8,714 research outputs found

    PadChest: A large chest x-ray image dataset with multi-label annotated reports

    Get PDF
    We present a labeled large-scale, high resolution chest x-ray dataset for the automated exploration of medical images along with their associated reports. This dataset includes more than 160,000 images obtained from 67,000 patients that were interpreted and reported by radiologists at Hospital San Juan Hospital (Spain) from 2009 to 2017, covering six different position views and additional information on image acquisition and patient demography. The reports were labeled with 174 different radiographic findings, 19 differential diagnoses and 104 anatomic locations organized as a hierarchical taxonomy and mapped onto standard Unified Medical Language System (UMLS) terminology. Of these reports, 27% were manually annotated by trained physicians and the remaining set was labeled using a supervised method based on a recurrent neural network with attention mechanisms. The labels generated were then validated in an independent test set achieving a 0.93 Micro-F1 score. To the best of our knowledge, this is one of the largest public chest x-ray database suitable for training supervised models concerning radiographs, and the first to contain radiographic reports in Spanish. The PadChest dataset can be downloaded from http://bimcv.cipf.es/bimcv-projects/padchest/

    Language Transfer of Audio Word2Vec: Learning Audio Segment Representations without Target Language Data

    Full text link
    Audio Word2Vec offers vector representations of fixed dimensionality for variable-length audio segments using Sequence-to-sequence Autoencoder (SA). These vector representations are shown to describe the sequential phonetic structures of the audio segments to a good degree, with real world applications such as query-by-example Spoken Term Detection (STD). This paper examines the capability of language transfer of Audio Word2Vec. We train SA from one language (source language) and use it to extract the vector representation of the audio segments of another language (target language). We found that SA can still catch phonetic structure from the audio segments of the target language if the source and target languages are similar. In query-by-example STD, we obtain the vector representations from the SA learned from a large amount of source language data, and found them surpass the representations from naive encoder and SA directly learned from a small amount of target language data. The result shows that it is possible to learn Audio Word2Vec model from high-resource languages and use it on low-resource languages. This further expands the usability of Audio Word2Vec.Comment: arXiv admin note: text overlap with arXiv:1603.0098

    Pre-trained Speech Processing Models Contain Human-Like Biases that Propagate to Speech Emotion Recognition

    Full text link
    Previous work has established that a person's demographics and speech style affect how well speech processing models perform for them. But where does this bias come from? In this work, we present the Speech Embedding Association Test (SpEAT), a method for detecting bias in one type of model used for many speech tasks: pre-trained models. The SpEAT is inspired by word embedding association tests in natural language processing, which quantify intrinsic bias in a model's representations of different concepts, such as race or valence (something's pleasantness or unpleasantness) and capture the extent to which a model trained on large-scale socio-cultural data has learned human-like biases. Using the SpEAT, we test for six types of bias in 16 English speech models (including 4 models also trained on multilingual data), which come from the wav2vec 2.0, HuBERT, WavLM, and Whisper model families. We find that 14 or more models reveal positive valence (pleasantness) associations with abled people over disabled people, with European-Americans over African-Americans, with females over males, with U.S. accented speakers over non-U.S. accented speakers, and with younger people over older people. Beyond establishing that pre-trained speech models contain these biases, we also show that they can have real world effects. We compare biases found in pre-trained models to biases in downstream models adapted to the task of Speech Emotion Recognition (SER) and find that in 66 of the 96 tests performed (69%), the group that is more associated with positive valence as indicated by the SpEAT also tends to be predicted as speaking with higher valence by the downstream model. Our work provides evidence that, like text and image-based models, pre-trained speech based-models frequently learn human-like biases. Our work also shows that bias found in pre-trained models can propagate to the downstream task of SER

    Text Analytics: the convergence of Big Data and Artificial Intelligence

    Get PDF
    The analysis of the text content in emails, blogs, tweets, forums and other forms of textual communication constitutes what we call text analytics. Text analytics is applicable to most industries: it can help analyze millions of emails; you can analyze customers’ comments and questions in forums; you can perform sentiment analysis using text analytics by measuring positive or negative perceptions of a company, brand, or product. Text Analytics has also been called text mining, and is a subcategory of the Natural Language Processing (NLP) field, which is one of the founding branches of Artificial Intelligence, back in the 1950s, when an interest in understanding text originally developed. Currently Text Analytics is often considered as the next step in Big Data analysis. Text Analytics has a number of subdivisions: Information Extraction, Named Entity Recognition, Semantic Web annotated domain’s representation, and many more. Several techniques are currently used and some of them have gained a lot of attention, such as Machine Learning, to show a semisupervised enhancement of systems, but they also present a number of limitations which make them not always the only or the best choice. We conclude with current and near future applications of Text Analytics

    Clinical narrative analytics challenges

    Get PDF
    Precision medicine or evidence based medicine is based on the extraction of knowledge from medical records to provide individuals with the appropriate treatment in the appropriate moment according to the patient features. Despite the efforts of using clinical narratives for clinical decision support, many challenges have to be faced still today such as multilinguarity, diversity of terms and formats in different services, acronyms, negation, to name but a few. The same problems exist when one wants to analyze narratives in literature whose analysis would provide physicians and researchers with highlights. In this talk we will analyze challenges, solutions and open problems and will analyze several frameworks and tools that are able to perform NLP over free text to extract medical entities by means of Named Entity Recognition process. We will also analyze a framework we have developed to extract and validate medical terms. In particular we present two uses cases: (i) medical entities extraction of a set of infectious diseases description texts provided by MedlinePlus and (ii) scales of stroke identification in clinical narratives written in Spanish

    A Neurocomputational Model of Grounded Language Comprehension and Production at the Sentence Level

    Get PDF
    While symbolic and statistical approaches to natural language processing have become undeniably impressive in recent years, such systems still display a tendency to make errors that are inscrutable to human onlookers. This disconnect with human processing may stem from the vast differences in the substrates that underly natural language processing in artificial systems versus biological systems. To create a more relatable system, this dissertation turns to the more biologically inspired substrate of neural networks, describing the design and implementation of a model that learns to comprehend and produce language at the sentence level. The model's task is to ground simulated speech streams, representing a simple subset of English, in terms of a virtual environment. The model learns to understand and answer full-sentence questions about the environment by mimicking the speech stream of another speaker, much as a human language learner would. It is the only known neural model to date that can learn to map natural language questions to full-sentence natural language answers, where both question and answer are represented sublexically as phoneme sequences. The model addresses important points for which most other models, neural and otherwise, fail to account. First, the model learns to ground its linguistic knowledge using human-like sensory representations, gaining language understanding at a deeper level than that of syntactic structure. Second, analysis provides evidence that the model learns combinatorial internal representations, thus gaining the compositionality of symbolic approaches to cognition, which is vital for computationally efficient encoding and decoding of meaning. The model does this while retaining the fully distributed representations characteristic of neural networks, providing the resistance to damage and graceful degradation that are generally lacking in symbolic and statistical approaches. Finally, the model learns via direct imitation of another speaker, allowing it to emulate human processing with greater fidelity, thus increasing the relatability of its behavior. Along the way, this dissertation develops a novel training algorithm that, for the first time, requires only local computations to train arbitrary second-order recurrent neural networks. This algorithm is evaluated on its overall efficacy, biological feasibility, and ability to reproduce peculiarities of human learning such as age-correlated effects in second language acquisition
    • …
    corecore