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ABSTRACT

A novel approach rooted on the notion of consensus clustering, a strategy developed for community13

detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity14

matrices in health and disease. The method can be summarized as follows: (i) define, for each node, a15

distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of16

subjects (ii) cluster the distance matrix for each node, (iii) build the consensus network from the17

corresponding partitions and (iv) extract groups of subjects by finding the communities of the consensus18

network thus obtained. Differently from the previous implementations of consensus clustering, we thus19

propose to use the consensus strategy to combine the information arising from the connectivity patterns20

of each node. The proposed approach may be seen either as an exploratory technique or as an21

unsupervised pre-training step to help the subsequent construction of a supervised classifier. Applications22

on a toy model and two real data sets, show the effectiveness of the proposed methodology, which23

represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix.24
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In the supervised analysis of human connectome data Craddock et al. (2013); Sporns (2010), subjects25

are usually grouped under a common umbrella corresponding to high-level clinical categories (e.g.,26

patients and controls), and typical approaches aim at deducing a decision function from the labeled27

training data, see e.g. Fornito and Bullmore (2010). However, the populations of subjects (healthy as well28

as patients) is usually highly heterogeneous: clustering algorithms find natural groupings in the data, and29

therefore constitute a promising technique for disentangling the heterogeneity that is inherent to many30

conditions, and to the cohort of controls. Such an unsupervised classification may also be used as a31

preprocessing stage, so that the subsequent supervised analysis might exploit the knowledge of the32

structure of data. Some studies dealt with similar issues: semi-supervised clustering of imaging data was33

considered in Filipovych, Resnick, and Davatzikos (2011, 2012), other recent approaches cope with the34

heterogeneity of subjects using multiplex biomarkers techniques Steiner, Guest, Rahmoune, and35

Martins-de Souza (2017) and combinations of imaging and genetic patterns Varol, Sotiras, Davatzikos,36

Initiative, et al. (2017), whilst a strategy to overcome inter-subject variability while predicting behavioral37

variables from imaging data has been proposed in Takerkart, Auzias, Thirion, and Ralaivola (2014).38

Connectivity features have been used in data-driven approaches for analysis and classification of MRI39

data in Amico et al. (2017); Iraji et al. (2016). The purpose of this work is to introduce a novel approach40

that is rooted on the notion of consensus clustering Lancichinetti and Fortunato (2012), a strategy41

developed for community detection in complex networks Barabási (2003).42

To introduce our method, let us assume that a connectivity matrix is associated to each item to be43

classified (usually a subject, but also individual scans for the same subject as in the example illustrated44

below). The goal of supervised analysis is to mine those features of matrices which provide the best45

prediction of available environmental and phenotypic factors, such as task performance, psychological46

traits, and disease states. When it comes to using unsupervised analysis of matrices to find groups of47

subjects, the most straightforward approach would be to extract a vector of features from each48

connectivity matrix, and to cluster these vectors using one of the commonly used clustering algorithms.49

The purpose of the present work is to propose a new strategy for unsupervised clustering of connectivity50

matrices. In the proposed approach the different features, extracted from connectivity matrices, are not51

combined in a single vector to feed the clustering algorithm; rather, the information coming from the52

various features are combined by constructing a consensus network Lancichinetti and Fortunato (2012).53
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Consensus clustering is commonly used to generate stable results out of a set of partitions delivered by54

different clustering algorithms (and/or parameters) applied to the same data Strehl and Ghosh (2002);55

here, instead, we use the consensus strategy to combine the information about the data structure arising56

from different features so as to summarize them in a single consensus matrix.57

The unsupervised strategy that we propose here to group subjects, without using phenotypic measures,58

can be summarized as follows, and as depicted in figure (1): (i) define, for each node, of a distance matrix59

for the set of subjects (ii) cluster the distance matrix for each node, (iii) build the consensus network from60

the corresponding partitions and (iv) extract groups of subjects by finding the communities of the61

consensus network thus obtained . We remark that the proposed approach not only provides a partition of62

subjects in communities, but also the consensus matrix, which is a geometrical representation of the set63

of subjects. In the next section we describe in detail the method and apply it to a toy model, then we64

show the application on two real MRI data sets. Finally, some conclusions are drawn.65

METHOD

Let us consider m subjects whose functional (structural) N ×N connectivity matrix Rubinov and Sporns66

(2010), where N is the number of nodes, will be denoted by {A(i, j)α}, α = 1, . . . ,m and67

i, j = 1, . . . , N . For each node i, we build a distance matrix for the set of subjects as follows. Consider a68

pair of subjects α and β, and consider the corresponding nodal connectivity patterns {A(i, :)α} and69

{A(i, :)β}; let r be their Spearman correlation. As the distance between the two subjects, for the node i,70

we take dαβ = 1− r; other choices for the distance can be used, like, e.g., dαβ =
√

2(1− r) where r is71

the Pearson correlation. The m×m distance matrix dαβ corresponding to node i will be denoted by Di,72

with i = 1, . . . , N . The set of D matrices may be seen as corresponding to layers of a multilayer network73

Boccaletti et al. (2014), each brain node providing a layer.74

Each distance matrix Di is then partitioned into k groups of subjects using k-medoids method Brito,75

Bertrand, Cucumel, and Carvalho (2007). Subsequently, an m×m consensus matrix C is evaluated: its76

entry Cαβ indicates the number of partitions in which subjects α and β are assigned to the same group,77

divided by the number of partitions N. The number of clusters k may be kept fixed, thus rendering the78

consensus matrix depending on k; a better strategy, however, is to average the consensus matrix over k79
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ranging in an interval, so as to fuse, in the consensus matrix, information about structures at different80

resolutions.81

The consensus matrix, obtained as explained before, is eventually partitioned in communities by

modularity maximization, with the consensus matrix C being compared against the ensemble of all

consensus matrices one may obtain randomly and independently permuting the cluster labels obtained

after applying the k-medoids algorithm to each of the set of distance matrices. More precisely, a

modularity matrix is evaluated as

B = C−P,

where P is the expected co-assignment matrix, uniform as a consequence of the null ensemble here82

chosen, obtained repeating many times the permutation of labels; the modularity matrix B is eventually83

submitted to a modularity optimization algorithm to obtain the output partition by the proposed approach84

(we used the Community Louvain routine in the Brain Connectivity Toolbox Rubinov and Sporns (2010),85

which admits modularity matrices instead of connectivity matrices as input).86

Application of k -medoids 

algorithm to obtain 

an adjacency matrix

A consensus matrix 

for each k 

Repeat for 

different k

Repeat for 

each node 

Calculation of distance 

matrix for each node

Average over nodes
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A final consensus matrix 

Community detection

Partition into communities 

of subjects

Figure 1. The flowchart of the proposed methodology.87
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We remark that the proposed approach has similarities with the one adopted in Shehzad et al. (2014),88

where techniques from genome-wide association studies coping with the problem of a huge number of89

comparisons were applied to connectomes, thus identifying nodes whose whole-brain connectivity90

patterns vary significantly with a phenotypic variable. The approach in Shehzad et al. (2014) consists in91

two steps. First, for each node in the connectome, a whole brain functional connectivity map is evaluated,92

and then the similarity between the connectivity maps of all possible pairings of participants, using93

spatial correlation, is calculated. Then, in the second stage, a statistics is evaluated for each node,94

indicating the strength of the relationship between a phenotypic measure and variations in its connectivity95

patterns across subjects. The main similarity with the proposed approach is that in both methods, for each96

node in the connectome, the comparison between the connectivity maps yields a distance matrix in the97

space of subjects.98

A TOY MODEL

As a toy model to describe the application of our method, we simulate a set of 100 subjects, divided in99

four groups of 25 each. The subjects are supposed to be described by 30 nodes. We will compare our100

proposed approach with a standard procedure such as averaging the distance matrices and then applying101

the clustering algorithm to the average distance matrix.102

The distance matrices corresponding to the first ten nodes are constructed in the following way: the103

distance for pairs belonging to the same group is sampled uniformly in the interval [0.1, 0.4], whilst the104

distance for pairs belonging to different groups is sampled uniformly in the interval [0.2, 0.4]. The105

distance matrices corresponding to the twenty remaining nodes have all the entries sampled uniformly in106

the interval [0.2, 0.4]. It follows that in our toy model only 10 nodes, out of 30, carry information about107

the presence of the four groups.108

First of all, we evaluate the distance matrix among subjects, averaged over the 30 nodes, and apply the

k-medoids algorithm to this matrix , searching for k = 4 clusters (thus exploiting the knowledge of the

number of classes present in data); this procedure leads to an accuracy of 0.89, measured as follows. Let

us call {Gα}, α = 1, . . . , 4 the four groups in the model and let M be the minimum between 4 and the

number of clusters found by modularity maximization clustering; we denote {Ci}, i = 1, . . . ,M the
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largest M clusters found by clustering. The accuracy is then given by

1

m

M∑
i=1

maxα|Gα ∩ Ci|,

where |Gα ∩ Ci| is the cardinality of the intersection of the two sets, and m=100 is the total number of109

subjects.110

Subsequently, we run the proposed approach by applying separately to each distance matrix for each of111

the 30 nodes the k-medoids algorithm with varying k. We then build the corresponding consensus matrix.112

For example in figure (2) the consensus matrix among subjects is depicted as obtained applying113

k-medoids with k = 10 separately to each of the 30 layers. Then, the communities of the consensus114

matrices have been estimated as described in the previous Section.115

subjects (i)

Consensus matrix:

fraction of partitions for which subjects i 

and j are assigned to the same group

s
u
b
je

c
ts

 (
j)

Figure 2. Consensus matrix among subjects in the toy model, obtained applying k-medoids with k = 10 separately to each of

the 30 layers. Each entry Cαβ of the matrix represents the number of partitions in which subjects α and β were assigned to the

same group, divided by the number of partitions N

116

117

118

In figure (3) the accuracy of the partition, provided by modularity maximization on the consensus119

matrix, is depicted versus k, in order to show how it varies with k: it shows that the proposed method120
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performs better than the partition of the average distance matrix on this example, for large k; we remark121

that the accuracy 0.89 is reached by k-medoids on the average distance using k = 4 i.e. exploiting the122

knowledge of the number of groups present in the data set, whilst the proposed algorithm determines123

both the number of clusters and the partition. Intuitively, the proposed approach works better in this124

example for large k, because in the distance matrix corresponding to an informative node, due to chance,125

the block corresponding to a group is seen as fragmented in smaller pieces; those pieces can be retrieved126

using k-medoids with large k. On the other hand when the consensus is made across the different127

informative nodes, all those pieces merge in the consensus matrix and build the block corresponding to128

the four groups.129

Figure 3. The accuracy of the partition, provided by modularity maximization on the consensus matrix, is depicted versus k.

The horizontal line represents the accuracy obtained by clustering the average distance matrix using k-medoids and k = 4.

130

131

It is also worth noting that the accuracy by clustering the averaged consensus matrix (over the values132

of k) is one, i.e. perfect group reconstruction. Averaging over the values of k appears then to be a133

convenient strategy. Moreover, averaging over values of parameters is a common strategy for consensus134

clustering, hence building the consensus matrix while joining several values of k is in line with the135

philosophy of consensus clustering Lancichinetti and Fortunato (2012).136

In order to show the effectiveness of the proposed approach under different conditions, we change the144

toy model by varying the number of informative nodes and the number of groups. We also use different145

parameters w.r.t. the previous simulations, the distance for pairs belonging to the same group are still146
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Figure 4. The accuracy of the partition, provided by modularity maximization on the consensus matrix averaged over twenty

values of k, is depicted versus the number of informative nodes (when it is 30, all the nodes are informative). In the left panel

the plots correspond to four groups of 25 subjects, the blue curve is the accuracy by the proposed method and the red line is

the accuracy obtained by clustering the average distance matrix using k-medoids and k = 4. In the right panel the case of two

groups, each of 50 subjects, is considered; the blue line is the accuracy by the proposed method and the red line is the accuracy

obtained by clustering the average distance matrix using k-medoids and k = 2. In all cases the consensus approach gives better

results.
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138

139
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142

143

sampled uniformly in the interval [0.1, 0.4], whilst the distance for pairs belonging to different groups is147

sampled uniformly in the interval [0.15, 0.4]. The results, displayed in figure (4), show that the proposed148

approach works better than the application of k-medoids to the average distance matrix.149

APPLICATION TO REAL DATA SETS

Longitudinal data set150

Growing interest is devoted to longitudinal phenotyping in cognitive neuroscience: accordingly we151

consider here data from the MyConnectome project Laumann et al. (2015); Poldrack et al. (2015), where152

fMRI scans from a single subject were recorded over 18 months. In Shine, Koyejo, and Poldrack (2016)153

the presence of two distinct temporal states has been identified, that fluctuated over the course of time.154
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These temporal states were associated with distinct patterns of time-resolved blood oxygen level155

dependent (BOLD) connectivity within individual scanning sessions and also related to significant156

alterations in global efficiency of brain connectivity as well as differences in self-reported attention. This157

data was obtained from the OpenfMRI database. Its accession number is ds000031. The functional MRI158

(fMRI) data was preprocessed with FSL (FMRIB Software Library v5.0). The first 10 volumes were159

discarded for correction of the magnetic saturation effect. The remaining volumes were corrected for160

motion, after which slice timing correction was applied to correct for temporal alignment. All voxels161

were spatially smoothed with a 6mm FWHM isotropic Gaussian kernel and after intensity normalization,162

a band pass filter was applied between 0.01 and 0.08 Hz. In addition, linear and quadratic trends were163

removed. We next regressed out the motion time courses, the average CSF signal and the average white164

matter signal. Global signal regression was not performed. Data were transformed to the MNI152165

template, such that a given voxel had a volume of 3mm x 3 mm x 3mm. Finally we obtained 268 time166

series, each corresponding to an anatomical region of interest (ROI), by averaging the voxel signals167

according to the functional atlas described in Shen, Tokoglu, Papademetris, and Constable (2013).168

CONSENSUS MATRIX

DISTANCE MATRIX

Figure 5. (Top) Concerning the MyConnectome data set, the consensus matrix, obtained averaging over k, by the proposed

approach is displayed with nodes ordered according to hierarchical clustering, with the corresponding dendrogram. (Bottom)

The average distance matrix, among the different sessions of the same subject, and the corresponding dendrogram.

169

170

171
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Each of the 89 sessions resulted in a 268×268 matrix of Pearson correlation coefficients. We treated172

the sessions as if they were connectivity matrices of different subjects, and applied the proposed173

methodology. In figure (5) we depict the distance matrix, among the different sessions of the same174

subject, and the consensus matrix, obtained averaging over ten values of k. Sessions are ordered, in both175

cases, according to hierarchical clustering; the corresponding dendrograms are also shown in the figure.176

It is clear that the consensus matrix shows a hierarchical structure. Maximization of the modularity177

provides two communities with modularity equal to 0.175. As depicted in figure (6), the two178

communities are significantly different for several PANAS scores, all associated to tiredness. This is179

assessed visually using a null distribution obtained by shuffling 500 times the pairing between behavioral180

variable and connectome matrix and with a nonparametric Wilcoxon rank sum test: drowsy (Bonferroni181

corrected p-value = 0.028), tired (Bonferroni corrected p-value = 0.041), sluggish (Bonferroni corrected182

p-value = 0.026), sleepy (Bonferroni corrected p-value = 0.012), fatigue (Bonferroni corrected p-value =183

0.022). This confirms the presence of two distinct temporal states. However the hierarchical structure of184

the consensus matrix that we obtained suggests that longer longitudinal recordings are needed to further185

evidence the richness of distinct functional states for single subjects.186

It is also worth considering the effects of network thresholding on the performance of the proposed191

algorithm: thresholding is a relevant problem in brain connectivity Fallani, Latora, and Chavez (2017);192

Van Wijk, Stam, and Daffertshofer (2010). The functional networks in this data set are thresholded so as193

to retain a varying fraction (density) of the largest entries. In figure (7) we plot the similarity between the194

consensus matrices obtained by the proposed algorithm after thresholding and the corresponding195

consensus matrix in the absence of thresholding, as a function of the density. The similarity between the196

consensus matrices is evaluated as the Pearson correlation between the entries of the two matrices. On197

one side the results show the robustness of the proposed approach to moderate thresholding, indeed up to198

20% thresholding the consensus matrix is very close to what is obtained using the full matrices. On the199

other hand, the consensus matrix by the proposed approach is substantially different for sparser networks.200

This might speak to the fact that the correlation value is a debatable choice of a thresholding criterion for201

correlation matrices, and that the proposed approach is suited for weighted networks.202

Resting healthy subjects, functional and structural connectivity207
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Figure 6. MyConnectome data set: distributions of the values of the PANAS scores which are significantly different among the

two communities found by modularity optimization on the consensus matrix provided by the proposed approach. An expected

null distribution, whose quantiles are reported in gray, was obtained by shuffling the association between PANAS score and

connectome matrix.
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We consider 171 healthy subjects from the NKI Rockland dataset Nooner et al. (2012); for each subject208

we use both the structural Diffusion Tensor Imaging DTI network and the functional network, already209

obtained from processed data as described in Brown, Rudie, Bandrowski, Van Horn, and Bookheimer210

(2012). In this case the networks have 118 nodes. In figure (8) we depict the consensus matrix for both211

DTI and fMRI networks; modularity maximization yields three communities for DTI networks and four212

communities for fMRI. Concerning DTI, the three communities are significantly characterized by213

different age, with p-values equal to 9× 10−4, 2× 10−5 and 0.003 for the group comparisons 1-2, 2-3214

and 1-3 respectively (see figure (8)). Considering fMRI data, the first group by the proposed algorithm215

have a different age than the second, the third and the fourth ones (taken as a whole) with probability216

7× 10−4. P-values here reported refer to a non-parametric ranksum test, similar significance was found217

using parametric tests. We remark that our method performs differently from k-medoids over the average218
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distance, where we obtain two groups with different age, t-test with probability 10−3 using the functional219

distance, whilst no significant difference in age using the structural connectivity.220

Inspired by the results found by our method, we also performed a multivariate distance regression221

Shehzad et al. (2014), that allowed us to build a pseudo F-statistics to test whether age correlates with the222

differences observed in the distance matrix for each node. We have achieved this by comparing the223

observed F-statistic with the pseudo F-distribution (that is not normal) after 105 data permutations. As224

expected, for both structural and functional data, we found 124 and 76 nodes statistically related with age225

respectively, thus suggesting that age is one of the variables responsible of the community structure found226

by our method.227

CONCLUSIONS

An important issue such as dealing with the heterogeneity that characterizes healthy conditions, as well233

as diseases, requires the development of effective methods capable to highlight the structure of sets of234
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Figure 8. (Top) Concerning the NKI data set, the consensus matrices found by the proposed approach are shown for structural

(top-left) and functional (top-right) connectivity. (Bottom) The distribution of age values (in years) in the resulting communities

are reported. The rectangles indicate the estimator with 95 percent high density interval, calculated by Bayesian bootstrap. The

shaded areas indicate random average shifted histograms, with a kernel density estimate. The code for these plots is available

at https://github.com/CPernet/Robust Statistical Toolbox/, courtesy of Cyril Pernet

228

229

230

231

232

subjects at varying resolutions. The approach that we propose here is applied to sets of subjects each235

described by a connectivity matrix; we propose a strategy, rooted in complex networks theory, to obtain a236

consensus matrix which describes the geometry of the data-set providing at different resolutions groups237

of similar subjects. Whilst the straightforward application of consensus clustering to a given data set238

combines the output from different clustering, our proposal, instead, is to apply a clustering algorithm239

separately to the connectivity map of each node. Hence the consensus strategy is exploited to combine240

the information arising from the different nodes. Obviously, the choice of k-medoids as the clustering241

algorithm for the individual layers is not mandatory, other algorithms can be used, as well as the242

definition of the distance among subjects to be used by this algorithm. Moreover, in the present work the243
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features that we considered are the connectivity maps resulting from the whole brain connectivity pattern244

of each node, however other subsets of entries of matrices can be taken as well and the same strategy can245

be applied to fuse the different layers and produce a consensus matrix. Likewise, our framework is not246

limited to considering the whole brain and therefore it can be applied to analyze specific regions relevant247

to the problem at hand so as to exploit the benefits of our method. Summarizing, our approach aims at248

disentangling the heterogeneity of groups corresponding to high-level categories, like healthy and249

disease, finding natural groups within the cohort of patients (and within the cohort of controls). While250

dealing with data with both healthy and controls, it can be seen as a preprocessing step, that helps the251

subsequent construction of a supervised classifier healthy/subject.252

CODE

The code for the construction of the consensus matrix, out of the set of connectivity matrices, is available253

at the website https://github.com/jrasero/consensus254
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