18,661 research outputs found

    Consensus clustering approach to group brain connectivity matrices

    Get PDF
    A novel approach rooted on the notion of consensus clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (i) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (ii) cluster the distance matrix for each node; (iii) build the consensus network from the corresponding partitions; (iv) extract groups of subjects by finding the communities of the consensus network thus obtained. Differently from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pre-training step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real data sets, show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix

    Optimizing Ranking Measures for Compact Binary Code Learning

    Full text link
    Hashing has proven a valuable tool for large-scale information retrieval. Despite much success, existing hashing methods optimize over simple objectives such as the reconstruction error or graph Laplacian related loss functions, instead of the performance evaluation criteria of interest---multivariate performance measures such as the AUC and NDCG. Here we present a general framework (termed StructHash) that allows one to directly optimize multivariate performance measures. The resulting optimization problem can involve exponentially or infinitely many variables and constraints, which is more challenging than standard structured output learning. To solve the StructHash optimization problem, we use a combination of column generation and cutting-plane techniques. We demonstrate the generality of StructHash by applying it to ranking prediction and image retrieval, and show that it outperforms a few state-of-the-art hashing methods.Comment: Appearing in Proc. European Conference on Computer Vision 201

    HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation

    Full text link
    Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without considering labels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.Comment: Accepted by AAAI201
    • …
    corecore