truly well performing approaches hard to
identify in the research field. Especially for anomaly detection
algorithms developed for image and tabular data there is so far
no standardized benchmark simultaneously ensuring (1) repro-
ducibility, (2) comparability and (3) low-effort extensibility to
new algorithms and data sets.

Thus we introduce with this work-in-progress the approach
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of OAB - An Open Anomaly Benchmark framework for
image and tabular data sets supporting benchmarks for un-
supervised and semisupervised anomaly detection algorithms
and data sets. OAB covers a broad range of traditional
and deep anomaly detection algorithms and provides next
to most common anomaly benchmark data sets also real-
world anomaly data sets. Moreover, OAB generalizes the task
of un- and semisupervised anomaly benchmarks and sets an
equally strong focus to the reproducibility and comparability
of its results in order to support the requirements of the
Machine Learning Reproducibility Checklist [4]. Different to
other comparable benchmarks the OAB framework allows
low-effort extensions to new algorithms and data sets enabling
researchers to keep the focus on the actual algorithm research
instead of trying to reproduce results and conducting their own
individual experiments. The main contributions of this work
can be summarized as follows:

• Simple reproducibility, comparability and extensibility
for anomaly benchmark results when adding new algo-
rithms or new data sets.

• OAB supports unsupervised and semisupervised bench-
marks for image and tabular data sets by covering related
traditional and deep anomaly detection algorithms.

• OAB offers reproducible sampling and contamination
strategies and provides commonly used anomaly bench-
mark data sets as well as various real-world anomaly data
sets.

• A well documented open Python library OAB with hands-
on examples enabling the research community for its
practical use.

The remainder is structured as follows. Section II describes
related anomaly benchmarks. In Section III, we describe our
framework for an Open Anomaly Benchmark and evaluate
its performance w.r.t. the stated contributions in Section IV.
Section V concludes the paper and proposes further ideas for
future work.

II. RELATED WORK

In one of the first benchmarks for outlier detection the
authors Campos et al. [5] present a study of unsupervised
anomaly detection, in which an extensive collection of 23 data
sets gets featured primarily taken from the UCI repository [12].
These data sets are all tabular, considering that ALOI is
originally an image data set from which only premade image
features are used, and are mostly rather low-dimensional
and small in respect to the amount of samples. Considering
the problem that originally most UCI data sets are intended
for classification and sometimes clustering, Campos et al.
especially highlight a group of data sets that are semantically
meaningful for outlier detection in comparison to the common
procedure of downsampling just any classification data set.
These semantically meaningful data sets include medical data,
i.e. normal and sick patients, mail and webdata, i.e. filtering
out spam and ads, stamps (forged or real), and trees (normal or
diseased). The benchmark only investigates k-nearest neighbor
based outlier detection algorithms, since these were popular

at the time and are often still used as baseline models in
current research (often represented by the Local Outlier Factor
(LOF) algorithm). An advantage of this restriction is that all of
these methods mainly depend on the size of the neighborhood
that got analyzed at the beginning by the hyperparameter
k. These methods are therefore easily compared in respect
to this parameter. Campos et al. chose common evaluation
measures for outlier detection, e.g. the Area under the Curve
of the Receiver-Operating Characteristic (AUC ROC or ROC
AUC) and Average Precision (AP), but highlight also a ver-
sion of Precision-at-n (P@n), which was adjusted for chance
(Adjusted P@n) similarly to AP (Adjusted AP@n). In order
to prepare the data sets, different prepossessing steps are
discussed in detail and listed for each data set. Campos et al.
utilize downsampling for classification data sets and in case
of duplicate samples a data set with and without duplication
removal is provided. Categorical attributes get transformed
into numerical data using either 1-of-n or Inverse Document
Frequency (IDF). Furthermore, normalization gets considered
as well as missing values if needed. Campos et al. published
their implementations1 by a collection of Python- and R-
Scripts together with the used version of the Java-based KDD-
Library ELKI [13].

The benchmark of Emmott et al. [6] also focuses like
Campos et al. on unsupervised anomaly detection for tabular
data. Therefore, 19 data sets are retrieved from the UCI
repository [12]. In total 25685 child anomaly detection data
sets are then sampled from these ”mothersets” with variation in
four dimensions. (1) Point difficulty measures how hard it is to
distinguish normal points from anomalies, where the difficulty
of an individual point is computed using Kernel Logistic
Regression. (2) Semantic variation assesses how different the
anomalies are from each other considering their clusteredness.
(3) Contamination rate indicates what percentage of sampled
data points are anomalous and (4) feature relevance/irrelevance
adds additional irrelevant features to test how well an algo-
rithm can handle these. Categorical features get discarded in
advance from the mothersets, and all remaining features get
normalized. Additionally, labels “normal” and “anomalous”
are assigned to the data points.

A variety of 8 algorithms are tested on the resulting child
data sets, including density-based algorithms like Ensemble
Gaussian Mixture Model, model-based algorithms like One-
Class Support Vector Machine, nearest-neighbors-based al-
gorithms like LOF and projection-based ones like Isolation
Forest. For the evaluation, the metrics ROC AUC and AP are
used and their significance, and thus also the benchmark itself,
gets evaluated by an additional hypothesis test.

All benchmarks are implemented in R and available2 for
download. As pointed out in the project’s README, the
documentation is unfortunately sparse. This published code
allows to reproduce data preprocessing and sampling, the
experiments and their results are not included however.

1https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI
2http://ir.library.oregonstate.edu/xmlui/handle/1957/59114
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One of the most recent comprehensive benchmarks for
anomaly detection has been published by Domingues et
al. [11]. Like the previously introduced benchmarks the focus
is also set to unsupervised anomaly detection on tabular
data. The collection of 15 data sets in total is composed
out of 12 public data sets from the UCI [12] and OpenML
[14] repositories and out of 3 proprietary data sets from
the traveling industry domain. In order to benchmark for
production relevant models by unseen data Domingues et al.
apply train-test-splits in the unsupervised setting with an equal
proportion of outliers in the train and test set. In extensive
benchmarks 14 anomaly detection algorithms from different
groups like probabilistic-, neighbourhood-, isolation-, SVM- or
neural-network-based algorithm groups are evaluated in detail.
The performance of these algorithms gets evaluated on test
set samples by the metrics ROC AUC and Area Under the
Precision Recall Curve (AUPRC). Furthermore, Domingues et
al. conduct algorithm complexity analyses related to the time
for training and prediction, memory usage and noise stability
in dependence to the total number of samples and features
based on synthetically generated data sets. In the preprocessing
steps of the benchmark the data sets get normalized and
the categorical data is one-hot-encoded allowing the algo-
rithms to utilize the complete information from the data sets.
Furthermore supporting reproducibility, the hardware setup,
hyperparameters as well as the implementation languages like
R, Python and Matlab are listed for each algorithm, but the
benchmark scripts itself are not published avoiding a simple
extension to new algorithms and data sets.

Besides the aforementioned well known approaches there
are also further related benchmarks in the unsupervised set-
ting like Goldstein et al. [15] which focuses on traditional
algorithms and Lu et al. [16] evaluating dependency-based
anomaly detection algorithms. Although each of them demon-
strates various strengths, none of them allows the evaluation
of most recent anomaly detection approaches in the un- and
semisupervised setting on tabular as well as on image data
sets and ensures a simple reproducibility, comparability and
extensibility when new algorithms or new data sets should be
added.

III. OPEN ANOMALY BENCHMARK (OAB)

This section describes the components of the Open Anomaly
Benchmark framework covering requirements for image and
tabular data sets, a selection of anomaly detection algorithm
groups, most suitable evaluation metrics and methods ensuring
reproducibility.

A. Benchmark Data Sets for Anomaly Detection

Ideally, actual anomaly data sets are used to benchmark
anomaly detection algorithms, i.e., data sets with a semantic
notion of normal and anomalous data points. However, real
anomaly data sets are rare, especially in image detection,
and might not have the characteristics authors are interested
in when evaluating their new algorithm, e.g., with regards
to number of observations or dimensionality. To remedy

this, classification and regression data sets are frequently
transformed into anomaly detection data sets [6], [11]. In
classification data sets, this assumes that a downsampled
generating process of some class resembles an anomaly-
generating process, which is not necessarily the case. However,
as classification and regression data sets are frequently used
to assess the performance of an anomaly detection algorithm,
they are also provided by OAB and included in this paper.
Note that OAB is not limited to working with the data sets
provided by it, instead, also other data sets can easily be loaded
making benchmarks with OAB simply extensible to own data
sets.

B. Benchmark Algorithms for Anomaly Detection
This paper measures the performance of a variety of

anomaly detection algorithms. OAB is in no way limited to
working with these algorithms - it provides sampled data and
an evaluation procedure for own algorithms to allow new
approaches to be tested and replicated.

There are a variety of anomaly detection algorithms,
distinguishing themselves in their assumptions about how
normal data and anomalous data are different. We distinguish
between traditional unsupervised, traditional semisupervised,
and deep anomaly detection algorithms.

1) Unsupervised algorithms: The unsupervised algorithms
receive a test data set as input and calculate anomaly scores
of these test data points.
Nearest neighbour-based approaches (c.f. [6], [17]) assume
that compared in its nearest neighbors, normal and anomalous
data points behave differently in a specific way.
Isolation-based approaches aim to isolate anomalies and com-
pute an anomaly score based on how difficult it is to isolate
a data point [18].
Reconstruction-based approaches first reduce the dimension-
ality of a data point and then try to reconstruct it from this
reduced-dimensional representation.

2) Semisupervised algorithms: The semisupervised algo-
rithms are in contrast to unsupervised algorithms first trained
on a clean training set. In the inference phase, they calculate
an anomaly score for test points.

One-class approaches aim to learn a boundary around the
normal training data points and assign anomaly scores based
on this boundary.
Isolation-based approaches can also be used in the semisu-
pervised setting. The rules to isolate data points are learned
from the training set, and applied to data points from the test
set [18].
Reconstruction-based approaches can be used similarly to
isolation-based approaches, i.e., the dimensionality reduction
and increase procedures are learned from the training data and
applied to the test data.

3) Deep learning algorithms: The deep learning algorithms
exist for both unsupervised and semisupervised anomaly de-
tection and can be differentiated based on how directly the
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deep part of the model is connected to anomaly detection.
Among others, Pang et al. [2] identify the following two
classes of algorithms:

Deep learning for feature extraction means that final layers
for classification do not exist. The layers of such a neural
network are only used to extract features which are fed into a
traditional model.
Learning feature representations of normality comprise algo-
rithms that are trained on some surrogate learning task that
is not directly aiming for anomaly detection. Based on this
surrogate task, a heuristic is used to calculate anomaly scores.

A core strength of OAB is that it is not limited to these
algorithms. It allows easily testing new algorithms on the data
sets provided and own data sets ensuring extensibility.

C. Evaluation Metrics

As the evaluation metrics of an anomaly benchmark frame-
work need to be meaningful for the related task of anomaly
detection several requirements need to be fulfilled. In the un-
supervised setting there are usually no external labels available
for evaluation. Thus, Marques et al. introduced IREOS [19]
as an internal evaluation metric for the unsupervised setting.
However, since the work of Aggarwal [20] states that internal
validity measures are only rarely used for outlier detection and
that it is more reasonable to use external validity measures
in this field, OAB follows this recommendation and selects
evaluation measures requiring the availability of external la-
bels. Since the expressiveness of an evaluation metric is
dependent on the used data set as well as on the task which an
anomaly detection algorithm should perform there is not only
one metric which should be taken into consideration. Hence
the OAB framework supports the following set of evaluation
metrics.

1) ROC AUC: The Receiver Operating Characteris-
tic (ROC) [21] is represented by a curve in a chart defined
by the true positive rate (TPR) of correctly detected outliers
on the y-axis and by the false positive rate (FPR) of incorrectly
detected outliers on the x-axis. This usually monotonously
increasing ROC curve covers the full range of possible outlier
decision thresholds τ with τ ∈ [0; 1]. The Area Under that
Curve (AUC), allows to represent this dependency by a single
value between 0 and 1 describing the performance of the
evaluated anomaly detection algorithm as ROC AUC. The
maximum is a ROC AUC of 1.0 having a TPR of 1.0 and a
FPR 0.0 from the beginning. The normalization of the TPR and
FPR with the number of TP and FP respectively ensures ROC
AUC still to be an expressive evaluation metric even when the
ratio between normal and abnormal samples is imbalanced as
it is usually the case for anomaly detection data sets. [5] In
case the primary objective of the given anomaly detection task
is to avoid false positives (false alarms) the ROC AUC would
be a suitable evaluation measure.

2) AUPRC: As the name of the Precision-Recall Curve
reveals it is defined by the Precision on the y-axis and the
Recall on the x-axis for any possible decision threshold τ .

As for ROC AUC the Area Under the Precision-Recall
Curve (AUPRC) describes the performance of an anomaly
detection algorithm by a single value between 0 and 1 having
the same maximum, but differently to ROC AUC the AUPRC
is not necessarily monotonously increasing. If an anomaly
detection task has the goal to avoid false positives (false
alarms) as well as false negatives (missed alerts) then the
AUPRC would be a reasonable evaluation metric.

3) P@n: The evaluation metric Precision@n [22] is con-
cepted for benchmarking anomaly detection algorithms which
focus on the evaluation of just the top n (ranked) outlier
scores. This can be reasonable especially for large data sets
with a relative high percentage of anomalies or in cases in
which not more than n samples can or should be handled.
Since the definition of n is crucial for meaningful P@n-results
the availability of external anomaly labels is required. One
possibility is to set n according to the total number of known
anomalies in the data set. Since the precision is calculated
with this metric, P@n can be used for anomaly detection tasks
having their focus on the avoidance of false alarms.

4) AdjP@n: The Adjusted-Precision@n [5] addresses
benchmark settings in which the outlier scores and thus also
the percentage of total outliers may vary. Therefore, the
previously introduced P@n metric gets adjusted for chance
by aligning different outlier scores by their expected outlier
score value.

5) AP: The Average Precision [23] evaluation metric is a
further possibility to calculate the AUPRC. There exist several
variants but since OAB relies on the average precision score
of sklearn the weighted mean of precisions at each thresh-
old is used. Equally to AUPRC, if an anomaly detection task
needs to avoid false positives (false alarms) as well as false
negatives (missed alerts) then the AP would be a suitable
choice.

6) AdjAP: The Adjusted-Average-Precision [5] considers
similarly to AdjP@n benchmark settings with varying outlier
scores for an adjustment by chance, wheras the metric is
calculated analogously.

7) Friedman and Nemenyi tests: The Friedman test [24] can
be used to investigate whether or not all algorithms perform
equally with regards to a metric, while the Nemenyi test [25]
allows for a significance analysis of pair-wise performance
comparisons.

D. Reproducibility

The core strengths of the OAB framework are reproducibil-
ity and comparability of its benchmarks. Therefore, OAB
divides the task of anomaly benchmarking into a set of generic
subtasks, which can as part of a benchmark recipe easily be
replicated and generically applied to unsupervised and semisu-
pervised anomaly benchmarks. These subtasks are represented
by a variety of benchmarking steps introduced in this section.
These benchmarking steps are closely related to the process
steps for knowledge discovery and data mining (KDD) intro-
duced by Fayyad et al. [26] (cf. Fig. 1a)). Differently to [26]
the step of Data Mining is in OAB further divided into the
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steps Sampling, which also represents the splitting into train
and test sets, and Anomaly Detection Algorithms, leading to a
Performance Overview after Evaluation. Considering Fig. 1b),
OAB provides reproducibility across the benchmarking steps,
noting that for steps with grey background no user-related
actions are required and steps with white parts allow the user to
increase or decrease the Selection of data sets and algorithms.

1) Sampling Strategy: Similar to algorithms, sampling
strategies also need to be differentiated between unsupervised
and semisupervised. With the sampling strategies outlined
below, we aim to achieve two goals in both settings: (1) As
many data points as possible are included to ensure that the
result is not achieved by chance, and (2) to get a more robust
estimate, we sample multiple times from each data set where
each sample is different from the others.

In the unsupervised setting, the sampling should return a set
of data points and their respective labels to allow for evalua-
tion. Among the set of data points, the number of anomalies
is expected to be comparatively low, as normal data points
dominate the set of data points. The main sampling parameters
are the number of samples su and the contamination rate c.

Target contamination rate. The target contamination rate, i.e.,
the proportion of anomalous data points among all data points,
is set to c = 0.05 in our experiments, but a different target
contamination rate can be set in OAB. The target contamina-
tion rate c is restricted to c ∈ (0, 1).
Number of samples. The number of samples depends on the
data set. In some data sets, the actual contamination rate is
larger than the the target contamination rate c, whereas in
others, it is lower. Therefore, a procedure needs to be specified
that calculates how many data points are sampled to ensure a
contamination rate of 0.05. Emmott et al. [6] either subsample
the normal data points if the original data’s contamination
rate is lower than the target contamination rate or subsample
the anomalous data points in the other case. Our approach is
similar to this and extends it in both providing a formalization
and ensuring variance across samples. First, we calculate the
maximum sample size restriction for normal and anomalous
points smax

n and smax
a respectively. We denote the number of

normal points in a data set by nn and the number of anomalies
by na.

smax
n =

⌊
nn

1− c

⌋
(1)

smax
a =

⌊na
c

⌋
(2)

If a data set consists of nn = 950 normal data points and the
target contamination rate is c = 0.05, the sample size can at
maximum be 950/(1−0.05) = 1000. If it is larger than this, a
contamination rate of 0.05 is not possible without duplicating
normal data points. This is calculated with Equation 1. The
same train of thought can be applied to anomalous data
points, leading to Equation 2. The tighter condition, i.e., the
minimum of both values, is the maximum sample size. To
ensure variability both among normal and anomalous labels,

this maximum sample size is scaled with a factor f ∈ (0, 1)
which we set to 0.9 to arrive at the actual sampling size in
the unsupervised case su:

su =

⌊
f ∗min

{
na
c
,
nn

1− c

}⌋
(3)

Number of sampling steps and random seed. Finally, we
sample a total of 10 times from a data set, and compute the
average and standard deviation for each metric across these
samples. For the first sample, the random seed is set to 42,
and increased by 1 in each subsequent sampling step.

TABLE I
PARAMETERS USED WHEN SAMPLING IN THE UNSUPERVISED SETTING.

Target contamination rate c 0.05
Downscaling factor f 0.9

Sampling size su
⌊
f ∗min

{
na
c
, nn
1−c

}⌋

Number of sampling steps 10
Initial random seed 42

These sampling parameters are summarised in Table I. OAB
allows for sampling either by specifying the number of data
points to sample and the contamination rate or by specifying
the contamination rate and a scaling factor. In the latter case,
the sampling size is automatically computed using Equation 3.

In the semisupervised setting, a training set as well as a test
set and the corresponding labels for the test set are provided
by the sampling procedure. The training set is usually clean,
i.e., it consists only of normal data points. In the test set,
the contamination rate does not have to be as small as in the
semisupervised case, as the model is already trained when
assessing its performance on the test set and the data points
from the test set do not affect the anomaly scores of each other.
For the toothbrush data set of MVTec AD for example, the test
set consists of 11 normal points and 29 anomalies [27], [28].
The parameters for sampling are therefore not specified by the
number of samples and the contamination rate, but instead by
the percentage train of normal data points used for training
and the maximum contamination rate cmax

test in the test set.

Percentage of normal data points used for training. The
parameter train specifies the percentage of normal data
points which are used for training. It is constrained to
train ∈ (0.5, 1) as there should be more observations in the
training set than in the test set, and 1− train is the part of the
normal data points used for testing. train needs to balance two
considerations. On the one hand, a larger training set allows
the algorithm to see more normal data points which in turn
allows it to better learn what normal data points look like.
On the other hand, the training set should not be too large,
as in this case the number of normal data points in the test
set can become very small. If this is the case and the test set
contains mainly anomalous points, it becomes more difficult
to assess an algorithm’s strength in distinguishing normal from
anomalous points. A training set size of train = 0.7 of the
normal points is therefore chosen.
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Fig. 1. Comparison of a) KDD process steps [26] and b) reproducible benchmarking steps of OAB (grey) and user-related steps (white).

Maximum contamination rate. The test set consists of both
normal and anomalous data points. All remaining normal
data points are used in the test set, and theoretically, all
anomalous data points can be used as well. Note however that
in some data sets, especially original classification data sets
with multiple classes, this can lead to a large contamination
rate in excess of 0.9. If the ratio of normal points in the test set
is very small, the performance metric looses robustness. For
this reason, the contamination rate in the test set is restricted
by cmax

test ∈ (0, 1), which is set to 0.5 in this benchmark.

TABLE II
PARAMETERS USED WHEN SAMPLING IN THE SEMISUPERVISED SETTING.

train 0.7
cmax
test 0.5

Number of samples 10
Initial random seed 42

Apart from the parameters specified here, the random seed
and number of samples are the same as in the unsupervised
setting. The parameters are summed up in Table II.

Note that in contrast to unsupervised sampling, semisuper-
vised sampling does not need a scaling factor as the variability
is ensured by splitting the normal data into different training
and test sets in each sampling. In addition to the sampling
described above, OAB also supports sampling using explicit
training and test set sizes and allows for a contamination in
the training set, which can be of use to assess an algorithm’s
robustness towards anomalies in the training set. In this
benchmark however, the sampling above is used.

If data sets already have a native train-test split like MVTec
AD [27], [28], this split can also be used for sampling using
OAB. This native split is also used in the experiments section
of this paper.

2) Preprocessing, Transformation and Parameters: To en-
sure reproducibility, describing which data set is used and
where it was downloaded from does not suffice. If prepro-
cessing and transformation steps are applied, they have to be
well-documented. In addition to that, also the training- and
hyperparameters need to be tracked. Therefore, this section
describes these steps in detail.

Regression data sets. While classification data sets can easily
be transformed into anomaly detection data sets by speci-
fying which labels are considered to be normal and which

anomalous, regression data sets need a different approach:
The inter-quartile range (IQR) is calculated and instances x
are considered as outliers in case of exceeding the range of
[(Q1−d∗IQR); (Q3+d∗IQR)] where d is a data set specific
factor (mostly d=1.5).
Missing values. Algorithms considered here are not capable of
working with data points with missing features. When missing
values do occur, we follow Campos et al. [5] and delete an
attribute if 10% or more of the instances do not have a value
for this attribute. Otherwise only the related instances get
removed.
Duplicate data points. In line with the preprocessing per-
formed by Campos et al. [5], duplicate data points are re-
moved.
Categorical features. While most features are numeric, some
categorical features also exist. Campos et al. [5] propose
two techniques to deal with categorical features, namely one-
hot encoding and using the inverse document frequency of
the attribute value as encoding. Emmott et al. [6] ignore
categorical features. In this benchmark, categorical features
are one-hot encoded.
Parameters. The OAB recipe also tracks training- and hyper-
parameters for reproducible algorithm runs. These are e.g. the
number of epochs, learning rate, batch size, layer sizes, etc.
Normalization. Campos et al. [5] propose to use two data
sets: One with attribute-wise linear normalization to values be-
tween 0 and 1 (including) and a second one without normaliza-
tion. Domingues et al. [11] on the other hand standardize their
features, i.e., scale them to mean 0 and unit standard deviation.
For tabular data, attribute-wise scaling with RobustScaler
of sklearn on all attributes is used. For image data, the
typical machine learning scaling to values between 0 and 1 is
used, i.e., all pixel values are multiplied by 1/255.

All aspects described above are part of OAB and thus
reproducible for each experiment.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, the performance of the OAB framework
gets investigated. Therefore, a selection of tabular and image
data sets is loaded, the data sets are sampled and the selected
anomaly detection algorithms get benchmarked on these sam-
ples. The results can easily be replicated using the Google-
Colabs from our github.
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A. Data sets

As described in Section III-A, OAB supports both real
anomaly data sets as well classification and regression data
sets transformed into anomaly data sets. The data sets used
to obtain the benchmark results are presented in this section.
They are naturally divided into tabular and image data sets.
Real anomaly data sets, i.e., data sets that contain semantically
meaningful anomalies, are marked with *. In addition to these
data sets, a variety of other data sets is also built in to OAB.3

The following tabular data sets are used in this study. A brief
description of their characteristics can be found in Table III.4

Spambase* [12]. Emails divided into non-spam (normal) and
spam (anomalous)
Wilt* [12]. Segments of images divided into other land area
(normal) and diseased trees (anomalous)
NASA* [29]. NASA software for receiving and processing
ground data divided into non-failing (normal) and with defects
(anomalous)
Annthyroid* [30]. Medical data, divided into healthy (normal)
and two kinds of hypothyroidism (anomalous)
Page-blocks [12]. Blocks of a page layout divided into text
blocks (normal) and non-text blocks (anomalous)
Ionosphere [30]. Radar returns from the ionosphere, classified
into good (normal) or bad (anomalous)
Boston [31]. Regression data set on housing data and prices
for areas in Boston, transformed as described above

Image data sets consist of either colored or black-and-white
images. Their characteristics are shown in Table IV.

MVTec AD* [27]. MVTec AD consists of a set of real-world
data sets with object and texture images. From this collection,
the data sets transistor, screw, pill, carpet and hazelnut (hazel)
are used.
MNIST 0 (mnist) [32]. Hand-written digits classification data
set, with instances for each digit from 0 to 9. Here, we
transform it into an anomaly detection data set by setting the
label 0 as normal label and all others as anomalous, which
also defines the suffix of the data set name.5

CIFAR-10 0 (cifar10) [33]. Classification data set with 10
classes of images. Here, we set label 0 as normal label and
all others as anomalous.

B. Algorithms

In Section III-B, a variety of different categories of al-
gorithms was layed out. At least one algorithm from each
category is presented here and used in the experiments. Unless
noted otherwise, PyOD’s [34] implementation is used. For
each setting, we provide a table indicating which algorithms
are used in this setting and which hyperparameters they are
used with to ensure reproducibility. If hyperparameters are
not mentioned, the defaults of PyOD v0.9.3 are used.

3A list of all built-in data sets is provided in the supplementary github.
4For details please refer to the supplementary material on github.
5OAB also supports iterating through all labels as normal label to obtain a

single score for all anomaly data sets composable from MNIST.

TABLE III
TABULAR DATA SETS. nNORMAL IS THE NUMBER OF NORMAL DATA POINTS,
AND nANOMALY THE NUMBER OF ANOMALIES IN THE DATA SET. FEATURES
INDICATES THE NUMBER OF FEATURES (OR DIMENSIONALITY) OF EACH

DATA POINT.

Name nnormal nanomaly Features
spambase 2528 1679 (39.91%) 57
wilt 4562 257 (5.33%) 5
NASA 877 315 (26.43%) 21
annthyroid 6528 534 (7.56%) 6
page-blocks 4883 510 (9.46%) 10
ionosphere 225 125 (35.71%) 33
boston 475 31 (6.13%) 13

TABLE IV
IMAGE DATA SETS. THE FINAL FIVE DATA SETS ARE FROM MVTEC AD.

Name nnormal nanomaly Features
MNIST 0 6903 63097 (90.15%) (28, 28)
CIFAR10 0 6000 54000 (90%) (32, 32, 3)
transistor 273 40 (12.78%) (256, 256, 3)
screw 361 119 (24.79%) (256, 256)
pill 293 141 (32.49%) (256, 256, 3)
carpet 308 89 (22.41%) (256, 256, 3)
hazelnut 431 70 (13.97%) (256, 256, 3)

For tabular data, Table V covers the unsupervised setting
and Table VI covers the semisupervised setting. For image
data, please refer to Tables VII and VIII respectively. In the
following the core concepts of each benchmarked anomaly
detection algorithm gets briefly described.

Nearest neighbor-based approaches: kNN. The vanilla k-
nearest neighbors (kNN) algorithm uses the distance to the k-
th neighbour of a data point as anomaly score. The underlying
assumption is that normal data points can be found in dense
neighborhoods, which is not the case for anomalous points
[17]. The choice for k is inspired by the choice of Domingues
et al. [11] for similar algorithms.
Nearest neighbor-based approaches: LOF. As the name
Local Outlier Factor [35] indicates, the neighbourhood of a
point is investigated to judge if a data point is anomalous
instead of observing all data points globally. If a data point is
in a less dense neighborhood than its neighbors, it is assumed
to have a higher likeliness of being an anomaly. The choice for
k is taken from the choice of Domingues et al. [11], but a lower
bound is chosen as some data sets have few observations.
Nearest neighbor-based approaches: ABOD. Angle-Based
outlier Detection was proposed by Kriegel et al. [36] and
assumes that the variation in angles from a data point to other
data points is larger for normal data points, as they can be
found towards the center of a dense cluster, and smaller for
anomalies. As for kNN and LOF, the hyperparameter k is
inspired by the choice of Domingues et al. [11].
Isolation-based approaches: Isolation Forest. Isolation
Forests [18] consist of isolation trees which are trees built
at random. A data point traverses the trees and it is assumed
that anomalies are isolated, i.e., reach a leaf node, faster than
normal data points.
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One-class approaches: OCSVM. One-Class Support Vector
Machines [37] map data points into a feature space and learn
a hyperplane that separates the normal training data points
from the origin as tightly as possible. Test data points are
assigned anomaly scores based on their position relative to
the hyperplane in the feature space.
Reconstruction-based approaches: PCA. Principal compo-
nent analysis [38], [39] is a linear model that can be used
to reduce dimensionality. From this reduced dimensional-
representation, the original representation is recomputed us-
ing the eigenvectors. The respective mappings can either be
learned on a clean training set (semisupervised) or on a test
set in which normal data points dominate (unsupervised). The
reconstruction error is transformed into an anomaly score.
Deep learning for feature extraction: AE + Traditional
algorithm. Autoencoders (AE) [40] can be used as a means
to reduce feature dimensionality. The bottleneck representation
can be fed into a traditional algorithm. For image data,
convolutional AEs (CAEs) are usually used. CAEs as well
as the combination of two algorithms are self-implemented.
Learning feature representations of normality: AE. AEs
can be used to reduce dimensionality, but analogous to PCA,
they can also be used as anomaly detection algorithm in both
the unsupervised and semisupervised setting. As in PCA, the
anomaly scores are calculated based on the reconstruction
error of a data point. Alternatives are Variational AEs (VAEs)
[41] and CAEs.

TABLE V
HYPERPARAMETERS FOR ALGORITHMS USED IN UNSUPERVISED TABULAR

DATA ANOMALY DETECTION. n IS THE NUMBER OF DATA POINTS IN A
SAMPLE.

kNN n neighbors max(n ∗ 0.05, 10)
LOF n neighbors max(n ∗ 0.1, 10)

ABOD n neighbors max(n ∗ 0.01, 10)
IForest random state 42

AE random state 42
hidden layers [6, 3, 3, 6]

AE+LOF
AE: random state 42
AE: hidden layers [6, 3, 3, 6]
LOF: n neighbors max(n ∗ 0.1, 10)

TABLE VI
HYPERPARAMETERS FOR ALGORITHMS USED IN SEMISUPERVISED

TABULAR DATA ANOMALY DETECTION.

OCSVM – –
IForest random state 42

PCA n components 0.9
pca solver ’full’

AE random state 42
hidden layers [6, 3, 3, 6]

VAE
random state 42

encoder neurons [6, 3]
decoder neurons [3, 6]

TABLE VII
HYPERPARAMETERS FOR ALGORITHMS USED IN UNSUPERVISED IMAGE

DATA ANOMALY DETECTION. n IS THE NUMBER OF DATA POINTS IN A
SAMPLE. THE CAE PARAMETERS ARE ALWAYS THE SAME AS THOSE IN

THE LAST ROW.

CAE+kNN kNN: n neighbors max(n ∗ 0.05, 10)
CAE+LOF LOF: n neighbors max(n ∗ 0.1, 10)

CAE+ABOD ABOD: n neighbors max(n ∗ 0.01, 10)
CAE+IForest IForest: random state 42

CAE
random state 42

epochs 50
latent dim 100

TABLE VIII
HYPERPARAMETERS FOR ALGORITHMS USED IN SEMISUPERVISED IMAGE

DATA ANOMALY DETECTION.THE CAE PARAMETERS ARE ALWAYS THE
SAME AS THOSE IN THE LAST ROW.

CAE+OCSVM – –
CAE+IForest IForest: random state 42

CAE
random state 42

epochs 50
latent dim 100

C. Results

We ran the algorithms mentioned above on the data sets
presented in Section IV-A. The sampling parameters are those
described in Tables I and II in Section III-D1 and the MVTec
AD data sets were sampled with their native train-test split in
the semisupervised setting. Results for tabular data sets can be
found in Tables IX and X for unsupervised and semisupervised
anomaly detection. The results for image data sets can be
found in Tables XII and XI respectively.

D. Reproduce results from other benchmarks

To further validate OAB, we aimed at reproducing results
from other papers. As the preprocessing is in large parts
comparable to Campos et al. [5], we focussed on their results.
Because they report results for each sampled data set individ-
ually and with varying hyperparameters, we were specifically
interested in algorithms which had the same or very similar
hyperparameters for each sampled data set. We found that
this is the case for LOF with n_neighbors=100 on the
PageBlocks data set6 with a contamination rate of 0.05 in
its unscaled variant without duplicates. We further reproduced
their sampling procedure by setting the number of sampled
points to 5139. As shown in the corresponding Google-Colab
accompanying this paper on github, we were able to reproduce
their results. The ROC AUC score was the same up to 3 digits
after the decimal, and other scores matched up to 2 digits after
the decimal.

V. CONCLUSION

In summary, we introduced in this paper OAB, an Open
Anomaly Benchmark framework for unsupervised and semisu-
pervised anomaly detection on image and tabular data sets.

6https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/semantic/
PageBlocks/
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TABLE IX
TABULAR DATA IN UNSUPERVISED SETTING, ROC AUC WITH STANDARD DEVIATIONS.

spambase wilt NASA annthyroid page-blocks ionosphere boston Average
kNN 0.633±0.025 0.612±0.005 0.653±0.034 0.947±0.002 0.935±0.004 0.950±0.030 0.733±0.008 0.780
LOF 0.588±0.025 0.573±0.006 0.652±0.032 0.950±0.002 0.927±0.004 0.907±0.040 0.715±0.010 0.758

IForest 0.778±0.014 0.414±0.027 0.671±0.031 0.826±0.008 0.914±0.004 0.947±0.026 0.811±0.018 0.766
ABOD 0.721±0.016 0.699±0.005 0.698±0.029 0.927±0.005 0.954±0.004 0.970±0.022 0.632±0.042 0.800

AE 0.753±0.019 0.334±0.008 0.593±0.040 0.688±0.011 0.915±0.005 0.917±0.035 0.796±0.012 0.714
AELOF 0.504±0.005 0.500±0.000 0.506±0.008 0.503±0.004 0.524±0.032 0.503±0.013 0.470±0.004 0.501
Average 0.663 0.522 0.629 0.807 0.861 0.866 0.693

TABLE X
TABULAR DATA IN SEMISUPERVISED SETTING, ROC AUC WITH STANDARD DEVIATIONS.

spambase wilt NASA annthyroid page-blocks ionosphere boston Average
OCSVM 0.658±0.009 0.463±0.008 0.618±0.014 0.953±0.002 0.944±0.003 0.902±0.021 0.738±0.023 0.754
IForest 0.821±0.011 0.452±0.026 0.663±0.013 0.904±0.011 0.929±0.004 0.923±0.027 0.838±0.014 0.790
PCA 0.810±0.007 0.327±0.040 0.587±0.015 0.792±0.013 0.929±0.004 0.903±0.024 0.812±0.017 0.737
AE 0.809±0.007 0.351±0.006 0.565±0.019 0.822±0.012 0.934±0.004 0.914±0.021 0.819±0.012 0.745

VAE 0.810±0.007 0.341±0.006 0.585±0.017 0.823±0.012 0.933±0.004 0.902±0.022 0.814±0.015 0.744
Average 0.782 0.387 0.604 0.859 0.934 0.909 0.804

TABLE XI
IMAGE DATA IN SEMISUPERVISED SETTING, ROC AUC WITH STANDARD DEVIATIONS. NOTE THAT FOR MVTEC AD DATA SETS, THE ORIGINAL

TRAIN-TEST SPLIT IS USED. THEREFORE, DATA IS NOT SAMPLED MULTIPLE TIMES AND THERE IS NO STANDARD DEVIATION.

mnist cifar10 transistor screw pill carpet hazelnut Avg
CAEOCSVM 0.991±0.001 0.639±0.009 0.721 0.720 0.502 0.614 0.632 0.688
CAEIForest 0.980±0.003 0.641±0.014 0.718 0.269 0.524 0.519 0.661 0.616

CAE 0.943±0.005 0.714±0.008 0.675 0.001 0.509 0.492 0.841 0.597
Avg 0.971 0.665 0.705 0.330 0.512 0.542 0.711

TABLE XII
IMAGE DATA IN UNSUPERVISED SETTING, ROC AUC SCORES.

mnist cifar10 transistor screw pill carpet hazel Avg
CAEkNN 0.992 0.639 0.649 0.486 0.686 0.556 0.554 0.652
CAELOF 0.995 0.632 0.657 0.526 0.790 0.541 0.548 0.670

CAEABOD 0.935 0.657 0.686 0.567 0.676 0.569 0.671 0.680
CAEIForest 0.967 0.645 0.638 0.507 0.575 0.521 0.545 0.628

CAE 0.952 0.737 0.635 0.360 0.643 0.381 0.401 0.587
Avg 0.968 0.662 0.653 0.489 0.674 0.514 0.544

With this work-in-progress we did neither aim to find the
best performing anomaly detection algorithm nor replace well
established benchmarking methods or try to cover each algo-
rithm or data set ever benchmarked in this context. Instead, we
demonstrated that OAB allows to standardize benchmarking
related steps like preprocessing, sampling, train-test-splitting
as well as the actual evaluation while simultaneously ensuring
reproducibility, comparability and low-effort extensibility for
new anomaly detection algorithms and data sets. Thereby,
OAB sets the foundation towards an automatized fulfillment
of the requirements of the Machine Learning Reproducibility
Checklist [4].

Furthermore, the OAB framework provides a selection of
semantically meaningful real-world anomaly data sets and
covers different methods for preprocessing, sampling and
contamination. Addressing the openness of the framework,
OAB is open for further contributions by sharing the code

as open-source project7 but it is also open in relation to
offering existing benchmarks in detail (data sets, algorithms,
benchmark setups, etc.). The practical use of OAB is supported
by well documented Google-Colabs shared in the github
repository for hands-on experience.

Since a reasonable benchmark should not only consider
the performance of an algorithm on a set of arbitrarily se-
lected data sets for specific evaluation metrics, OAB would
benefit from future work evaluating algorithms related to
their dependency on the choice of normalization method
and on the data set characteristics like already demonstrated
by Kandanaarachchi et al. [42]. Moreover, as there are no
external labels available in the actual unsupervised setting,
the sampling of OAB could be further improved by sampling
from different embedding clusters to ensure a point difficulty
balance in case of downsampling or train-test-splitting.
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Abstract
When researchers publish new cluster algorithms, they usually demonstrate the
strengths of their novel approaches by comparing the algorithms’ performance with
existing competitors. However, such studies are likely to be optimistically biased
towards the new algorithms, as the authors have a vested interest in presenting their
method as favorably as possible in order to increase their chances of getting published.
Therefore, the superior performance of newly introduced cluster algorithms is over-
optimistic and might not be confirmed in independent benchmark studies performed
by neutral and unbiased authors. This problem is known among many researchers,
but so far, the different mechanisms leading to over-optimism in cluster algorithm
evaluation have never been systematically studied and discussed. Researchers are thus
often not aware of the full extent of the problem. We present an illustrative study to
illuminate the mechanisms by which authors—consciously or unconsciously—paint
their cluster algorithm’s performance in an over-optimistic light. Using the recently
published cluster algorithm Rock as an example, we demonstrate how optimization
of the used datasets or data characteristics, of the algorithm’s parameters and of the
choice of the competing cluster algorithms leads to Rock’s performance appearing
better than it actually is. Our study is thus a cautionary tale that illustrates how easy
it can be for researchers to claim apparent “superiority” of a new cluster algorithm.
This illuminates the vital importance of strategies for avoiding the problems of over-
optimism (such as, e.g., neutral benchmark studies), which we also discuss in the
article.
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1 Introduction

Cluster analysis refers to grouping similar objects in data, while separating dissimilar
ones. While there already are a huge number of cluster algorithms (see e.g., Xu and
Wunsch (2010) for an overview), researchers continue to propose novel algorithms
every year. Researchers who introduce a new cluster algorithm typically publish it
together with a demonstration of the strengths of their approach and its superiority
over alternative methods.

However, the results of such studies should be regarded with caution. Publica-
tion bias (Boulesteix et al. 2015) constitutes a considerable external incentive for
researchers to demonstrate the superiority of their new approach: journals and confer-
ences aremuchmore likely to accept a paper about a novel computationalmethod if this
method shows good performance and is “better” than pre-existing approaches. This
may tempt researchers to present their method’s performance in an over-optimistic
fashion, a mechanism that is also called the “self-assessment trap” (Norel et al. 2011).
Such scenarios can not only appear in the research field of clustering but can also be
found in all types of methodological research, i.e., the development and evaluation of
data analytic techniques and algorithms (Boulesteix et al. 2020).

Over-optimization is not necessarily performed in a malicious or even intentional
manner, but it is problematic because the new method may turn out to have a worse
performance than initially claimed when it is later investigated in a neutral comparison
study, i.e., a study whose authors do not have a vested interest in one of the competing
methods, see Boulesteix et al. (2013). In other words, the good performance result is
not replicable (Boulesteix et al. 2020). Anecdotal evidence for this lack of replicability
is presented by Buchka et al. (2021) for a specific data analysis problem related to
the pre-processing of a special type of high-throughput molecular data. The over-
optimistic presentation of computational methods may lead to the usage of flawed
methods in applications, which could ultimately hinder research progress or even lead
to questionable results in applied research.

But how exactly may researchers present their new methods in an over-optimistic
fashion? For supervised classification, an illustrative case has already been presented
in the field of bioinformatics by Jelizarow et al. (2010). They considered a “promising”
novel classification method, which in reality was not superior to other classifiers. Yet
the authors were able to demonstrate that different mechanisms allow over-optimistic
presentation of this new method’s performance, namely choosing specific datasets,
optimizing the method’s settings and characteristics to these datasets while burying
the other in the file drawer, and choosing suboptimal competing classifiers.

However, to the best of our knowledge, such a study has not yet been conducted
for cluster analysis, i.e., the unsupervised scenario. While over-optimistic (selective)
reporting iswell understood in the context of statistical testing and supervised learning,
where its impact canbe easilymeasured, it ismuch less so in thefield of cluster analysis,
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which is characterized by the difficulty to properly evaluate methods. We thus aim at
filling this gap by demonstrating how a novel cluster algorithm’s performance can be
presented in an (overly) favorable light.

The problem of over-optimism is in fact as important in unsupervised clustering
as it is in supervised classification, and is probably even exacerbated because the per-
formance evaluation of cluster algorithms has not been studied as systematically as
the evaluation of supervised classifiers in the methodological literature. Guidance for
proper benchmarking of cluster algorithms has only recently emerged (Van Mechelen
et al. 2018). Even though the “true” cluster labels are unknown in clustering appli-
cations, researchers typically use datasets with known labels to evaluate their novel
cluster algorithms. To some extent, the performance evaluation of cluster algorithms
thus appears similar to the evaluation of classifiers. Yet for cluster analysis, the role
of test data is not as clear-cut as in supervised classification (Ullmann et al. 2021),
which entails that researchers are less aware that “overfitting” can not only happen in
supervised classification, but also in cluster analysis. Moreover, optimizing hyperpa-
rameters such as the number of clusters based on the “ground truth”, as is frequently
done in cluster algorithm evaluation, does not take into account that other researchers
who eventually want to use the algorithm in applications do not know the “true”
cluster labels of their datasets, and will thus likely obtain worse results than the per-
formances reported in the original evaluation of the novel algorithm. To evaluate their
new method, researchers might also use performance evaluation measures which do
not require a fixed “ground truth”, such as internal validation indices which measure
internal properties of the data (e.g., homogeneity and/or separateness of the clusters).
However, over-optimism can still be an issue when using these indices.

In the present study, we use the “Rock” algorithm (Beer et al. 2019) as an illustrative
example. Beer et al. (2019) agreed to the usage of their algorithm in our paper. Rock
was originally introduced as a “promising” new algorithm and was presented as being
able to outperform competitors. In subsequent studies, it turned out that Rock does not
generally perform better than its competitors. In the present paper, we show that Rock
outperforms competing algorithms in very specific scenarios and that these scenarios
can be obtained by three different mechanisms: (1.) optimization of datasets and data
characteristics, (2.) optimization of parameters of the Rock algorithm and (3.) the
choice of the competing clustering approaches. We demonstrate that if the optimized
scenarios are selectively reported and the settings in which Rock performs worse are
omitted, the algorithm then appears to outperform its competitors—as a result of an
over-optimistic presentation.

Rock is used only as an example—demonstrating the specific characteristics of the
Rock algorithm is not the main interest of our work. Rather, we use Rock to illustrate
more general mechanisms of over-optimization. We suspect that many studies which
introduce new cluster algorithms are affected by these mechanisms. However, given
that over-optimization can happen quite subtly and/or unintentionally, we do not cite
any published papers here which probably presented their results in an over-optimistic
fashion. Neither do we try to quantify the actual optimistic bias that currently exists in
the literature on cluster algorithms. Rather, our study is intended as a cautionary tale
to raise awareness of the over-optimism problem, and to illuminate the importance
of using strategies to avoid over-optimism (e.g., avoiding selective reporting, using
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independent test data and conducting neutral benchmark studies, as discussed in detail
in Sect. 6).

We first give an overview of related work in Sect. 2. Section 3 explains how we
performed optimization of Rock’s performance. The corresponding results are pre-
sented in Sect. 4 and further discussed in Sect. 5. Possible solutions for the problem
of over-optimism are outlined in Sect. 6. We conclude the paper in Sect. 7.

2 Related work

In this section we discuss studies that are related to our work. After presenting stud-
ies which directly look at the over-optimistic bias of new computational methods,
we address aspects in the field of data mining that are connected to over-optimistic
presentation of cluster algorithms.

2.1 Previous work about over-optimistic bias of new computational methods

There appears to be a lack of literature about over-optimism in the introduction of new
cluster algorithms. For computational methods other than clustering, there exist some
studies, to our knowledge mostly in the field of bioinformatics.

As mentioned above, a study similar to ours was previously reported by Jelizarow
et al. (2010), but for supervised classification. Moreover, while this study illustrated
over-optimism with a classification method for gene expression data and used real
cancer gene expression datasets for this purpose, our example is not application spe-
cific. For performance evaluation we choose simulated and real datasets which are
frequently used for the evaluation of cluster algorithms in computational research
(e.g., the synthetic “Two Moons” dataset, the Iris dataset etc., see Sect. 3).

Broadly speaking, the three categories of optimization mechanisms that we analyze
are similar to the categories previously considered in Jelizarow et al. (2010), i.e., opti-
mization of the data, optimization of the algorithm’s characteristics, and the choice of
competing approaches. However, the use of simulated data allows us to systematically
consider data characteristics such as noise or dimensionality, which was not done for
the real datasets used in Jelizarow et al. (2010).

In a similar application context, Yousefi et al. (2010) also addressed over-optimism
when reporting the performance of newly proposed classifiers. They focused on clas-
sification on high-dimensional data with low sample size, such as gene expression
data. The authors specifically considered the optimization of the datasets, i.e., they
analyzed the optimistic bias that results from reporting only the datasets with the
best (or second best) performance of the new classifier. They estimated this bias in
a simulation study, by repeatedly sampling sets of datasets, and recording the best
(or second best) performing dataset of each set. The aim of their study thus was to
quantify the optimistic bias with specific focus on the choice of datasets, whereas we
model different over-optimization mechanisms of a (hypothetical) researcher in an
illustrative way. The results of Yousefi et al. (2010) show that in the high-dimensional
data setting, there is indeed a large optimistic bias when reporting only the best or
second best performing dataset.
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Finally, again in the context of bioinformatics, a recent study aimed to estimate the
optimistic bias in the reported performance of new computational methods to prepro-
cess a special type of raw high-throughput molecular data (Buchka et al. 2021). The
approach was to perform a literature search and compare the reported performance
of newly introduced methods against their performance in later neutral comparison
studies. As expected, novel methods were ranked better than competitors in most of
the papers introducing them, but outperformed competitors at a lesser rate in neutral
studies. Yet the new methods still outperformed more than 50% of their paired com-
petitors in neutral studies, showing that while there is optimistic bias, there is also
some level of genuine scientific progress.

Outside of bioinformatics, Ferrari Dacrema et al. (2021) assessed optimistic bias
in research about recommender systems. Recommender algorithms can be used, for
example, to propose new movies to a media streaming user based on previously
watched movies. Many new recommendation algorithms based on deep learning were
published in recent years, which usually claimed superiority over previous approaches.
Ferrari Dacrema et al. (2021) repeated the evaluations of the original authors, but with
additional baseline algorithms. Their analysis showed that most of the new methods
did not actually outperform simple and long-known baseline algorithms, provided
strong-performing baselines were chosen and their hyperparameters were tuned as
carefully as those of the new algorithms. This highlights that not including strong
competitors or not treating the competing methods fairly might lead to optimistic bias.

2.2 Information visualization

Over-optimistic presentation of results can also be obtained by visualization methods,
i.e., not only by a biased selection of which data to show, but also by how the selected
data is shown. Studies on information visualization address the latter aspect. For
example, visualization methods with a high lie factor (the ratio between “size of effect
shown in graphic” and “size of effect in data”, see Tufte (1983)), ormisleading labeling
and scaling of axes, could be used by a researcher to let their algorithm appear in a
more favorable light.

We do not focus on such mechanisms in our study, and instead illustrate that
over-optimistic reporting of results is also possible if all rules regarding “correct”
information visualization are observed.

2.3 Robustness

Robust clustering algorithms yield a similar quality of results for similar input. Thus,
it is unlikely that there are experimental setups which yield notably better results
than similar experiments and could thus be selectively presented in an over-optimistic
fashion. We do not systematically evaluate the robustness of any of the tested cluster
algorithms in Sect. 4, but rather show how the lack of robustness can be exploited
in order to over-optimistically present the results of the exemplary algorithm. Out of
the diverse types of robustness, we focus on the lack of robustness regarding different
properties of the data as well as hyperparameter settings. For example, we consider
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robustness w.r.t. noise. “Noise” can mean either background noise, i.e., uniformly
distributed points across the data spacewhich do not belong to the original distribution,
or jitter, i.e., small deviations or perturbations in the original distribution. We regard
only the latter in our experiments.

That robustness is crucial for clustering algorithms was already stated by Davé
and Krishnapuram (1997). In recent literature on cluster algorithms, the robustness
regarding different properties of the data is often presented, e.g., the size of the dataset,
number of clusters, dimensionality, and structure of the data. Usually there is a base
case for which one property at a time is changed to regard the effects on the clustering
result. However, it is often left unclear how and why this base case was obtained, and
how the settings which are not regarded in the respective experiment are chosen.

Even though the robustness regarding the choice of hyperparameters seems simi-
larly important, authors often refer to “expert knowledge” for finding the “best” setting,
and omit a robustness analysis. This can lead to enormous disagreements in the eval-
uation of an algorithm, see, e.g., the controversy about DBSCAN (Ester et al. 1996;
Gan and Tao 2015; Schubert et al. 2017). Even easily interpretable hyperparameters,
such as the number of clusters k (e.g., for k-Means, Lloyd 1982), which at first sight
do not seem to require a robustness analysis, might show better performance w.r.t. the
evaluation measure when set at a value different from the “ground truth”.

To summarize, robustness regarding different aspects is not only important to guar-
antee a predictable quality of clustering for users, but also reduces the potential for
over-optimism.

2.4 Adversarial attacks

An adversarial attacker may corrupt the results of an algorithm by only performing
small changes or additions in a dataset, leading to a wrong but more favorable outcome
for the attacker (Goodfellow et al. 2018). Even though adversarial attacks are most
often regarded in context of supervised machine learning, they can also influence
results of unsupervised machine learning: recently, Chhabra et al. (2020) showed that
adversarial attacks are also possible for clustering, even without knowing important
details of the cluster algorithm. Algorithms which tend to return results of highly
varying quality, also for only small perturbations in the data, are easy victims not
only for adversarial attacks, but also for over-optimism. However, where adversarial
attackers aim at changing only certain results, over-optimistic researchers would try to
change the impression of an algorithm’s overall quality. By knowing the details of their
novel algorithm as well as deciding on all hyperparameters and competitive methods,
the influence over-optimistic researchers can have on the presentation of their results
is massive, especially compared to an adversarial attacker.

3 Over-optimizationmethods

In this section we outline the concept and the experimental design of our study. We
first explain the three different categories of over-optimization mechanisms that we
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illustrate in our study. We then detail our concrete implementation, e.g., the clustering
algorithms, datasets, evaluation measure and optimization method.

3.1 Three categories of over-optimization

Imagine a researcher who wishes to present his/her cluster algorithm in a favorable
light. We model the work process of this researcher as an “optimization task”: the
characteristics of the study in which the new algorithm is compared to existing ones
are optimized such that the researcher’s algorithm scores well, in particular better
than the best performing competing algorithm. This optimization can refer to (1.)
finding datasets or data characteristics for which the new algorithm works particularly
well, (2.) finding optimal parameters of the algorithm (and vice versa, neglecting the
search for optimal parameters for the competitors) or (3.) choosing specific competing
algorithms.

Optimizing datasets or data characteristics.Anew cluster algorithmmight perform
well for specific types of datasets, but not for other types. Researchers might decide to
report only the best-performing types of datasets. Additionally, for synthetic datasets,
there is potential for over-optimism when varying specific characteristics (e.g., the
amount of noise, the sample size, or the number of dimensions), and reporting only
the optimal settings. Moreover, simulated datasets depend on the random seed, such
that in turn, the performance of the cluster algorithm might also vary over different
random seeds. Researchers might actively look for a “good” random seed or simply
stumble across a particular “good” random seed by chance, neglecting to try other
random seeds to check for robustness.

Optimizing the algorithm’s parameters or characteristics. Hyperparameters of the
cluster algorithm, or characteristics of the algorithm designed during the development
phase, could be varied by researchers to look for the best result. Hyperparameter opti-
mization (HPO) is per se a legitimate procedure in performance evaluation. However,
there is less awareness for proper evaluation of cluster algorithms combined with
HPO, compared to the more extensive methodological literature on correct evaluation
of supervised classifiers with HPO (Boulesteix et al. 2008; Bischl et al. 2021). In
cluster analysis, over-optimism in relation to HPO may result from (1.) optimizing
hyperparameters based on the “true” cluster labels known to the researchers, and (2.)
not splitting the data into training and test sets. Both aspects will be discussed in more
detail in Sects. 4 and 5. Moreover, over-optimism might also result when researchers
neglect to set optimal parameters for the competing algorithms, e.g., when choosing
suboptimal hyperparameter defaults for the competitors while finetuning their own
algorithm.

Optimizing the choice of competing algorithms. Finally, researchers might pick
specific competing clustering methods that let their own algorithm appear in a better
light. They could neglect to look for the best state-of-the-art competitor, instead opting
for less optimal comparison algorithms. Even if the researchers are aware of state-
of-the-art competitors, they might not include them because the codes are not openly
available, or implemented in a programming languagewhich they are not familiarwith.
Researchers could also think of different groups of competing cluster algorithms, and
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then pick the group that is most favorable for comparison with their own algorithm.
A new density-based cluster algorithm could for example be compared either with a
group of other density-based algorithms, or with a group of some well-known, not
necessarily density-based cluster algorithms. While both choices could in principle
be sensible, it is over-optimistic if researchers either deliberately exclude a class of
competitors a priori because they expect their novel algorithm to perform worse than
this class, or if they choose the competitor group a posteriori after having seen the
results (Jelizarow et al. 2010).

Apart from these three categories of optimization, there are some further optimiza-
tion possibilities (e.g., optimizing the evaluation measure) that we do not analyze here
in detail, but briefly discuss in Sect. 5.

We assume that usually, researchers do not consciously perform the three classes of
optimization tasks in a malicious and systematic manner. Nevertheless, in the course
of a longer research process during which researchers try different datasets, algorithm
parameters/configurations and competing algorithms, researchers might optimize the
settings in an unsystematic and (probably) unintentional manner. Even if researchers
start their analysis with the best intentions, they might post-hoc rationalize their
(over-optimistic) choices as perfectly reasonable decisions, given that “[h]umans are
remarkably good at self-deception” and scientists often “fool themselves” (Nuzzo
2015).

One might argue that the optimizations outlined above are not actually over-
optimizations and that it is perfectly fine to look for scenarios in which a novel
algorithm performs well. We would agree that it is not a priori wrong to search for
and report such scenarios, as a new cluster algorithm can never be expected to out-
perform every other cluster algorithm in every situation. However, it should also be
transparently reported how the presented “successful” scenarios were obtained, and
how the algorithm performs in other settings. Over-optimism ultimately appears when
performance results are selectively reported. We will illustrate this with our results in
Section 4.

3.2 Experimental setup

We now present the exemplary cluster algorithm and its settings, the competing algo-
rithms, the datasets and the evaluationmeasure.Our fully reproducible code is available
at https://github.com/thullmann/overoptimism-clust-algo.

In accordance with the authors, we used the already published algorithm Rock
(Beer et al. 2019) as a novel and promising algorithm. Rock is an iterative approach
similar to Mean Shift (Fukunaga and Hostetler 1975), but based on the k nearest
neighbors (kNN) instead of the bandwidth. In each step, points “roam” to the mean of
their respective k nearest neighbors. Points with a similar final position are assigned
to a common cluster. The algorithm involves the hyperparameter tmax , which gives
the maximum number of iterations. As the maximum meaningful value for k is fixed
(k > n

2 would lead to an assignment of all points to the same cluster), and the increase
of k in every step is linear, tmax also determines the number k of nearest neighbors
regarded in each iteration. The larger tmax is chosen, the closer values for k are in
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consecutive steps. Lower values for tmax thus lead to larger gaps between consecutive
values for k, which may cause volatile merges of different clusters. On the other hand,
higher values for tmax lead to more iterations, which increases runtime.

As typical for short papers, only a limited number of experiments is presented in
Beer et al. (2019), illustrating that the underlying idea is promising. The results for
Rock looked good compared to k-Means (Lloyd 1982), DBSCAN (Ester et al. 1996)
and Mean Shift, which are typical competitors in the field and representatives for
algorithms finding different types of clusters. As examples for competing algorithms,
we thus chose k-means, DBSCAN, Mean Shift and additionally Spectral Clustering
(Ng et al. 2001).

As the clustering performance measure we use the Adjusted Mutual Information
Score (AMI,Vinh et al. 2010), a version of theMutual Information (MI) Score adjusted
for chance agreement of random partitions. For each dataset and cluster algorithm,
the known “true” clustering (as given either by the simulation design for the synthetic
datasets or by additional label information for the real datasets) was compared via
the AMI with the clustering found by the algorithm. The higher the AMI, the more
similar the two clusterings are. The AMI attains its maximum value of 1 if the two
clusterings are identical, and equals 0 if the MI between the two clusterings is equal to
the MI value expected for two random partitions. We give the detailed mathematical
definition of the AMI in the appendix A.

While we only use the AMI in our illustration for the sake of conciseness, a similar
analysis could be performed for alternative indiceswhichmeasure the agreement of the
calculated clusterings with the “ground truth”, or even for internal validation indices
which evaluate clusterings based on internal properties of the data alone and do not
require the “ground truth” (see also the discussion in Sect. 5.2).

The choice of exemplary datasets is linked to the three different optimization tasks
outlined in Sect. 3.1. We thus give the datasets for each task in turn and explain how
the optimization was performed. Note that we performed the three optimization tasks
sequentially, building on the results of each previous task. Of course, in reality, a
researcher will likely not perform the optimizations in such a perfectly sequential
matter, and might jump between different tasks of optimization or try to optimize
different aspects simultaneously. Again, our sequential procedure merely serves illus-
trative purposes.

For some specific details of the implementation, we refer to the appendix A.

Optimizing datasets and data characteristics. For this part of the analysis, we chose
three commonly used different synthetic datasets from scikit-learn (Pedregosa et al.
2011), see Fig. 2: Two Moons1, Blobs2 (for details on this dataset, see the appendix
A), and Rings3.

1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html, visited: 05/31/
2021.
2 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html, visited: 05/31/
2021.
3 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html, visited: 05/31/
2021.
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First, we performed optimization by varying the following data characteristics:
a) for Two Moons, the sample size and the jitter values (where “jitter” denotes small
randomperturbations to the original data points in the clusters), b) forBlobs, the sample
size, the number of dimensions and the number of generated clusters (“blobs”), and c)
for Rings, the sample size and the jitter values. The goal of the optimization was to find
the parameter configuration (e.g., for Two Moons, the configuration (n, j) of sample
size and jitter value) that yields the largest performance difference between Rock and
the best of the competitors – which is not necessarily the parameter configuration that
yields the best absolute performance of Rock.

That is, for each of the three types of synthetic datasets in turn, we performed the
following formal optimization task:

argmaxD∈D

{
1

10

10∑
i=1

(
AMI

(
Rock(Di ), yDi

)
− maxC∈C AMI

(
C(Di ), yDi

) )}
(1)

where D ∈ D denotes the different variants of the dataset. For example, for the Two
Moons data, each dataset D is a version of Two Moons with a specific jitter value
and sample size. Each D has a cluster label ground truth yD . For each D ∈ D,
ten different versions of D, namely Di , i = 1, . . . , 10 resulting from ten different
random seeds were generated. Put differently, we performed ten simulation iterations
per setting, i.e., we sampled ten datasets from each data distribution with a specific
data parameter setting. The AMI difference is then averaged over these ten versions.
This is supposed to reduce the influence of the random seed. Only at a later point in
the analysis did we look at the effect of picking specific random seeds (see below).
Rock(Di ) denotes the application of Rock to the data Di , returning a partition of the
objects. Analogously, the competing algorithms C ∈ C return a partition of Di , with
C = {k-means, DBSCAN, Mean Shift, Spectral Clustering}.

For each of the three types of datasets in turn, we performed the optimization task
(1) by using the Tree-structured Parzen Estimator (TPE, Bergstra et al. 2011), as imple-
mented in the Optuna framework (Akiba et al. 2019) in Python4. TPE is a Bayesian
optimization (BO) method. BO approaches sequentially propose new parameter con-
figurations based on a library of previous evaluations of the objective function (for
more details on BOmethods and the TPE, see the appendix A). The TPE is often used
for hyperparameter optimization of machine learning models, but in our case, we use
it to optimize the data parameters. The TPE optimization can be considered as a very
simplified model of the researcher’s optimization procedure. Of course, a researcher’s
behavior does not exactly correspond to the mathematical procedure of the TPE. How-
ever, if researchers perform intentional (over-)optimization, then they might indeed
use an optimizationmethod such as the TPE to find the best data settings. TheBayesian
optimization mimics the researcher’s (unintentional) over-optimization in the follow-
ing sense: as mentioned above, a researcher developing a new cluster algorithm might
sequentially look for data settings in which the new algorithm performs well, taking

4 https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.TPESampler.html, visited:
05/31/2021.
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into account performance information from previously tried data parameters. This is
the reason why we chose the TPE over a simple grid search or random search, because
the latter do not use previously obtained performance information. To make the TPE
processmore “realistic”, we supplied a grid of limited discrete values to the TPE, given
that a researcher presumably would not try arbitrary real numbers. We performed this
experiment with only 100 optimization steps for each of the three types of datasets, in
order to fairly represent a researcher trying different data parameters by hand.

After determining the optimal values for the data parameters (which we will later
report in Table 1 in Sect. 4.1), we analyzed the performance of Rock for non-optimal
parameter values. That is, for each dataset and single data parameter in turn, the
parameter was varied over a list of values, while the other data parameters were kept
fixed at their optimal values. For example, for the TwoMoons dataset we tried different
jitter values and plotted the corresponding performance as measured by the mean AMI
over ten random seeds against the jitter, keeping the sample size at the optimal value
determined by the TPE. These analyses show the effects of selectively reporting only
the best data parameters versus the performance of the algorithm over a broader range
of each data parameter.

In the experiments given so far, we always considered the AMI averaged over ten
random seeds. In the final step of the analysis for this section, we specifically study the
influence of individual random seeds. We take the Two Moons dataset as an example,
with a data parameter setting which is not optimal for Rock, but for which DBSCAN
performs very well. We generate 100 datasets with these characteristics by setting 100
different random seeds, to check whether there exist particular seeds for which Rock
does perform well, leading to over-optimization potential.

For all experiments described so far, we applied reasonable parameter choices
(defaults or heuristics) for the cluster algorithms. For Rock we chose tmax = 15, as
done for all experiments in the original paper (Beer et al. 2019), and for the competing
algorithms see the appendix A.

Optimizing the algorithm’s parameters or characteristics. For this example we varied
Rock’s hyperparameter tmax (maximum number of iterations). As tmax is discrete with
a reasonable range of {1, . . . , 30}, a researcher could easily try every value by hand.
Thus we did not perform optimization with the TPE, but with a full grid search, i.e.,
we calculated the AMI performance of Rock for each value of tmax and for each
dataset. For this illustration, we considered the absolute performance of Rock, given
researchers would also strive to maximize the absolute performance of their novel
algorithm.

As exemplary datasets, we again considered Two Moons, Blobs and Rings, and
additionally four real datasets frequently used for performance evaluation: Digits,
Wine, Iris and Breast Cancer as provided by scikit-learn5 (see also the UCI Machine
Learning Repository, Dua and Graff 2017). The data parameter settings for the three
synthetic datasets (sample size, amount of jitter etc.) corresponded to the optimal
settings from the TPE optimization of (1). We used a single random seed to generate
the illustrative synthetic datasets.

5 https://scikit-learn.org/stable/datasets/toy_dataset.html, visited: 05/31/2021.
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In a next step, using the Two Moons dataset as an example, we compared the AMI
performances of Rock and DBSCAN over ten random seeds, first without, then with
hyperparameter optimization for Rock and DBSCAN. We used the TPE for HPO of
DBSCAN. Here, the TPE was not intended to model a researcher’s behavior, but was
used as a classical HPO method. The comparison illustrates the effect of neglecting
parameter optimization for competing algorithms.

Optimizing the choice of competing algorithms.We did not perform new experiments
here. Rather, we looked at the results from the two previous optimization tasks to
derive the potential for optimization of the choice of competing cluster algorithms.

4 Results

We present our results for the three optimization tasks outlined above, starting with
the optimization of datasets and data characteristics.

4.1 Optimizing datasets and data characteristics

In this subsection we examine how strongly the choice of the “best” properties of a
dataset, along with the type of dataset, can influence the performance estimation of
Rock.

4.1.1 Optimization of the data parameters with TPE

Table 1 reports the optimal data parameters for the three synthetic datasets as deter-
mined by the TPE optimization. The search space for each parameter is given in
parentheses and consists of discrete values. The column “AMI diff.” shows the dif-
ference of the AMI obtained by Rock to the AMI obtained by the best competitor
(averaged over ten random seeds). Recall that the AMI difference was used as the
optimization criterion by the TPE to find the “optimal” parameter configuration. The
column “Abs. AMI” denotes the absolute performance of Rock as measured by the
AMI averaged over ten random seeds. The standard deviation over the seeds is also
displayed.

Table 1 Optimal data parameters as determined by the TPE optimization

Dataset Sample size Jitter # of dim. # of clusters AMI diff. Abs. AMI

Two Moons 1000 0.15 2 2 +0.3581 0.7881

([1, 16] · 100) ([1, 20] · 0.01) (default) (default) ±0.1583

Blobs 300 – 3 2 +0.0475 0.8881

([1, 16] · 100) ([2,20]) ([2,10]) ±0.1573

Rings 1600 0.02 2 2 +0.1789 0.1789

([1, 16] · 100) ([1, 20] · 0.01) (default) (default) ±0.0026
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Fig. 1 Optimization progression for the Two Moons dataset, with the AMI difference averaged over ten
random seeds

Fig. 2 Example datasets (Two Moons, Blobs, Rings) with the optimal data parameters. For the Blobs
example we only show the first and second dimensions

For the example of the TwoMoons dataset, Fig. 1 shows a graphical representation
of the TPE process over 100 optimization steps. The final “optimal” result is given by
the best trial out of the 100 trials. The datasets with the optimal settings are pictured
in Fig. 2, using a single illustrative seed of 0.

Judging from the results in Table 1, Rock appears to show better performance
than its competitors. A researcher could use the results to claim Rock’s “superiority”.
However, the absolute performance of Rock for the Rings dataset is not very good
with a mean AMI of only 0.1789. Rock is only the best algorithm here because the
competing methods completely fail to detect the clustering. A researcher who tries to
optimize the data types might thus decide to let the Rings dataset disappear in the “file
drawer”, particularly if he/she must omit some results due to page limits, and only
present the Two Moons and Blobs datasets, for which Rock performs well, both in
absolute and in relative (compared to competitors) terms. But would this presentation
for Two Moons and Blobs be over-optimistic? To obtain a more realistic picture of
Rock’s abilities, we analyze the results when the data parameters are not set at the
optimal values, but varied over a grid.

4.1.2 Varying the data parameters

Weconsider the influence of the sample size, the number of dimensions and the amount
of jitter. For each data parameter, we pick one data type for illustrative purposes (either
Two Moons or Blobs). The data parameters that are not currently considered are set

123

84 Chapter 9. Over-optimistic evaluation of cluster algorithms



T. Ullmann et al.

a

b

c

Fig. 3 a Varying the sample size for the Two Moons dataset (jitter = 0.15), b varying the number of
dimensions for the Blobs dataset (sample size = 300, number of blobs = 2), c varying the jitter amount for
the Two Moons dataset (sample size = 1000)

to their optimal values from Table 1. Figure 3a–c show the performance of Rock and
its competitors measured by the AMI over ten random seeds, depending on the varied
data parameters. The border around each line shows the standard deviation over the
seeds. Red squares indicate the optimal setting from Table 1.

Sample size.Herewe consider the TwoMoons dataset in Fig. 3a.We tried the following
sample sizes: 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600. The jitter value
is set at its optimal value 0.15 from Table 1. Rock indeed appears to perform better
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here than its competitors over a broader range of numbers of samples, not just for the
optimal setting. However, at smaller sample sizes, the difference to k-means, spectral
clustering andMeanShift is less impressive than atRock’s optimal setting ofn = 1000.

Dimensionality. The Blobs dataset is analyzed in Fig. 3b, varying the number of
dimensions over {2, 3, 4, 5, 10, 15, 20}. The sample size is set at 300 and the number
of generated blobs is 2, according to Table 1. Rock performs better than competitors
mainly for small dimensions. Once the number of dimensions exceeds 5, Rock cannot
outperform k-means and Spectral Clustering.

Jitter. The amount of jitter is varied for the Two Moons dataset, see Fig. 3c. We tried
the following jitter amounts: 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. The sample size
is set to the optimal value of 1000 according to Table 1. Rock performs better than
its competitors for the jitter set at 0.15 and above. However, for lower jitter values,
Rock cannot outperform DBSCAN. Moreover, for jitter values of 0.25 and 0.30, the
difference from Rock to k-means, spectral clustering and Mean Shift is quite low and
not as impressive as at the optimal setting of 0.15.

To summarize, the performance of Rock is not robust with respect to variation of
the data parameters, which leads to potential for over-optimization. While Rock is
indeed better than its competitors for certain ranges of the data parameters, there are
also settings for which Rock either does not perform better than the competitors, or the
performance advantage is small. Thus the apparent “superiority” of Rock is generally
less impressive than indicated by the results found from the TPE optimization in
Table 1.

4.1.3 Influence of the random seed

For the analyses mentioned so far, the mean AMI over ten random seeds was consid-
ered. However, it is also possible that a researcher chooses a particular random seed
for which Rock performs well. As seen in Fig. 3c, Rock is outperformed by DBSCAN
on the Two Moons dataset for a jitter value of 0.05 and 1000 samples. This statement
is based on the AMI averaged over 10 random seeds. But could there also be particular

Fig. 4 Performance of the cluster algorithms on the Two Moons dataset (sample size = 1000, jitter = 0.05)
over 100 random seeds
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random seeds for which Rock does perform well? In Fig. 4, we display the behavior
of Rock and its competitors over 100 different random seeds. Since Rock performs as
well as DBSCAN for some particular seeds, there is potential for an over-optimizing
researcher to pick such a seed.While deliberately trying multiple seeds and presenting
only the best one can be considered as malicious behavior, it is also possible that the
seed set by the researcher is by chance a “good one”, and that the researcher does
not consider a dependence of the performance on the random seed. To avoid such
unintentional over-optimism, it is advisable to account for sampling variability and
average over multiple random seeds, even when the cluster algorithm itself is deter-
ministic. While the practice of sampling multiple datasets from a data distribution
is well-known in statistics, this is sometimes neglected when evaluating data mining
tasks like clustering.

4.2 Optimizing the algorithm’s parameters

We analyze how the hyperparameter tmax of Rock can be optimized. In contrast to the
previous sections, we now consider the absolute performance of Rock, given that a
researcher would presumably not only try to outperform competitors, but also strive
to obtain AMI values for Rock which are close to 1.

Additionally to Two Moons, Blobs and Rings, we consider the four real datasets
mentioned inSect. 3.2:Digits,Wine, Iris,BreastCancer. For theTwoMoons,Rings and
Blobs datasets, we used the optimal data parameters from Table 1 and only generated
a single illustrative dataset for each type by using 42 as a random seed. In accordance
with typical evaluation of cluster algorithms, we do not split the datasets into training
and test sets (see, however, the discussion in Sect. 6.2).

Figure 5 shows the performance of Rock asmeasured by theAMI, over tmax ranging
from 1 to 30.

It can be seen that for different datasets, different tmax values are optimal. An
optimistic researcher could report (only) the best tmax and the corresponding perfor-
mance for each dataset. Optimizing hyperparameters of a cluster algorithm based on
the “ground truth” of datasets (here via the AMI) is frequently seen in the literature.

Fig. 5 Varying the hyperparameter tmax of Rock for different datasets
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But as mentioned above, this could be over-optimistic with regards to the future per-
formance of the algorithm: the evaluation of a novel algorithm is ultimately supposed
to give hints about how well the algorithm will perform in future applications. But
applied researchers usually do not know the “true” cluster labels of their datasets, as
otherwise there would be no need for clustering. Thus the applied researchers cannot
use a “ground truth” to determine a good tmax value for their specific datasets, and
will thus obtain worse results for their datasets than the performances reported in the
original paper which introduced the cluster algorithm. We will further discuss this
issue in Sect. 5.1.

An alternative to reporting the best tmax for each dataset individually is to look
for a tmax value that leads to good performance for multiple datasets. For example,
tmax = 12 yields reasonable performance values for Blobs, TwoMoons and Iris. Thus,
optimistic researchers might only report these three datasets with tmax = 12 and claim
that this choice of tmax will performwell for future datasets. However, such a statement
would likely be over-optimistic as tmax = 12 was chosen on only a few datasets, and
considering the varied behavior of the different datasets for different tmax in Fig. 5.

Over-optimismcannot only result fromoptimizing the hyperparameters of the novel
algorithm, but also from simultaneously neglecting to optimize the hyperparameters
of the competing algorithms. As an example, we compare Rock with DBSCAN on the
TwoMoons dataset, with the data parameters optimized for Rock from Table 1. Recall
that in Sect. 4.1, we did not perform hyperparameter optimization, and instead used
hyperparameter defaults or heuristics for the algorithms which could be reasonably
justified (see also the appendix A): for Rock, tmax = 15 as in the original paper of Beer
et al. (2019), and for DBSCAN,minPts = 2·#of dimensions, leading tominPts = 4
for Two Moons, and eps = 0.2. The AMI for Rock for this case is 0.7881 ± 0.1583
(mean and standard deviation over ten random seeds), see also Table 1. This mean
value is different from the AMI value in Fig. 5 at tmax = 15, because a single seed was
used for the latter. The AMI performance of DBSCAN was only 0.0007 ± 0.0024.

We then performed hyperparameter optimization for both cluster algorithms (with
regards to the absolute AMI performance over ten random seeds). For Rock, we per-
formed a simple grid search over tmax ∈ {1, 2, . . . , 30}. The optimal performance
is at the previously used default tmax = 15, thus again yielding a mean AMI of
0.7881 ± 0.1583. This is not surprising, given that tmax = 15 was used in Sect. 4.1
to optimize the data parameters of Two Moons such that Rock obtains superior per-
formance (although the performance difference was used as the optimization criterion
in that section). For DBSCAN, we performed hyperparameter optimization with the
TPE, and obtained optimal parameters of minPts = 41 and eps = 0.4, leading to
a performance of 0.8300 ± 0.0244, which is a major improvement over the previous
performance of DBSCAN. Thus DBSCAN outperforms Rock after hyperparameter
optimization. This demonstrates that if researchers decide to perform hyperparameter
optimization for the cluster algorithms to be compared, they should conduct the opti-
mization not only for their own algorithm, but also equally carefully for all competing
methods.

Returning to the topic of data type optimization (Sect. 4.1), Fig. 5 also shows the
potential for picking specific datasets for which Rock performs reasonably well (e.g.
Blobs, Iris, Two Moons) and discarding the ones with worse performance (Digits,
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Rings). Again, over-optimization is marked by selective reporting: while no cluster
algorithm can be expected to perform well on all types of data, it is still important to
report data types for which a novel algorithm fails to detect clusters, to illuminate the
limitations of the new method.

4.3 Optimizing the choice of competing algorithms

Here we revisit the results from Sect. 4.1 to analyze whether there is potential for pick-
ing specific competing cluster algorithms such that Rock appears better. For example,
Fig. 3a–c show that Rock often performs better than DBSCAN, which was also due
to neglecting hyperparameter optimization for DBSCAN, cf. Sect. 4.2. By picking
suitable data parameter ranges, an over-optimistic researcher could praise the drastic
performance improvement from Rock over DBSCAN. The same figures show that
Rock is often better than Mean Shift. Thus, there is the potential for the following
narrative: “Rock is an improvement of Mean Shift”. As the figures show, this claim
would sweep some caveats under the carpet. For example, the other competitors, k-
means and spectral clustering, are (almost) as good as Rock for the Blobs dataset in
Fig. 3b.

5 Discussion

We have illustrated that selective presentation of performance results can lead to over-
optimistic assessment of a novel cluster algorithm. Neglecting to show limitations of a
new algorithm can lead to users applying it in inappropriate settings for the algorithm,
which leads to unusable results. In this section, we discuss potential further aspects
of over-optimism that we did not focus on, but would be interesting to study in future
work.

5.1 Hyperparameter tuning and development of the algorithm

As explained in Sect. 4.2, the current standard of reporting the performance of a
novel algorithmwith hyperparameters optimized to the clustering “ground truth” (e.g.,
with a grid search) is likely over-optimistic. Using the ground truth of datasets for
performance evaluation of a novel algorithm has a further drawback: as the number of
datasets labeled by experts is limited, researchers using these datasets optimize their
algorithm’s characteristics on these few labeled real world datasets, or alternatively use
(unrealistic) synthetic datasets. Datasets such as TwoMoons and Blobs are frequently
used, but providevery limited information about how the cluster algorithmwill perform
in much more complex applied settings.

The optimization to a few datasets might not only concern the hyperparameters
of the algorithm, but also the characteristics of the algorithm which are explored in
the development phase. For example, Rock contains some “hidden hyperparameters”
such as the growth rate of the number of neighbors considered in each iteration, or the
weighting of the different nearest neighbours (Beer et al. 2019). These characteristics
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are not intended to be changed by the user, but were decided on by the researchers dur-
ing the development of the algorithm. However, if such characteristics are optimized
according to the performance on just a few selected datasets, then this might result in
an over-optimistic “overfitting” effect.

5.2 Evaluationmeasure

For all our experiments in this paper we used the Adjusted Mutual Information (AMI)
as measure for the quality of clustering. Other partition similarity indices such as
the Normalized Mutual Information (NMI, Strehl and Ghosh 2002), Adjusted Rand
Index (ARI, Hubert and Arabie (1985)), Accuracy and F1-measure are often used in
the field (see also Albatineh et al. (2006), for an overview). They all range in [−1, 1]
resp. [0, 1] and describe how well the clustering results correspond to a ground truth,
but have slightly different behaviors (Pfitzner et al. 2009). These indices are also called
external validation indices, because they require an externally known partition (the
ground truth) for evaluation. Yet evaluating a clustering based on the given “ground
truth”might not always be the best choice. There could be interesting cluster structures
in the data which differ from the given “true” labels, particularly because there is no
unique definition of what a “good” clustering is (Hennig 2015). Moreover, as pointed
out above, many real world datasets do not come with given labels. Thus researchers
might also use internal validation indices (Halkidi et al. 2015) which do not require
knowledge of the “true” labels, but evaluate a clustering based on internal properties
of the data alone. Popular internal indices which measure within-cluster homogeneity
and between-cluster heterogeneity/separateness include the Average Silhouette Width
index (Kaufman and Rousseeuw 2009), the Caliński-Harabasz index (Caliński and
Harabasz 1974), and the Davies-Bouldin index (Davies and Bouldin 1979). Such
indices can also be used for performance evaluation of novel clustering algorithms,
yet they might be susceptible to the over-optimism mechanisms outlined above. For
example, researchers could optimize datasets and data characteristics with respect to
an internal index, such that this index indicates a good performance for the new cluster
algorithm, analogous to the optimization with the AMI discussed in Sect. 4.1.

The multitude of possible evaluation criteria—external or internal – gives rise to
another potential source of over-optimism: Researchers could try different measures
and pick the one that is most favorable to their novel algorithm. While researchers
might be understandably uncertain about which evaluation measure to choose, they
should not try different measures and then pick only the most favorable one after
having seen the results. Researchers should carefully consider before starting the
experimental evaluation which performance criterion is of particular interest in the
considered context. If multiple measures are tried, then these should all be reported.

5.3 Preprocessing

Preprocessing the data can significantly influence the results of clustering. In our study,
we scaled all the datasets. There are different normalizations that may be applied to the
data, as well as methods to remove outliers or noise to improve the clustering results.
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To avoid over-optimism, researchers should refrain from trying different preprocessing
methods and reporting only the one most favorable to their new algorithm. Moreover,
the same preprocessing steps should be applied to all datasets and for all compared
cluster algorithms. Otherwise, if only the new algorithm is combined with suitable
preprocessing, it might have an unfair advantage. A clear distinction should be made
between preprocessing steps and steps belonging to the new cluster algorithm.

5.4 Theoretical evaluation

While we focus on the experimental evaluation of cluster algorithms with simulated or
real-world datasets, it would also be interesting to study over-optimism in the context
of theoretical analyses of algorithms. For example, researchers often make claims
about their novel algorithms which they prove mathematically. But they could use
very specific assumptions to yield the desired results. It might not always be easy
for readers to judge how unrealistic these assumptions are, i.e., to which extent the
assumptions restrict the use of the algorithm in real-world applications.Authors should
thus alwaysmake their theoretical assumptions very clear, and thoroughly discuss how
restrictive they are.

While theoretical analyses can, in principle, be affected by over-optimism, they are
often a vital part of the evaluation of novel cluster algorithms. Theoretical results, if
carefully deduced, can give a more complete picture of the algorithm’s capabilities.
Authors who thoroughly analyze their novel algorithm from a theoretical perspective
might also use this background knowledge to choose a suitable and clearly defined
experimental study design, such that unintentional over-optimization in the experi-
mental part of the analysis could sometimes be partially avoided.

6 Possible solutions

Aswe have illustrated, there might be a strong over-optimistic bias when introducing a
new cluster algorithm. How can such a bias be avoided or corrected? We discuss three
options that all researchers can consider using in their research: (1.) avoiding selective
reporting and analyzing robustness, (2.) evaluating the new method on independent
data, and (3.) performing neutral benchmark studies. Moreover, we discuss (4.) how
changing incentives in research culture and the publication system (that are beyond
the control of individual researchers) might help to reduce over-optimism.

6.1 Avoiding selective reporting and analyzing the robustness of the algorithm

Our results have shown that over-optimistic presentation ultimately requires a certain
amount of selective reporting, i.e., reporting only specific scenarios in which the new
algorithm performs well. This might happen if many different scenarios are tried
and only the “best” ones are reported, while the others are buried in the file drawer.
Researchers might also omit the analysis of certain scenarios a priori, for example,
when only considering data simulated according to a specific model. Such constraints
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should be clearly explained, and the performance of the algorithm should not be
oversold.

In the context ofmodel-based cluster algorithms (seeMcLachlan et al. (2019) for an
overview), selective reportingmight be easier to detect. For example, ifmainly datasets
generated by the model of the newly developed algorithm are chosen, and/or the novel
algorithm is compared with competing methods that were developed for the detection
of clusters generated by other models, then the novel algorithm immediately has an
advantage, which can be easily spotted. Nevertheless, there is still potential for an
over-optimistic selection of datasets and comparative methods among all “reasonable”
possibilities. Moreover, other potential sources of over-optimism discussed above,
such as (hyper)parameter optimization, are also existent for model-based clustering.
Readers and reviewers of articles about novel model-based cluster algorithms should
keep this in mind, and the authors themselves must be careful to avoid over-optimistic
choices.

Ideally, researchers should report scenarios in which their algorithm performed
worse, to give a more realistic picture of the limitations of the novel approach. This
may also require researchers to check the robustness of their algorithm (cf. Sect. 2.3):
if the cluster algorithm is not robust with respect to certain data parameters, this should
be honestly reported. Discussing the evaluation results for various parameter choices
could also be beneficial as there is often not a single “best” choice and different
parameters could be useful in different applications (Cerioli et al. 2018).

6.2 Validation on independent data

It is advisable to evaluate a new algorithm’s performance on fresh data that was not
used for developing the algorithmand assessing its performance (Jelizarowet al. 2010).
As we have demonstrated in Sects. 4.1 and 4.2, looking for specific data parameters or
tweaking the algorithm’s hyperparameters might cause unintentional overfitting to the
datasets used during the research process. As discussed in Sect. 5.1, overfitting to the
used datasets could also concern the algorithm’s characteristics that were engineered
in the development phase. The algorithmmight not perform quite as well on new data,
which would constitute a more realistic assessment of its performance.

More realistic performance values might also be obtained by taking inspiration
from supervised classification and splitting the used datasets into “training” and “test”
sets (Ullmann et al. 2021). Then hyperparameters such as tmax are optimized on the
training set, and the chosen tmax is evaluated on the test set to assess performance.
This could partially avoid “overfitting” of the hyperparameters to the data. However,
a) this splitting procedure does not say anything about the performance on genuinely
new data/data from different distributions, and b) when using the ground truth for
optimization on the training set, this does not solve the problem that applied researchers
who wish to use the new cluster algorithm in practice usually do not know the ground
truth of their datasets, and thus cannot use the hyperparameter optimization procedure
of the original authors. Therefore, it is advisable for authors who introduce a new
algorithm to discuss and evaluate criteria for hyperparameter choice that do not require
the ground truth, for example internal validation indices. Such indices could be used to
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choose hyperparameters on the training set, and to evaluate the chosenhyperparameters
on the test set to ensure that potential overfitting effects are detected.

6.3 Neutral benchmark studies

Awareness about the dangers of selective reporting and the importance of evalua-
tion on fresh data might help to alleviate the problem of over-optimism. Academic
teaching/training and illustrative studies such as ours can contribute to creating such
awareness.Moreover, followingguidelines formethodological computational research
can help researchers avoid over-optimism (Boulesteix 2015). Ultimately, this will
probably not solve the problem completely. Researchers are incentivized by the pub-
lication system to present their new algorithm favorably, which is unlikely to change
in the short term (see 6.4). They are also more competent with respect to their own
methods—and thus more likely to use them optimally than competing methods when
conducting the evaluation. Thus, neutral benchmark studies are additionally required.

A neutral benchmark study is characterized by the comparison of existing algo-
rithms (instead of the introduction of a new method), and neutrality of the authors,
i.e., the authors do not have a vested interest in a particular method showing better
performance than the others and are as a group approximately equally familiar with
all considered methods, see Boulesteix et al. (2013, 2017) for an extensive discussion
of these concepts. As mentioned in the introduction, neutral benchmark studies are
less likely to suffer from over-optimism and usually offer a more realistic performance
evaluation than studies presenting new methods.

In the field of clustering methodology, neutral benchmark studies are rarer than for
supervised classification. Lately, however, there have been some advances: guidelines
for performing benchmark studies for cluster algorithmswere published inVanMeche-
len et al. (2018). Following these guidelines, Hennig (2021) compared nine popular
cluster algorithms, mainly with respect to various internal validation indices, but also
regarding the recovery of the “true” clusterings. For an overview of previous cluster
benchmark studies, see Van Mechelen et al. (2018) and Hennig (2021). In principle,
the guidelines of Van Mechelen et al. (2018) could and should also be followed by
non-neutral researchers who evaluate their new algorithm.

6.4 Changing incentives in the culture of research and the publication system

The three possible solutions presented so far are in principle accessible to individual
researchers or teams of researchers. Ultimately, however, each researcher is subject
to the constraints of the research and publication system. For example, researchers
might hesitate to report limitations of their novel algorithm, because this could reduce
their chances of getting published. Moreover, it can still be difficult to publish a neu-
tral comparison study as many journals and conferences—stressing the importance of
“novelty”—prefer studies introducing new methods (Boulesteix et al. 2018). In our
view, changes in this attitude are necessary to further reduce over-optimism.Accepting
neutral benchmark studies for publication should become more widespread. Further-
more, reporting limitations of novel algorithms should not be considered a “failure”
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and instead an integral part of a healthy research culture. Journals and conferences
should actively encourage authors to report scenarios in which their new algorithm
does not perform optimally, or at least should not consider such reporting to be a
cause for rejection. At the same time, editors and reviewers play an important role
in filtering manuscripts in which authors do not carefully justify their experimental
choices and only present very specific settings, which may be a hint that the results
could potentially be over-optimistic. It should be taken into account, however, that
even when a persuasive justification is given, the authors might still have arrived at
these choices by (intentional or unintentional) over-optimization.

7 Conclusion

We have shown that studies which introduce new cluster algorithms might be affected
by over-optimistic presentation of the results. For illustrative purposes, we have
demonstrated different over-optimismmechanisms using the recently developed Rock
algorithm as an example. While this is a specific example, we believe that these mech-
anisms might similarly apply to other novel clustering algorithms. We have also given
some recommendations for avoiding over-optimism. It is our hope that going forwards,
these guidelines will be taken into account. After all, overselling of novel methods
does not contribute to genuine scientific progress.
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A Appendix

In this appendix we give some details about the implementation outlined in Sect. 3.2.
More information can be found in our fully reproducible code which is available
at https://github.com/anonresearcher461/over-optimism. All experiment were per-
formed with Python6, version 3.9.5.

A.1 Adjustedmutual information (AMI)

Here we give the mathematical definition of the Adjusted Mutual Information Score
(AMI, Vinh et al. 2010) which we use to compare the calculated clusterings with the
“true” cluster labels. To define the AMI, we first discuss the entropy H of a single
clustering and the Mutual Information (MI) of two clusterings. See Vinh et al. (2010)
and Meila (2015) for more detailed explanations.

Let C and C ′ be two clusterings with k respectively l clusters. Let ni j , i =
1, . . . , k, j = 1, . . . , l the number of data points which are in cluster i of C and
cluster j of C ′. Let ni• and n• j be the respective marginal sums, and n the overall
number of data points.

The entropy H of clustering C is defined as

H(C) = −
k∑

i=1

ni•
n
log

(ni•
n

)
.

The entropy can be interpreted as the level of uncertainty associatedwith the clustering
C . The Mutual Information (MI) of the clusterings C,C ′ is defined as

MI (C,C ′) =
k∑

i=1

l∑
j=1

ni j
n

log

(
ni j/n

ni•n• j/n2

)
.

The MI measures to which extent knowledge of the clustering C reduces uncertainty
about the clustering C ′. The MI is a symmetric measure, and it holds that

0 ≤ MI (C,C ′) = MI (C ′,C) ≤ min(H(C), H(C ′)).

6 https://www.python.org, visited: 05/31/21.
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The MI can be normalized to ensure the measure ranges in [0, 1], yielding the
Normalized Mutual Information (NMI):

NMI (C,C ′) = MI (C,C ′)
avg(H(C), H(C ′))

.

Different choices for the “average” avg are possible, e.g., the arithmetic mean, the
geometric mean, the minimum or maximum. We use the arithmetic mean (Kvalseth
1987), which is the scikit-learn default.7

Both theMI andNMI tend to increase with an increasing number of clusters, even if
the information sharedmutually between the clusterings does not actually increase. To
account for this effect, the MI can be adjusted for chance: the MI ofC,C ′ is compared
with the expected MI for two random clusterings drawn from a permutation model
(see Vinh et al. (2010) for details). The Adjusted Mutual Information Score (AMI) is
thus calculated as follows:

AMI (C,C ′) = MI (C,C ′) − E[MI (C,C ′)]
avg(H(C), H(C ′)) − E[MI (C,C ′)] . (2)

The AMI attains its maximum value of 1 if the two clusterings are identical, and
equals 0 if the MI between the two clusterings is equal to the MI value expected for
two random partitions. Negative values occur if the agreement between C and C ′ is
“worse” than chance.

A.2 Scaling of the datasets

All datasets used in our study were scaled with the scikit-learn standard scaler8, by
subtracting the mean and dividing by the standard deviation of each variable. That is,
for each dataset D = (xi j )i=1,...,n, j=1,...,d , with n samples and d dimensions, each
entry xi j is scaled according to

xi j − 1
n

∑n
i=1 xi j√

1
n

∑n
i=1

(
xi j − 1

n

∑n
i=1 xi j

)2
A.3 Details about the blobs dataset

The Blobs dataset9 consists of isotropic Gaussian clusters, i.e., each cluster k ∈
{1, . . . , K } (with K the number of generated clusters) corresponds to a Gaussian
distribution with covariance matrix σ 2

k Id , where σ 2
k ≥ 0 and Id is the d-dimensional

7 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html,
visited: 05/31/2021.
8 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html, visited:
05/31/2021.
9 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html, visited: 05/31/
2021.
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identity matrix. We chose a standard deviation of σk = 3 k
K for each cluster k. This

generates different variances for the clusters, making some clusters more compact and
thus easier to detect, and others more scattered and harder to find.

A.4 Bayesian optimization (BO) and the tree-structured parzen estimator (TPE)

BO approaches (see Shahriari et al. (2016) for an introduction) are popular for
optimization problems of the type argmaxx∈X f (x), where f : X �→ R is
expensive to evaluate. In each step of a BO procedure, f is modelled with a
surrogate model, based on a library of evaluations of f from previous steps:
((x (1), f (x (1)), . . . , (x (k−1), f (x (k−1))). The surrogate model is used to construct
an acquisition function, which is cheaper to evaluate and easier to optimize than
f , yielding the optimal argument x (k). Then (x (k), f (xk)) is added to the library,
and the process is repeated by updating the surrogate model. The concrete surrogate
model and the acquisition function of the TPE were chosen by Bergstra et al. (2011)
such that optimization of the acquisition function ultimately leads to optimization of
x �→ l(x)/g(x), where l(x), g(x) are two Gaussian Mixture Models. l(x) is fitted to
the observations (x (i))i that performed well so far, i.e., for which f (x (i)) > y∗ for
some threshold value y∗. g(x) is fitted to the remaining observations. The threshold y∗
is chosen as a quantile of the observed y(i) = f (x (i)) values, such that p(y > y∗) = γ

for a suitable γ ∈ (0, 1). Formore details on the TPE, see the original paper of Bergstra
et al. (2011), the Optuna documentation10, and our reproducible code.

A.5 Default settings for the hyperparameters of the cluster algorithms

For the analysis in Sect. 4.1 (optimizing datasets and data characteristics), we used
defaults or heuristics for the hyperparameters of the cluster algorithms which a
researcher could justify as “reasonable choices”. For Rock, we chose tmax = 15,
as in the original paper of Beer et al. (2019). For k-Means and Spectral Clustering
we used the number of ground truth clusters for the parameter k and the default
settings from scikit-learn. For DBSCAN, we followed Schubert et al. (2017) to set
minPts = 2d with d being the number of dimensions. Moreover, we set eps = 0.2,
which can be seen as a sensible value, given that the samples were scaled to unit vari-
ance. For estimation of the bandwidth for Mean Shift we use the scikit-learn function
estimate_bandwidth11.
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Abstract. In this short paper, we outline the idea of applying the concept of a
learned index structure to approximate nearest neighbor query processing. We
discuss different data partitioning approaches and show how the task of identify-
ing the disc pages of potential hits for a given query can be solved by a predictive
machine learning model. In a preliminary experimental case study we evaluate
and discuss the general applicability of different partitioning approaches as well
as of different predictive models.

1 Introduction

Nearest neighbor (NN) search is prevalent in many applications such as image retrieval,
recommender systems, and data mining. In order to process a NN query efficiently
appropriate data structures (usually called index structures) that enable identifying the
result of a query by examining only a sub set of the entire data set are typically used.
Additional speed-up can be gained by approximate nearest neighbor (ANN) search that
trades accuracy for query time which is acceptable in many applications.

In this short paper, we examine the applicability of a new emerging paradigm, so-
called learned index structures (LIS), for ANN query processing. The idea of LIS has
been coined in [1] where the authors show that an index for 1D search keys (e.g. a B+-
tree) is essentially similar to a regression model: the index induces an ordering of the
keys and stores the data objects according to this ordering on disc pages (blocks). The
corresponding learning task is, given the keys (observations) as training data, to train
a predictive model (function) that determines the physical page address for each key.
Processing a query is then simply applying the predictive model to the query key, i.e.,
predicting the addresses of the blocks (pages) on disc where the results of the query are
located. While this approach works pretty well for primary key search, such as exact
match queries and range queries on 1D data, we present one of the first works towards
extending LIS to multi-dimensional spatial queries such as (A)NN queries.

This work aims at exploring the general applicability of LIS for multi-dimensional
indexing with a focus on ANN queries. We discuss the two basic challenges any index
structure has to solve (see also Figure 1). First, the database needs to be partitioned
in order to store the objects in a clustered way on disc pages. We propose a new par-
titioning that adapts to the real data distribution and is based on a specific k-Means
clustering here, but any other partitioning scheme is possible, e.g. by simply taking the
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Fig. 1: A sketch of a spatial LIS: the the data (left) is partitioned and these partitions
are mapped onto disc pages. A predictive model (classifier) learns this mapping. Given
a query object q, the model predicts the disc page containing the potential NN of q.

leaf nodes of any hierarchical index structure. Second, the relationship between obser-
vations (values of the data objects) and their corresponding disc page IDs are learned
using a predictive model. An ANN query can be supported by applying the learned
prediction function to the query object. Since the predictive model may be not 100%
accurate, the predicted disc page may not contain the true nearest neighbor(s) and there-
fore only result in an approximation. We will discuss implications, potential extensions,
etc. on this aspect in detail. This way, a LIS could offer a good compromise between
existing indexing paradigms: it could combine

1. a data-centric partitioning which is usually done by hierarchical index structures
such as search trees that typically suffer from higher query costs due to the traversal
of the search tree,

2. a fast prediction of disc page IDs which can be generally achieved by hash functions
that often suffer from data-agnostic partitioning which may lead to a large number
of collisions (disc page overflows) and, as a consequence to higher query times.

The reminder is organized as follows. Section 2 discusses preliminaries and related
work. We sketch an LIS for multi-dimensional ANN query processing in 3. A prelimi-
nary empirical evaluation is presented in 4, and 5 offers a summary and a discussion of
directions for future research.

2 Background

2.1 ANN Query Processing: Preliminaries and Related Work

Given a query q, an number k ∈ N and a distance measure dist, a kNN query around q
on a data setD, NNk(q), retrieves the k objects having the smallest distance to q among
all objects in D (ties need to be resolved). Without loss of generality, we set the query
parameter k = 1 and omit it in the following. Sequentially scanning all data objects
to retrieve the NNs involves loading all pages of the entire data file from disk. Since
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this is usually not acceptable performance-wise, many approaches for speeding up NN
search using indexing techniques have been explored in recent years. A further way to
achieve speed-ups is to trade performance for accuracy of the results using approximate
algorithms that may report false hits. These ANN algorithms usually implement one of
the following index paradigms:

Hierarchical indexes are typically based on balanced search trees [2–4] that recur-
sively split the data space by some heuristics until a minimum number of objects remain
in a partition. All nodes of the search tree are usually mapped to pages on disk.Searching
theoretically requires O(log f) random page accesses on average for f data pages but
the performance typically degrade with increasing data complexity.

Hashing such as locality sensitive hashing (LSH) and variants [5–8] applies one or
more hash functions to map data objects into buckets (and store these buckets as pages
on disc). If the number of objects in a bucket exceeds the maximum capacity of a page
(e.g. due to an unbalanced partitioning), the objects are stored in any order on so-called
"overflow pages" increasing the number of page accesses necessary to answer a given
query. However, in the best case, query processing requires O(1) page accesses.

Vector quantization and compression techniques (e.g. [9–11]) aim at reducing the
data set size by encoding the data as a compact approximated representation such that
(approximate) similarity among data objects is preserved.

A significant comparison of the different methods under varying realistic condi-
tions is a generally challenging task. Thus, a benchmarking tool for ANN algorithms
have been proposed in [12]. However, we do not aim for benchmarking LIS with other
approaches here butF rather explore the general applicability of LIS to ANN queries.

2.2 Learned Index Structures

The term LIS has been introduced by [1] where the authors show how to represent an
index structures as a learning task. This pioneering work proposes a LIS for indexing
1D keys and supporting exact match and range queries. In recent years, the term LIS
has been also used for methods that utilize machine learning techniques to support any
aspect of query processing, e.g. [13] where kNN distance approximations are learned in
order to support reverse NN queries, or [14] where the authors propose a new approach
to generate permutations for permutation based indexing using deep neural networks.
The most similar approach to ours can be found in [15] and [16] where the authors
propose a learned metric index for ANN search. In contrast to our work they learn a
whole tree of prediction models to index a metric space.

2.3 Contributions

LIS may offer the best of two worlds in spatial query processing, i.e., a data-centric,
collision-free partitioning of the database and a search method that returns a result in
constant time w.r.t. page accesses even in the worst-case. In this short paper, we explore
the applicability of LIS to ANN query processing. In particular, we propose a general
schema of a LIS for ANN query processing and implement this schema with existing
techniques, e.g. k-means clustering for data partitioning. We present some first results
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on the performance of various predictive models from machine learning and derive
implications for future work.

3 Towards a Learned Index for ANN Search

The data setD is stored on disk in blocks (pages) of a fixed capacity c. Thus, depending
on c, D is distributed over a set P of p pages on disk. Processing an object o ∈ D in
RAM requires to load the entire page Po ∈ P on which o is stored.

The key to any search index is that the data objects are not randomly distributed
over P . Rather, objects that are similar to each other w.r.t. the distance dist should
be placed on the same page. There are many possible solutions for producing such a
clustered partitioning, e.g. using the buckets of LSH, the leaf nodes of a search tree or
use an unsupervised learning method. Here, we experimented with k-means clustering,
which aims at partitioning the data into k disjoint clusters maximizing the compactness
of these partitions. The idea is, to use k-means in such a way, that the number of points
assigned to each cluster is constrained by a minimum capacity (for efficient storage
usage) cmin and a maximum capacity Cmax in order to map each cluster to one data
page (Cmax usually depends on c from above). Extensions such as Constraint k-means
[17] are able to cope with these issues but are computationally very complex. Instead,
in our study, we propose to just use traditional k-means clustering. The points assigned
to a cluster Ci(1 ≤ i ≤ k) are mapped to page Pi ∈ P .

For query processing, we need to predict the page P ∈ P , the query object q would
have been placed on. This page likely contains the NN of q (depending on the partition-
ing, etc.). This prediction could be done by any machine learning model that can learn
the mapping of an object to the corresponding disk page. Analogously to hashing, such
a predictive model is a function

M : F→ P

from the feature space F of the data into the set of data pages that depends on some
model-specific parameters θM . In general, we can learn (train) the corresponding pa-
rameters θM from D (and the corresponding partitioning C1, ..., Ck). Given a query
object q ∈ F and a predictive model M trained on D, we can predict the disk page
P = M(q) by applying M on q. The page P can be loaded into main memory and
the NN of q among all objects stored on P can be determined and returned as (ap-
proximate) result. Since our data partitioning does not produce overflow pages, we only
need to access one page, i.e., P = M(q). Thus, the time complexity is guaranteed to
be in O(1) in any cases (we can usually even assume that the model M fits into main
memory). The accuracy of this procedure obviously depends on various aspects such
as the accuracy of the prediction, the data partitioning, etc., some will be examined in
Section 4. However, we consider the optimization of such aspects as an open challenge
for future research, e.g. by aggregating more information from the partitions such as
centrality measures, distance bounds, etc.
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Fig. 2: Random 2D projections of sample clustered (left) and non-clustered (right) data.

4 Evaluation

4.1 Set-up

In order to get a first impression of the proposed LIS for ANN query processing, we
used synthetic data sets generated by the make_blobs function from sklearn1. In all ex-
periments, we generated five different random datasets and report average results. We
conducted two general runs w.r.t. the data distributions: clustered and non-clustered
data. Figure 2 depicts arbitrary 2D projections of two sample data sets from both runs.
We used 20-dimensional synthetic datasets consisting of 5000, 10000, 30000 and 50000
samples. The clustered datasets had 20 clusters with a cluster standart deviation of 0.5
and the non-clustered datasets have only a single gaussian blob with a standard devia-
tion of 1.0. Additionally, we used a low dimensional embedding of the popular MNIST
data set generated by a fully connected Autoencoder (AE). Since this paper is a prelim-
inary study of the general applicability of LIS to ANN search we did not yet compare
to other ANN methods.

We used two different accuracy scores for evaluation. First, to explore the potential
of the different predictive models to learn the mapping of objects to pages, we employed
a classical train-validation split (called validation accuracy). Second, to measure the
approximation accuracy of the query (called test accuracy), we used a withheld third
sub-set of the data (not used in partitioning or training of the predictive model) as query
objects, compared the results of these queries with the correct NN computed by a brute
force search. The accuracy is determined by the ratio of the amount of zero distance
hits and the amount of query objects. Additionally, we report the mean relative error for
ANN search in our repository2.

For the partitioning step, we used the k-means implementation from sklearn. For
comparison, we used the leaf nodes of a kd-tree (also from sklearn) as an alternative
data partitioning. As predictive models, we used diverse classifiers from sklearn, includ-
ing: Naïve Bayes, Decision Tree and Random Forest, Support Vector Machine (SVM)
with a linear and an rbf kernel, and a simple dense multi-layer perceptron (MLP). For

1 https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.make_blobs.html

2 https://github.com/huenemoerder/kmean-lis.git
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Fig. 3: Test accuracy (left charts) and validation accuracy (right charts) on clustered
data sets (upper charts: k-means partitioning; lower charts: kdtree partitioning).

these preliminary experiments we did not perform hyper-parameter tuning but used
reasonable default parameters. As a "Base Model", we assign each query object to its
closest centroid of the corresponding partition (validation accuracy of 1.0 by design).
The "size" of this model grows linearly with the number of partitions, i.e., database
size, and is expected to not fit into the cache (requiring additional page accesses on ap-
plication). The AE for the MNIST data set was implemented in pytorch3 with only one
single linear layer that maps the flattened images (784 dimensional array) to a latent
space vector of 32 dimensions (using Leaky ReLU as activation).

4.2 Results

We analysed the relationship between the test accuracy and the number of samples and
number of partitions, i.e., data pages. In all runs, we kept the capacity of pages fixed but
changed the number of data points n accordingly. Figure 3 displays this relationship on
clustered data sets. In general, we can see that both the test accuracy and the validation
accuracy drops with increasing number of partitions. This is somehow intuitive: with
increasing number of partitions (and data points), the mapping that has to be learned
by the predictive model becomes more and more complex. It is interesting to note that
for most models the validation error (right charts) remains better than the test accuracy
(left charts), i.e. even though, the mapping is learned well, the true NNs for the query

3 https://pytorch.org/
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objects are approximated not quite as well. In these cases, the partitioning model seems
to not optimally fit the real data distribution and therefore even with a perfect predictive
model some queries can be placed in an unsuitable data page. This is also reflected in
the fact that the kd-tree partitioning performs even worse in terms of test accuracy, since
the clustered dataset was created in a way that favours k-means. We can also observe
that the Decision Tree classifier shows perfect validation accuracy for the kd-tree parti-
tioning, while showing the worst performance for k-means. This suggests that choosing
a fitting pair of prediction and partitioning algorithm is vital to at least result in a high
validation accuracy. These observations are further confirmed by the non-clustered data
sets (the results can be found in our repository4). Additionally, this is further reflected
in our results on MNIST in Table 1, where the test accuracies for the kdtree paritioning
are significantly worse than the ones for k-means. Generally further experiments and
benchmarking are obviously necessary to obtain more significant results.

5 Summary

In this short paper, we applied the idea of LIS to ANN query processing and examined
its general applicability to this problem. We explored a new data partitioning based on
k-means clustering and applied the standard predictive models from machine learning
in a simple set up. The results are generally promising for synthetic (clustered/non-
clustered) and real data such that we think it is worth putting more future focus on
LIS. For example, exploring new ways for data partitioning including a more thorough
evaluation of different existing partitioning schemes could be interesting. Also, under-
standing the relationship between data characteristics, properties of the partitioning,
and the accuracy of different predictive models could be a promising research direction
that may lead to approaches that better integrate partitioning and learning. Additionally,
exploring postprocessing methods to increase accuracy, e.g. use additional information
from training as well as from the partitioning like distance bounds would be helpful.
Last not least, the application of LIS to other types of similarity queries is still an open
research question.

4 https://github.com/huenemoerder/kmean-lis.git

Table 1: Results on MNIST data set (k-means partitioning)
k-means KDTree

Classifier Validation Accuracy Test Accuracy Validation Accuracy Test Accuracy
Base Model 1.000 0.8808 0.5407 0.4974
Naïve Bayes 0.9140 0.8479 0.6140 0.5409
Decision Tree 0.8560 0.8121 0.9997 0.6160
Random Forest 0.7315 0.7089 0.4610 0.4066
Linear SVM 0.9973 0.8800 0.9630 0.6165
RBF SVM 0.9845 0.8810 0.8588 0.6388
MLP 0.9455 0.8736 0.8678 0.5994
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Abstract. Password guessing describes the process of finding a pass-
word for a secured system. Use cases include password recovery, IT
forensics and measuring password strength. Commonly used tools for
password guessing work with passwords leaks and use these lists for can-
didate generation based on handcrafted or inferred rules. These methods
are often limited in their capability of producing entirely novel passwords,
based on vocabulary not included in the given password lists. However,
there are often semantic similarities between words and phrases of the
given lists that are highly relevant for guessing the actual used passwords.
In this paper, we propose SePass, a novel method that utilizes word em-
beddings to discover and exploit these semantic similarities. We compare
SePass to a number of competitors and illustrate that our method not
only is on par with these competitors, but also generates a significant
higher amount of entirely novel password candidates. Using SePass in
combination with existing methods, such as PCFG, improves the num-
ber of correctly guessed passwords considerably.

Keywords: password guessing · password cracking · semantic word em-
beddings · similarity search · nearest neighbors · law enforcement · nlp

1 Introduction

Password-protected devices such as notebooks, tablets, smartphones or secure
hard drives are ubiquitous and, thus, can be central to criminal investigations.
In such cases, gaining access to these devices might lead to crucial evidence and
may help preventing further crime.

Up until today, passwords are still the primary mechanism to protect a user’s
private information, even though additional measures, such as two-factor au-
thentication, are steadily added. A huge benefit of passwords is that they do not
involve additional devices or resources and are safe if the underlying passwords
have enough entropy. In that case the possible search space is plainly too large
to be attacked using brute force search, at least in any reasonable time frame.

⋆ Both authors contributed equally to this research. The corresponding author is Max-
imilian Hünemörder ( mah@informatik.uni-kiel.de )
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Compared to application scenarios, such as internet forums or online ac-
counts, mobile device users need to type in their password to unlock their device
frequently and need to be able to remember them. Using password managers or
similar tools is usually not practicable to unlock the devices themselves. This
typically encourages users to utilize passwords which consist of or resemble real
words and are usually relevant to their everyday life, their culture or social envi-
ronment with little to no modification. Nevertheless, guessing passwords in this
context remains a significant challenge.

The most common approach to password guessing is a deductive approach: it
uses dictionaries based on previous leaks, e.g., the rockyou leak [4,5], potentially
combined with some proven set of rules, e.g., provided by tools like hashcat [13],
to derive password candidates. This is often enough to guess a certain amount
of passwords but it is obviously bounded by the limits of the deductive model,
i.e., by the dictionary and the rule set.

This limitation cannot be overcome by extending the model, e.g., by using
a more general purpose dictionary or onthologies, which significantly enlarges
the search space or performing a brute force attack, which in turn renounces a
focused strategy to traverse the search space for generating promising candidates.

In contrast, a data-driven approach is more promising since it predicts can-
didates without being limited by predefined terms or rules. Recently, machine
learning methods using statistical models (e.g. [17]) or deep learning (e.g. [9])
have reported promising results for password guessing in general.

However, these methods may be typically too generic in specific applications
and, thus, fail to incorporate the hidden semantics of typical passwords found
in leaks. Even though these methods may be able to guess passwords that are
based on vocabulary not included in the training set (i.e., the leaked lists).

For example, when analyzing famous leaks, it becomes evident that one do-
main for passwords are the names of luxury brands. But, even if a leak already
contains brand names such as Armani and Chanel none of the existing tools
would propose a password based on Burberry because this term would be syntac-
tically too different from the previous two passwords – though being an obvious
candidate. Furthermore, these predictions can usually not be tried out in any
practical time frame.

In order to address this shortcoming a method is needed that is able to ex-
tend the vocabulary used for the predictions, i.e., new terms not seen in the
training set. We propose SePass, a method to generate passwords based on the
vocabulary of an existing password list by semantically extending the given vo-
cabulary using word embeddings. Focused leaks, most prominently the rockyou
leak, often trainingshow semantic similarities between words and phrases. Our
proposed method SePass uses pretrained word embeddings to suggest additional,
semantically similar words. These plain words could potentially be the basis for
passwords used by people belonging to the same peer-group. We refer to these
words as base words.

Real passwords are built from such base words but usually follow certain
rules of modification or have additional characters added, i.e., prefixes/postfixes
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to base words and/or combinations of multiple base words. By applying ex-
tracted password mangling rules to newly generated base words from our word
embedding, we can extend the given list with additional passwords candidates
exclusively found by SePass. We empirically show in our experiments that this
will generate password candidates that are not produced by other methods.
More importantly Sepass provides a new foundation on which existing or future
methods can be built upon. Our experiments show, that SePass improves the
prediction accuracy when combined with other existing methods. To summarize,
the contributions of our paper are:

– We provide SePass, – to the best of our knowledge – the first method for
password generation that unravels the hidden semantics in a password list
by using word embeddings and, thus, is capable to semantically extend a
given set of passwords.

– We present a working prototype implementation of a tool that addresses the
creation of password candidates for people belonging to the same peer-group.

– We conduct an experimental study under realistic constraints comparing
SePass with several state-of-the-art password generation methods.

– Our experiments show that using our proposed method as an augmenta-
tion to already existing password guessing methods, will improve both, the
precision (number of correctly guessed passwords) and the effective time
consumption (i.e. the number of guesses needed).

2 Related Work

Password guessing denotes the task of exactly matching an unknown string of
characters used as a password for any kind of security system. Use cases in-
clude password recovery, IT forensics and measuring password strength. More
generally, guessing a password is achieved by sequentially trying out password
candidates until the correct one, then called a hit, is found. To be precise, pass-
words are generally not stored in clear text but rather as hash values. This
requires that the true password must be recovered and is not readily available
and therefore also limits the damage done by possible leaks. The used hash
functions, such as Sha512, PBKDF2 or scrypt, vary greatly in complexity but
generally try to ensure that deriving the hash value from a given password always
takes considerable time even on the most modern and specialized hardware. For
the remainder of this paper, we only consider the basic problem of guessing the
correct password. Hence, the concrete hash function is not relevant and is not
further considered.

Password guessing methods differ by the way password candidates are gen-
erated. The most common methods for password guessing are brute force and
dictionary attacks. A brute force attack consists of trying out all possible combi-
nations of possible characters from a chosen alphabet to generate a password of
a certain length. While brute forcing is the only method that guarantees a hit,
it also evidently becomes unfeasible with increasing password length. Dictionary
attacks on the other hand depend on lists of possible passwords, which are often
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times collected or designed by experts. Another common source of dictionaries
are data breaches and passwords leaks, e.g the rockyou leak consisting of more
than 14 million password from the eponymous forum in 2009 [5].

While the methods mentioned above excel at generating vast amounts of
password candidates they do not consider the plausibility of these passwords.
In contrast, statistical password guessing methods utilize statistics based on
existing password lists to focus on probable password candidates.

Assuming that human-created passwords are unlikely to be random combi-
nations of characters, but rather follow a natural distribution stemming from
the mother language of the user, password generation can be seen as a natural
language processing (NLP) problem. Therefore statistical methods can be used
to model the letter or character distribution of existing password lists and then
sample new passwords. These kinds of methods aim for a high accuracy at a
smaller amount of generated password candidates.

A method based on Markov modelling was introduced by Narayan et al.
in 2005 [12]. The authors model the password distribution using a markovian
assumption. Markov based NLP models predict which characters are likely to
follow another character. Markov models intended for password guessing usually
considers the last n− 1 characters, so called n-gram Markov model. Then they
modify sampled passwords by applying predefined regular expressions, i.e. the
mangling rules. Currently Hashcat and JTR include such markovian models as
an additional attack mode.

Building on Narayan et al.’s method, Dürmuth et al. introduced OMEN [6],
which specifically sorts the generated password candidates in order of decreas-
ing probability, something the original method was not capable of. A more gen-
eral improvement of markovian models using neural networks was introduced by
Melchier et al. [10]. Weir et al. [17] introduce a method that learns word mangling
rules from existing password lists based on probabilistic context-free grammars
(PCFG), a method stemming from NLP. They learn template structures of pass-
words by finding common and frequent patterns in clear text password leaks. For
example, ’L4D8S1’ would describe all passwords consisting of 4 lowercase letters
followed by 8 digits and a single special character.

A semantic extension of Weir et al.’s PCFG was introduced as Semantic
Password Guesser by Veras et al. [14]. They combine PCFGs with Wordnet [11]
to enhance their grammars with semantic meaning. Their structures then use
overarching semantic categories of words, i.e. umbrella terms instead of defin-
ing characters and numbers. These can then be used to describe the string of
characters that is supposed to be placed at a certain part of a generated pass-
word candidate. An example base structure would be ’[sport][city][special]’ and
a password generated from this could be ’footballhamburg?’.

The semantic password generator is the most related approach to our method,
but there are two major differences: First, they do not generate candidates based
on words not present in the training data. Second, because their method is based
on a hierarchical tree structure, they only consider a single context per base word.
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For example, while the word “apple” would probably be categorized as a “fruit”,
it is also semantically similar to “tech companies”.

In a further study from 2021 [15] the authors updated their method and
investigated the semantic differences of commonly used password leaks. They
found that semantic patterns found in some leaks correspond to the context of
these leaks, i.e. the demographics of users of a forum or the general subject of
the website the passwords were leaked from.

More recently, deep learning methods were introduced in order to depend
less on strong assumptions about the word mangling rules that form passwords.
These methods often use deep generative models and are trained on password
lists to model the probabilistic space of passwords and can generate new pass-
words directly without applying rules.

An example of a deep generative model for password guessing is PasswordGAN
[9]. This method uses a generative adversarial network, specifically a Wasserstein
GAN [8] to generate large amounts of password candidates. In the course of their
research, the authors found that the amount of candidates that need to be gen-
erated to reach similar or better results is significantly larger than those needed
for statistical methods.

A review of other deep generative model architectures for password guessing
was compiled by Biesner et al. in 2020 [2].

Fig. 1: Graphical illustration of the five steps of generating new password candi-
dates.

3 Semantic Password Guessing

In this section, we describe our method and the procedures used to generate
and sort a new candidate list for password guessing based on a well focused
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password list stemming from a specific peer group. The main focus of our method
lies on the semantic context of the base words extracted from the given list.
Deploying word embeddings, we derive new base words that are semantically
similar. In this context, a base word is a substring of characters that is included
in a password and has some kind of semantic meaning and cannot be broken
down without losing its meaning. For example, the German city name “Berlin”
would be considered a base word for passwords like “berlin123”, “BeRl1naudi”
as well as simply “Berlin”.

3.1 Generation of new password candidates

Under the assumption that base words used by a specific clientele or distinct
group of people are semantically similar, we use pretrained word embedding
models to exploit these semantic similarities. These models enable us to find
similar words to expand the given password list with previously unseen vocabu-
lary. Word embeddings are a popular method from natural language processing
and allow for words and other character strings to be mapped into a high di-
mensional vector space in order to be used in downstream tasks [1, 16].

The goal is that semantically similar words are placed closely together accord-
ing to some distance or similarity measure. For example, as euclidean distance is
known for its adverse behavior in high dimensions, the cosine similarity is a pop-
ular choice when working with these high dimensional vectors. To obtain such a
vector space, large-scale text corpora are processed. The resulting embedding is
a vectorized representation of every single word in the training’s corpora, where
we can assume that semantically similar words are also similar in the vector
space.

For the current version of SePass we use state of the art pretrained word
embedding models from the FastText [3] toolkit. These models are available in
157 different languages [7] and are light-weight, extensive and publicly available4.
We use the 10 most relevant European languages based on general usage and
leaks that we analyzed. Those languages are: English, German, French, Italian,
Spanish, Portuguese, Turkish, Dutch, Finnish.

In addition to finding new base words using word embeddings, we need to
generate actual password candidates from these novel base words using a set
of word mangling rules. These rules are simple functions that transform a base
word in a step-by-step manner into a password candidate. Examples for such
functions can be adding, removing or replacing certain characters as well as
changing single characters to upper or lower case and much more5. The rule
set [PREPEND(x), APPEND(123), LOWER(), REPLACE(s, $)] for example
would transform the input word Password into xpa$$word123.

The following five steps, also summarized in Figure 1, describe how the pro-
posed method takes a list of known passwords and generates additional candi-
dates and rule sets for each word embedding.

4 https://fasttext.cc/docs/en/crawl-vectors.html
5 https://hashcat.net/wiki/doku.php?id=rule_based_attack
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Step 1: Extraction of the base words Using a given word list P of known pass-
words, we extract base words from each password p, such that the list of base
words for p is of minimal length and covers as many of the password as possi-
ble. This is done in two steps using the vocabulary V of a pretrained embedding
model e. First, a decomposition into sub-words of p belonging to V is determined
recursively. Hereby, the best decomposition is characterized by a minimum num-
ber of unused letters in p. In case of a tie, we prefer the solution with less base
words. For example, for the password ’blueberry123a’ the solution [’blueberry’,
’123’] wins against the solution [’blue’, ’berry’, ’123’], each with a single unused
character (’a’) in the password. If no base words were detected for p, we addi-
tionally try to find non-obvious base words using the existing rulegen algorithm
from PACK6. For example, to find the base words of passwords containing so
called leet speak, i.e. replacements of characters with similar looking numbers
such as ’passw0rd’7.

Step 2: Decomposition into segments For every password p, for which base words
were found in Step 1, the password is split into multiple segments. Each segment
contains exactly one base word. With the exception of the last segment of p,
segments contain only the unmatched letters to the left of the base word. For
example, the password berlin?audi123 would be split into the segments berlin
and ?audi123.

Step 3: Extraction of a rule set Using existing methods from rulegen, based on all
passwords in the source list P , a set of word mangling rules is derived such that all
individual segments (from Step 2) can be created from the extracted base words
(from Step 1). This is achieved by using the Levenshtein distance between the
base words and the corresponding segments, e.g. Levenshtein distance (bberlin,
berlin) = 1. We finally sort these rules by their occurrence frequency in P .

Step 4: Semantic Expansion This fourth step is the cornerstone of our method
and also where it deviates the most when compared to previous work. Using a
pretrained word embedding – or embeddings if multiple languages or corpora are
used – we collect for each base word in the source password list the k most similar
words in the vocabulary of the word embedding using a k-nearest neighbor query.
Note, that k is not a hyperparameter. Instead k is calculated based on the number
of password candidates that are intended to be generated.

Given, the number of pretrained models |E|, the intended number of password
candidates n overall, the intended number of password candidates for a single
embedding ne = n

|E| , the number of rules generated in Step 3 |R|, the hyper

parameter relevant ruleset ratio rr, and the list of extracted base words BWold,
we first calculate the amount of base words we want to mangle

6 https://github.com/iphelix/pack
7 https://github.com/hashcat/hashcat/blob/master/rules/

unix-ninja-leetspeak.rule
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|BW| = ne

rr · |R| (1)

and then

k =
|BW|

|BWold|
(2)

Step 5: Generating new password candidates Finally, by applying every rule from
R to every word of the expanded base words list, we create the final list of new
password candidates.

3.2 Sorting of the password candidates

Depending on the chosen initial word list and the parameters for the embedding,
the newly generated list can grow in size considerably. This requires sorting the
candidates based on the likeliness of being a real password – especially in cases
where the time to guess a password is limited and does not allow trying out
a large number of passwords. When executing the five steps described above,
the candidate additionally is paired with a password score pws. The higher this
score, the more suitable a candidate is considered to be. In accordance with the
candidate being a combination of a base word and a rule, the password score
is also made up of a word score ws and a rule score rs as shown in equation
3. The value of the rule score is simply determined by the relative occurrence
of the specific rule in the total set of rules. The word score is calculated with
the help of the embedding model. For every original base word we calculate how
often a specific word w is present in the k-neighbors by using the same methods
mentioned above. The sum of all these distances of the base words BW to w is
used as word score for w. The formula for the calculation of the word score is
shown in equation 4.

pws = ws · rs (3)

ws(w) =

|BWold|∑

i=0

{
CosΘ(BWi, w), if w ∈ knn(BWi)

0, otherwise
(4)

4 Test Bed

In order to evaluate SePass and compare it with the current state-of-the-art,
we performed a series of experiments. We primarily evaluate the use case of
generating a list of novel password candidates from a relatively small training
set, i.e., a highly focused leak, for example originating from a darknet or an
extremist forum. As mentioned in Section 2, most other methods are based
on learning candidates from large general password leaks and then testing the
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generated candidate lists on other smaller leaks. To capture the characteristics
of this real application scenario, we opt for a different evaluation scheme, where
we only use a small password list, which we split into a train and a test sets. We
trained and evaluated all models on a compute server running Ubuntu 20.04.3
LTS with 62 GB of RAM and an AMD Ryzen 7 3700X 8-Core Processor.

4.1 Data Sets

We conducted all our experiments on two different datasets: a small real world
list which is not yet widely available and is therefore only used for evaluation
purposes and – for reproducibility purposes – we generated a second synthetic
list which is a small excerpt of rockyou [5]. This synthetic list shares statistical
similarities with the first list w.r.t. average length of the passwords, used lan-
guages and used rules. Both lists have the same length of entries, i.e., 66.490
passwords.

4.2 Compared Methods

We compared SePass to the following password prediction methods that offer
publicly available code repositories and represent the different existing paradigms
of password guessing.

Hashcat Best64 As a baseline we used hashcat with a basic rule set consisting
of 64 word mangling rules that were created in a competition held by the
community of hashcat8. These handcrafted rules are very simple instructions,
such as appending single digits or letters, reversing the order of the password
or replacing certain characters, for example, e with 3 or i with 1.

OMEN In order to represent the various markovian methods we utilized the
original implementation of OMEN9. OMEN is one of the best performing
probabilistic password guessers, meaning it uses candidate occurrence fre-
quencies to output the most likely passwords. It was written in C, making
it extremely fast compared with its competitors.

PCFG We picked Probabilistic Context-Free Grammars (PCFG) as a repre-
sentative method based on statistical modeling. We used the pcfg cracker
repository10, which was developed by one of the authors of the original pub-
lication [17]. As the authors mention in the notes on their repository, the
tool is actually aimed at a similar use case as ours.

Semantic PCFG We chose this method because it is aimed at using semantic
connections between words and, as such, follows a related concept to our
approach. The authors have published their code on a git repository11.

8 https://github.com/hashcat/hashcat/blob/master/rules/best64.rule
9 https://github.com/RUB-SysSec/OMEN/blob/master/README.md

10 https://github.com/lakiw/pcfg_cracker
11 https://github.com/vialab/semantic-guesser
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PassGan We chose PassGan [9] as one of the most well-known deep learning ap-
proaches for password generation. While we could not find a code repository
from the original authors, we used a re-implementation 12 which contains a
pretrained version of PassGan.

4.3 Experimental Set-up and Evaluation Metric

We evaluated the accuracy of the competitors by splitting both our real and
synthetic password lists into a training and a test set. The test sets each contain
a random sample of 20 percent of the full lists. We applied each method to the
training sets and generated a password candidate list each. We then compared
these lists to our test sets. For PassGan we did not train the model ourselves,
but instead opted for the pretrained version that is included in the repository
and was trained on rockyou [4], because our training sets would be magnitudes
too small for PassGAN to be reasonably trained on. Still, this is a more than
fair comparison, since both our training and test sets heavily overlap with the
rockyou leak. We used the trained models to generate a list of 50 million password
candidates to simulate a guessing attack on our test lists.

As usual in related work, our evaluation metric is the percentage of hits on
the test set after n guesses, called hits@n which is defined as

hits@n =
|P 0...n

m ∩ Ptest|
|Ptest|

,

where Pm denotes the set of password candidates generated by a single methodm
and Ptest denotes the attacked test set. We report the results of the competitors
for n = 50 million minus the number of duplicates in Table 1. In addition, we
also report the hits@n value of the competitors in Figures 2a and 2b, which
illustrate how quickly the corresponding methods may be able to successfully
finish the attack.

Method
Hits@n in %

on synthetic data
Hits@n in %

on real world data
# of unique

candidates generated

Ours 36.59 34.90 50 · 106
hashcat-Best64 17.15 3, 199, 660

OMEN 32.35 50 · 106
PCFG 36.52 39.39 50 · 106

Semantic PCFG 20.22 24, 903, 549
PassGAN 15.27 24, 761, 815

Ours + PCFG 44.25 45.33 50 · 106

Table 1: Prediction accuracy (hits@n) and number of unique passwords gener-
ated after duplicate removal.

12 https://github.com/brannondorsey/PassGAN
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(a) synthetic data (b) real data

Fig. 2: Percentage of hits (hits@n) with increasing number of guesses n

5 Results and Discussion

In this section, we compare the results for the test bed and present further
experiments performed to derive more insights into the strengths and weaknesses
of the individual methods.

5.1 Accuracy Results

For reproduction purposes, the implementation of the experiments on the syn-
thetic data set is publicly available13. We decided to only use the methods for
the real data set that performed best on the synthetic list. Table 1 displays the
hits@n results. In Figures 2a and 2b the hits@n are plotted as functions over n
guesses, i.e., the effective time consumptions.

Hashcat Best64 The hashcat Best64 rules seem to be a fitting baseline: while the
method only produces a small number of unique candidates (e.g. 3.2 million on
our synthetic data, i.e., the amount of passwords times 64 rules) a huge number
of these are hits (17.5% correct guesses on the test set – see Table 1). Considering
this method is based on applying fairly simple rules to mangle the base words
from the training set, we can conclude that at least 17.5% of the passwords
in our test set are rather trivially constructed. The graphs in Figure 2a seem
to indicate that our method, OMEN and PCFG are able to guess these trivial
passwords at a faster rate then hashcat, while Semantic PCFG and PassGAN
are slower, but do or will eventually surpass this threshold as well.

PassGAN PassGan performs the worst of all methods tested on the synthetic
data set, as seen in Figure 2a. This is of particular interest since the pretrained
PassGan model was expected to have an advantage on our synthetic data set
since PassGan was trained on the rockyou leak and our synthetic data set consists

13 https://github.com/Knuust/SePass
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of mostly passwords found in rockyou. This might be explained by the fact that
PassGan and similar GPU based methods are designed to generate exorbitantly
huge amounts of guesses. Therefore, as the authors state in the PassGAN paper,
it might take a lot more guesses before it catches up with the other methods.
Combined with the amount of duplicates this method produces, we have to
concede that PassGAN does not fit our use case, which is extrapolating from a
small, focused vocabulary. Another explanation might be, that it does not guess
passwords that stem purely from rockyou and it might even be at a disadvantage
since it was not trained on our specific data set. And lastly, we used a 3rd
party reimplementation of PassGan, since no implementation from the authors
is available, which might perform differently than originally presented. Therefore,
as a consequence of the poor performance and not being suitable for our use case,
we exclude PassGAN from experiments on the real dataset.

Semantic PCFG The Semantic PCFG password guesser seems to be performing
better than PassGAN, but not as well as the original PCFG. This is surprising
since the semantic PCFG method is based upon the original PCFG method. We
assume the reason for this performance is comparable to the problems found
with PassGAN.

SePass, OMEN and PCFG The best performing methods are OMEN, PCFG
and our own method SePass. They all result in a similar percentage of hits at 50
million guesses, with our method SePass and PCFG coming out on top as seen
in Table 1 and Figure 2a. As mentioned earlier this was to be expected since all
three methods aim at a similar use case of giving more weight to accuracy in
less guesses rather than generating a large amount of password candidates in a
short time. One advantage specifically concerning the implementation of PCFG
and OMEN is that both actually come with a few a priori rules, similiar to the
Best64 concept. For example, these rules include adding commonly used dates
and keyboard walks (qwerty, etc.). These are applied additionally to enhance
the base words and therefore lead to an enhanced performance for both OMEN
and PCFG. PCFG and OMEN perform similar in Figure 2a. This can also be
explained by the fact that the PCFG implementation is based on the OMEN
repository.

Considering these results, we only ran our method and the best other method,
i.e., PCFG, on the real data set. The results can be found in Table 1 and Fig-
ure 2b. It is evident, that when testing on this real world data set, PCFG out-
performs SePass by a small percentage. To show that our method still provides
additional benefit, we conducted an additional test, where we combined both
lists proposed by SePass and PCFG.

Combination We combined both lists by zipping them together, i.e. by taking the
first element of each, then the second, etc., which results in a list with double
the length. Then we cut this down to 50 million guesses in order to compare
them to the other methods. We can observe that the combination does indeed
perform even better than the individual methods on both the synthetic and the
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real dataset and are able to crack almost 50% of each test set. This is expected
since our method adds the capability of using novel base words but can not
generate the same amount of candidates using the mangling rules and the base
words from the training set as PCFG does in 50 million guesses. This leads us
to the conclusion that for a future version of our tool we should build upon the
mangling rules of PCFG or other competitors and combine those with the novel
base words found using our proposed approach.

5.2 Unseen Base Words

The main motivation behind our work was that existing methods, while very
good at applying mangling rules to base words and creating passwords from
existing lists, are generally not able to guess completely new base words without
either using very specific handcrafted dictionaries or, at least partially, brute
forcing passwords. We therefore investigated if and how well competitors find
such new base words. Formally, given a vocabulary universe V , we are looking for
base words Bnew ⊆ V consisting of all words that are included in the passwords
from the test set Btest, but can not be found in the corresponding training set,
Btrain, i.e., Bnew = Btest −Btrain.

Firstly, in order to generate an extensive vocabulary universe, we collected
the union of all vocabularies from the 10 language embedding models that we
used in our method. This resulted in a set of exactly 12, 953, 300 unique base
words. This is about 7 million words less than expected because while each
model has a vocabulary of 2 million words, often times languages overlap and
use the same terms. Because the models were trained on very large internet cor-
pora the vocabularies can also include artifacts, e.g. very long words or numbers
and special characters that can include outliers and errors. In order to investi-
gate only natural words for the following experiments on novel base words, we
removed everything from these vocabularies that includes any digits or other
special characters.

Next, we searched for each word found in our vocabulary universe V in both
the train and test set in both our password lists. We then subtracted the list
of base words found in the train set from the ones found in the test set. This
resulted in 13, 428 novel base words, i.e. a set of base words that are used only
in the test set but cannot be found in the training set.

Afterwards, we checked how many of these test base words can be found by
our method and PCFG. We therefore look at the set of hits for each method,
i.e. the intersection between the list of password candidates and the test set. We
then search for each base word in these two sets and build the intersection with
the set of base words contained in Btest. We found that SePass found 2, 439 more
novel base words than PCFG (which is almost 6 times more).

This demonstrates that SePass is able to extrapolate from the base words
and significantly outperforms PCFG in this regard. On the other hand PCFG is
also able to find a few novel base words. When taking a closer look at the new
words that PCFG found, we can see that these often are random combinations
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of existing words or predetermined rules, for example qwertyuiop which is ex-
plicitly included in the PCFG repository as a keyboard walk. In order to validate

(a) % guessed on synthetic data (b) % guessed on synthetic data

Fig. 3: Bar plots showing the percentages of passwords found in the synthetic
(left) and real (right) test set, that include base words not found in the train
set for each method. The filled part of each bar shows the percentage found
exclusively by the corresponding method.

the performance of SePass, we found the corresponding passwords these novel
base words were used for. This resulted in a list of 5, 296 passwords, which con-
sequently contain base words that are not included in the train set. The amount
of passwords is lower than the amount of novel base words, since a password can
include multiple base words.

We then calculated the percentage of novel passwords found by each method.
The result is collected in a bar diagram in Figure 3 for both the synthetic dataset
(a) and the real one (b). While the edge of each bar shows the percentage of
passwords found, the filled areas represent the passwords this method found
exclusively.

This means we see our expectations about SePass confirmed. Looking at the
synthetic dataset, not only did SePass guess more of these novel passwords over-
all, SePass also finds significantly more novel passwords than any other method.
Additionally, while PCFG performed better on the real dataset overall, SePass
guesses 6 times more exclusive novel passwords on this dataset as well. In gen-
eral, we can see that our method performs similarly well to related methods and
is able to guess a significant amount of unique passwords.

6 Conclusion

We introduced SePass, a novel password guessing algorithm. The foundation of
SePass are word embeddings which are used to identify new base words given
the vocabulary extracted from a list of passwords. After that, we applied the
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rules extracted from the passwords list to the found base words to generate
password candidates that are semantically related to those found in the original
passwords list. SePass compares favourably with the known methods used in
this application field. It distinguishes itself from existing methods by being able
to exclusively generate more passwords containing novel base words than any
other method tested. We therefore conclude, that our tool, especially when used
in combination with other methods like PCFG, can reach a high percentage of
correctly guessed passwords, surpassing their individual scores.
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Abstract—Recent successes in AI research concerning tradi-
tional games like GO, have led to increased interest in the
field of reinforcement learning. Modern board game design,
however, has risen in complexity. This paper introduces a novel
task for reinforcement learning: ”Quacks of Quedlinburg”. A
modern board game with risk management, deck building, and
the option to choose a specific rule set out of thousands of possible
combinations for every game. We provide an environment based
on the game and perform initial experiments. In these, we found
that Deep Q-Learning agents can significantly outperform simple
heuristics.

Index Terms—Risk management, Board Game Environment,
Reinforcement Learning, DQN, DDQN

I. INTRODUCTION

Board games have played a part in human history for
thousands of years. Since games often serve as simple simu-
lations for real life decision making processes, they provide
interesting tasks for modern artificial intelligence research. For
example, Chess holds a special place in the history of AI
research [1], presumably because it is internationally played,
has perfect information, is completely deterministic and rea-
sonably brute forcible [2]. However, modern board games,
especially so-called ”German Board Games”, e.g. ”Settlers of
Catan”, have become much more complex. They incorporate
tasks like resource or risk management, can involve social
interaction and generally complex strategic decision-making.

A popular subdomain of artificial intelligence is reinforce-
ment learning (RL). RL research and board games are linked
since early work was based on learning to solve games like
Tic Tac Toe, Checkers, and Blackjack [3]. While early RL
agents performed worse than traditional algorithms on such
games, the addition of deep learning techniques, e.g. Deep Q-
Learning [4], lead to recent success stories for more complex
games like GO [5]. These developments show that RL can
even tackle problems that were thought to be very hard by
using traditional AI.

Therefore, in addition to many modern board (and card)
games, that have already been researched in the context of
RL [6]–[11], we introduce the game ”Quacks of Quedlinburg”
as a novel and interesting RL task. This game from 2018
has a risk management component akin to Blackjack and a

Parts of this work has been done in the MARISPACE-X project funded by
German Ministry of Economy (BMWi)

Fig. 1: A player game board (cauldron) and a rule card for
the red ingredients. The drop marker in the cauldron indicates
the starting place each turn. The bag of ingredients in the top-
right corner, exemplary ingredients and some rubies are placed
around the game board. (Screenshot of Tabletop Simulator)

deckbuilding mechanic that strongly rewards planning multiple
rounds ahead. For example, a riskier behavior in the beginning
might lead to a higher reward in the later rounds of the game.
The main reason why we believe this game in particular to be
of interest to the RL research community is that it has a set
of interchangeable rules, that allow for over 45.000 different
rule sets. In this preliminary work, however, we only focus on
a single set of rules. Our contributions can be summarized as
follows:

• A novel application for RL based on the popular board
game ”Quacks of Quedlinburg”

• An implementation of this game in Python and a corre-
sponding environment to be used by RL agents

• Preliminary experiments using simple heuristic AIs and
the established RL algorithms Deep Q Network (DQN)
and Double Deep Q-Network (DDQN)

II. THE GAME

”Quacks of Quedlinburg” is an award-winning German
board game by Wolfgang Warsch. In this game, each player
embodies a quack doctor, who is mixing up their own brew
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given various ingredients by successively drawing from an
opaque bag. One of the ingredients however is spoiling the
mixture and when a cumulative value of 7 is exceeded, this
player’s cauldron explodes and they are restricted in their
following actions for this turn. Every turn of the game is
played in two phases, a brewing and a scoring phase. While
brewing, each player blindly pulls ingredients out of their own
bag and places them in their cauldron in order, advancing on
the drawn circular path, see Fig. 1. Each ingredient is marked
by a color and a value, indicating additional rules to be applied
throughout the game. In this process, the player can decide to
stop drawing from their bag at any time, given their cauldron
did not explode yet. After all players have either stopped or
exploded, the second phase begins. In case of an explosion, the
affected player has to choose to either forgo his earned VP for
this turn or waive his chance to buy new chips. In the scoring
phase, all advances on each players cauldron are scored as
victory points (VP) and marked on a common score board.
Further ingredient rules are applied, then each player can use
his advances from the previous phase to buy new ingredients
(two distinct ones per turn) and add them to their bag. With
every bought ingredient, the risk of pulling a white ingredient
out of the bag is reduced. This is repeated for nine turns, after
which the game ends and the player with most VP wins the
game. Note, that in this preliminary work we use a simplified
single-player version of the original game, as it contains the
main mechanics and ideas but was reduced in complexity and
some game features were omitted for now. (Full instruction
sheet1)

We programmed the above described game in Python using
a virtual representation of the score board (the cauldron)
and the white, orange, green, red, blue, yellow and purple
ingredients (black was omitted here as it only works in a
multiplayer game). Each ingredient color is associated with
a specific rule. The full game contains multiple different rules
per color to choose from, as mentioned above, we will limit
ourselves to one rule per color. Our selection can be found
in Table I. One further resource of the game we implemented
are rubies. A player obtains a ruby by either earning one from
an ingredient (blue and green) or by stopping on a certain
position. Pairs of rubies can be traded for advancing a drop
placed in the middle of the cauldron, that corresponds to the
starting position each turn. The rubies can further be saved up
and count as additional VP at the end of the game, making
collecting them a secondary objective.

All information of the game, such as the scoring board
and each player’s belongings, is saved in a collection of
variables called gamestate. Each player’s cauldron and
ingredient bag are represented by lists of ingredients. Each
ingredient is represented as a tuple containing the color and
value of that chip (i.e. [’white’, 2]). For each of the
nine turns, we store each player’s temporary advances, such
as preliminary victory points, earned money as well as whether

1https://cdn.1j1ju.com/medias/ba/73/db-the-quacks-of-quedlinburg-
rulebook.pdf, Visited: 13.05.2022

that player exploded or voluntarily stopped in the current turn.
The number of rubies, the assured victory points and the
starting position marked by the drop conclude the gamestate.

III. EXPERIMENT SETUP AND COMPARED METHODS

To study this strategic decision task, we observed different
AI agents playing the game. The implementation can be found
in our public git repository2.

A. Environment

In order to train and evaluate the RL agents, we build
an environment using the TensorFlow PyEnvironment class,
that wraps around the implementation of the game itself. This
allows us to return rewards to the RL agents based on the game
state. The environment performs the agents’ chosen action,
yielding the game state update. A description of the exact
observable game state and action space can be found in our
repository.

1) Reward: We chose to use the earned victory points (VP)
as the reward measurement for the agent. This guarantees that
the reward directly corresponds to the main objective of the
game. Additionally, we avoid skewing the learned strategies
by rewarding actions that might be artificially enforced and
do not lead to direct VP gain. Consequently, the task becomes
more laborious as not every action results in victory point, i.e.
an immediate reward. However the following section shows
that this reward function is sufficient for the agents to learn
that an action without an immediate gain can still result in a
higher overall result.

2) Legal Actions: A challenge this game presents is that
some game states entail that an agent cannot perform certain
actions. The legal actions vary based on the current phase
of the game, the chosen rule set and the game’s progress.
We therefore add a mask of currently legal actions to the
observations the agents receive.

B. Random Agent

In order to be certain, that ”Quacks” is not only based on
pure chance we programmed a random agent, which randomly
picks an action at each step of the environment. Even using the
same method to bound the legal moves mentioned above, this
agent is expected to perform poorly, because in the brewing
phase the agent is faced with a string of binary decisions to
draw an ingredient from the bag or stop drawing (similar
to Blackjack). When randomly choosing at this point, the
agent usually stops very early, resulting in little reward and
no possibility to expand by buying more ingredients.

C. Heuristic Agents

For a more advanced baseline, we implemented a number
of heuristic agents, that act in simple, predetermined ways.

2https://github.com/huenemoerder/quacks-rl
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Rule Color Rule Text Time to apply the rule Costs (1, 2, 4)
Red ”If there are already orange chips in your pot, move the red chip up 1 or 2 places” Instantly when drawn 6, 10, 16
Blue ”If this chip is on a ruby space, you IMMEDIATELY receive 1 ruby.” Instantly when drawn 4, 8, 14
Green ”If the last or second-to-last chip in your pot is a green chip, gain one ruby” At the end of each turn 4, 8, 14
Yellow ”Your first placed yellow chip is moved 1 extra space, the 2nd yellow chip 2 extra Instantly when drawn 8, 12, 18

spaces and the 3rd yellow chip 3 extra spaces” (available from turn 2)
Purple ”For 1, 2 or 3 purple chips you receive the indicated bonus. At the end of each turn 9

1: 1 VP - 2: 1 VP + 1 ruby - 3: 2 VP + 1 drop” (available from turn 3)

TABLE I: Overview of exemplary rules in the game (white and orange have no special rules)

1) ”Explosive” Agent: The explosive agent is programmed
to always draw as many chips as possible until its cauldron
explodes so it is not allowed to draw chips anymore. After-
wards the agent always chooses to take the earned VP instead
of buying any ingredients. Consequently, the contents of its
bag stays the same and it can never advance far on the board,
not gaining many VP.

2) ”Single-Color” Agent: For each color ingredient (red,
green, blue, yellow and purple) we designed different agents,
that would draw chips until the risk to explode is higher than
70%. In the case of an explosion, the agent will buy chips in
the first 6 turns and choose VP starting from turn 7. When
buying, the agent is programmed to buy the most expensive
chip available of its favored color and if there is enough money
left, additionally buy one orange chip. A weakness of this type
of agent is that it will not use its money efficiently especially
in the later turns.

3) ”Expensive” Agent: The expensive agent uses a strategy
many first time (human) players choose. Analogously to the
single-color agent, it draws chips from the bag until the risk of
exploding is high (> 70%), however during the buying phase
it buys chips that deliberately utilize all of its available money,
i.e. it buys the most expensive and the second most expensive
chip. This leads to less wasted money but more variation in
the color choice.

D. DQN

The Deep Q-Network (DQN) approach was proposed in
2015 by DeepMind, [4] and was first applied on ”Atari 2600
Games” [12]. Exemplary for our RL algorithms we trained
two off-policy agents on the environment described in Section
III-A. Each trained agent consists of a learned Q function
which approximates the expected return at a given state (s) for
a single action (a). This function is the agent’s policy which
enables it to select the best action to take given an input state.
Due to our complex game that has an abundance of game state
options, simple q-learning based on value iteration to fill a q-
value table is not feasible. Instead the optimal Q function is
approximating by training a neural network using a loss L(θ),
that is computed during each training step by computing the
difference of the predicted q values Q(s, a, θpred) to the target
values Q(s, a, θtarget) of the Bellman Equation factored with
γ added to the reward r.

L(θ) = Q(s, a|θpred)− (r + γmax
a

Q(s, a|θtarget))

The used Q network architecture contains two dense hidden
layers, the first layer with 150 and the second with 75 neurons.

Both layers use ReLu activation and are initialized using an
truncated norm distribution. The output layer contains as many
elements as the environment allows actions. The TensorFlow
library, [13], provides a variety of pre-implemented agents
including a DQN agent, which we initialized using this Q
network. The policy was updated using the Adam optimizer
and we used epsilon greedy exploration with a probability of
0.1. The agents were equipped with a TensorFlow Uniform
replay buffer with a capacity of maximum 100,000 trajectories.
Because all parties, i.e. the agent and the environment are
Python based, integration was seamless. The serial interface is
defined by the structure of the observation and action tensors,
the two components which are passed in between the agent
and the game. As mentioned in section III-A2, in order to
communicate the legal actions at any state, the agent is given a
mask that encodes this information. The mask is applied to the
network’s q values for a given state. The q values of any illegal
action are set to the minimum of the q values, ensuring only
legal actions are chosen. The training was performed using a
batch size of 64 and a learning rate of 1e-4. The displayed
victory points in Fig. 2a were achieved by the DQN agent
after 267.000 training steps.

E. DDQN

In addition to the DQN agent a Double Deep Q-Network
(DDQN) was trained. DDQN is an amplification of DQN
proposed in 2015 by Hado van Hasselt et al. [14]. A DDQN
agent takes advantage of fixed Q targets using an additional
Q network, the target network. Additionally, this algorithm
solves the overestimation that is to be expected from the DQN
agent by using two networks. The local network will be used
to calculate the single q target for the current state but the
second network is used to calculate the q values in the loss
objective. The same agent parameters and implementation base
as for the DQN agent were chosen. The victory points shown
in Fig. 2a were achieved by the DDQN agent after 425.000
training steps.

IV. RESULTS

We evaluated each of the compared agents by calculating
the average victory points over the same 1,000 seeded games.
The seed ensures a fair comparison since the played games
are deterministic. The results are shown in Fig 2a.

Starting from the left of the figure, as expected the random
agent performs poorly, receiving 1.4 VP on average. The ex-
plosive agent performs better and is able to obtain an average
of 18.5 VP. The single-color agents as well as the expensive
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(a) Average victory points achieved for the same 1,000 seeded games (b) Training progress for the RL agents

Fig. 2: Overview and comparison of all agents

agent all perform similarly, reaching an average VP score of
around 30, (Red: 30.1, Green: 30.1, Blue: 31.0, Yellow: 30.9,
Purple: 31.2, Expensive: 30.5). This implies that our chosen set
of color rules is balanced and no color is significantly better on
its own. The DQN and DDQN agents outperform the base line
agents. Both RL agents yield a higher mean of VP, DQN with
an average of 34.2 VP and DDQN with 35.2 VP respectively.
Hypothetically, if pitted against each other the DQN agent
would win 35.3 % of all seeded games against the heuristic
agents, while the DDQN would win 42.6 %. When compared
directly against each other the DDQN performs slightly better
with a winrate of 53.1 %. We trained both agents for 500.000
iterations, we evaluated 20 random games each 1.000 iterations
and picked the iterations where they performed the best. In
Figure 2b these returned results are plotted and the checkpoints
are marked. The average returns of the other agents are marked
as horizontal lines. The agents were initialized with 500 games
taken from a random policy, but almost instantly overtake the
random agent and after 10.000 consistently reach a higher
score than the explosive agent. After 100.000 iterations the
agents have roughly found their optimum and outperform all
the heuristic agents. The almost equal performance of DQN
and DDQN might point to there not being a better strategy
at least for the exact rules combination. We will explore this
further in future work.

V. CONCLUSION AND FUTURE WORK

Our hitherto research concludes that RL agents can learn the
simplified version of the game and detect optimal strategies,
despite the strong luck component. Following up on this, the
next steps would entail extending our environment to support
multiplayer and adding the corresponding rules and features.
Besides that, we aim to train more advanced RL agents. So
far, we only used one rule during training. In the future, we
aim to extend the game to incorporate the 6 different rules
every ingredient color can be assigned. In the full game, i.e.
using all six ingredients, this leads to 66 different possible rule
combinations. We would like to perform more studies on how
agents would adapt to the application of the high variation of

rules available in the full game and how a generalized strategy
for the enhanced game could look.
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Chapter 13

Conclusion and Future Work

The recent success of data science and machine learning in real-world ap-
plications is reflected in how research in these areas is conducted. There is
research with a more theoretical focus, and other research with an engineer-
ing approach to algorithm design or the design of so-called data-to-pattern
pipelines. Such an application-driven approach may be particularly appro-
priate for unsupervised learning, because unsupervised learning relies on
assumptions about a task and its data set. The stronger such an assumption
is, the simpler the model can be. For example, K-means is a popular model
not in spite of, but because it makes very strong assumptions about the exact
number of clusters and the spherical nature of each cluster. Having easy-
to-understand attributes is beneficial for domain experts using an algorithm
because it allows them to apply their background knowledge more directly
to the problem at hand.

This offers a large design space for future research. Designing methods
with specific applications in mind and using the available domain and back-
ground knowledge might reduce future over-optimism in data science re-
search. As illustrated in Chapter 9, meta-research into the practices of algo-
rithm design can lead to finding essential insights on how to improve the
scientific process for data science research.

This thesis has already explored the concept of incorporating background
knowledge into unsupervised algorithms. For example, Chapters 6 and 7
introduce novel subspace clustering algorithms that use background knowl-
edge and show that they can improve clustering results. Future work could
focus on finding specific applications of subspace clustering and designing
specific algorithms for those domains. In addition, comparing complex meth-
ods that use deep clustering with simpler methods that approximate nonlin-
ear subspaces using linear subspace clusters could help to better understand
the more complicated models. For CoMAD PCA (see Chapter 4) and CODEC
(see chapter5), a similar approach of finding a specific application and com-
paring the result to more complex models may be an exciting avenue of re-
search. OAB (Chapter 8) already provides a benchmark for anomaly detec-
tion that can be used to design new algorithms based on industrial appli-
cations. Learned indexes, see chapters 3 and 10, are already very explic-
itly designed for their application. However, spatial indexing in particular
could still benefit from including background information about the spe-
cific database being indexed. Our work on semantic password guessing,
see chapter 11, is an excellent example of using detailed knowledge about
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the intended use case. We work with law enforcement agents (LEAs) to pri-
oritize passwords that are more likely to match their clientele, rather than
trying out password candidates that are unlikely to be created by the same
people. Future work will include incorporating this semantic idea or other
background information into other password guessing methods, and per-
haps using context-specific embeddings, such as training a language model
on a text corpus specific to the LEAs’ tasks. A more elaborate approach might
involve some conditional GAN architecture [60].
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