9 research outputs found

    Deep Learning Features at Scale for Visual Place Recognition

    Full text link
    The success of deep learning techniques in the computer vision domain has triggered a range of initial investigations into their utility for visual place recognition, all using generic features from networks that were trained for other types of recognition tasks. In this paper, we train, at large scale, two CNN architectures for the specific place recognition task and employ a multi-scale feature encoding method to generate condition- and viewpoint-invariant features. To enable this training to occur, we have developed a massive Specific PlacEs Dataset (SPED) with hundreds of examples of place appearance change at thousands of different places, as opposed to the semantic place type datasets currently available. This new dataset enables us to set up a training regime that interprets place recognition as a classification problem. We comprehensively evaluate our trained networks on several challenging benchmark place recognition datasets and demonstrate that they achieve an average 10% increase in performance over other place recognition algorithms and pre-trained CNNs. By analyzing the network responses and their differences from pre-trained networks, we provide insights into what a network learns when training for place recognition, and what these results signify for future research in this area.Comment: 8 pages, 10 figures. Accepted by International Conference on Robotics and Automation (ICRA) 2017. This is the submitted version. The final published version may be slightly differen

    24/7 place recognition by view synthesis

    Get PDF
    International audienceWe address the problem of large-scale visual place recognition for situations where the scene undergoes a major change in appearance, for example, due to illumination (day/night), change of seasons, aging, or structural modifications over time such as buildings being built or destroyed. Such situations represent a major challenge for current large-scale place recognition methods. This work has the following three principal contributions. First, we demonstrate that matching across large changes in the scene appearance becomes much easier when both the query image and the database image depict the scene from approximately the same viewpoint. Second, based on this observation, we develop a new place recognition approach that combines (i) an efficient synthesis of novel views with (ii) a compact indexable image representation. Third, we introduce a new challenging dataset of 1,125 camera-phone query images of Tokyo that contain major changes in illumination (day, sunset, night) as well as structural changes in the scene. We demonstrate that the proposed approach significantly outperforms other large-scale place recognition techniques on this challenging data

    Superpixel-based appearance change prediction for long-term navigation across seasons

    No full text
    Changing environments pose a serious problem to current robotic systems aiming at long term operation under varying seasons or local weather conditions. This paper is built on our previous work where we propose to learn to predict the changes in an environment. Our key insight is that the occurring scene changes are in part systematic, repeatable and therefore predictable. The goal of our work is to support existing approaches to place recognition by learning how the visual appearance of an environment changes over time and by using this learned knowledge to predict its appearance under different environmental conditions. We describe the general idea of appearance change prediction (ACP) and investigate properties of our novel implementation based on vocabularies of superpixels (SP-ACP). Our previous work showed that the proposed approach significantly improves the performance of SeqSLAM and BRIEF-Gist for place recognition on a subset of the Nordland dataset under extremely different environmental conditions in summer and winter. This paper deepens the understanding of the proposed SP-ACP system and evaluates the influence of its parameters. We present the results of a large-scale experiment on the complete 10 h Nordland dataset and appearance change predictions between different combinations of seasons

    Topological place recognition for life-long visual localization

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2016-2017La navegación de vehículos inteligentes o robots móviles en períodos largos de tiempo ha experimentado un gran interés por parte de la comunidad investigadora en los últimos años. Los sistemas basados en cámaras se han extendido ampliamente en el pasado reciente gracias a las mejoras en sus características, precio y reducción de tamaño, añadidos a los progresos en técnicas de visión artificial. Por ello, la localización basada en visión es una aspecto clave para desarrollar una navegación autónoma robusta en situaciones a largo plazo. Teniendo en cuenta esto, la identificación de localizaciones por medio de técnicas de reconocimiento de lugar topológicas puede ser complementaria a otros enfoques como son las soluciones basadas en el Global Positioning System (GPS), o incluso suplementaria cuando la señal GPS no está disponible.El estado del arte en reconocimiento de lugar topológico ha mostrado un funcionamiento satisfactorio en el corto plazo. Sin embargo, la localización visual a largo plazo es problemática debido a los grandes cambios de apariencia que un lugar sufre como consecuencia de elementos dinámicos, la iluminación o la climatología, entre otros. El objetivo de esta tesis es enfrentarse a las dificultades de llevar a cabo una localización topológica eficiente y robusta a lo largo del tiempo. En consecuencia, se van a contribuir dos nuevos enfoques basados en reconocimiento visual de lugar para resolver los diferentes problemas asociados a una localización visual a largo plazo. Por un lado, un método de reconocimiento de lugar visual basado en descriptores binarios es propuesto. La innovación de este enfoque reside en la descripción global de secuencias de imágenes como códigos binarios, que son extraídos mediante un descriptor basado en la técnica denominada Local Difference Binary (LDB). Los descriptores son eficientemente asociados usando la distancia de Hamming y un método de búsqueda conocido como Approximate Nearest Neighbors (ANN). Además, una técnica de iluminación invariante es aplicada para mejorar el funcionamiento en condiciones luminosas cambiantes. El empleo de la descripción binaria previamente introducida proporciona una reducción de los costes computacionales y de memoria.Por otro lado, también se presenta un método de reconocimiento de lugar visual basado en deep learning, en el cual los descriptores aplicados son procesados por una Convolutional Neural Network (CNN). Este es un concepto recientemente popularizado en visión artificial que ha obtenido resultados impresionantes en problemas de clasificación de imagen. La novedad de nuestro enfoque reside en la fusión de la información de imagen de múltiples capas convolucionales a varios niveles y granularidades. Además, los datos redundantes de los descriptores basados en CNNs son comprimidos en un número reducido de bits para una localización más eficiente. El descriptor final es condensado aplicando técnicas de compresión y binarización para realizar una asociación usando de nuevo la distancia de Hamming. En términos generales, los métodos centrados en CNNs mejoran la precisión generando representaciones visuales de las localizaciones más detalladas, pero son más costosos en términos de computación.Ambos enfoques de reconocimiento de lugar visual son extensamente evaluados sobre varios datasets públicos. Estas pruebas arrojan una precisión satisfactoria en situaciones a largo plazo, como es corroborado por los resultados mostrados, que comparan nuestros métodos contra los principales algoritmos del estado del arte, mostrando mejores resultados para todos los casos.Además, también se ha analizado la aplicabilidad de nuestro reconocimiento de lugar topológico en diferentes problemas de localización. Estas aplicaciones incluyen la detección de cierres de lazo basada en los lugares reconocidos o la corrección de la deriva acumulada en odometría visual usando la información proporcionada por los cierres de lazo. Asimismo, también se consideran las aplicaciones de la detección de cambios geométricos a lo largo de las estaciones del año, que son esenciales para las actualizaciones de los mapas en sistemas de conducción autónomos centrados en una operación a largo plazo. Todas estas contribuciones son discutidas al final de la tesis, incluyendo varias conclusiones sobre el trabajo presentado y líneas de investigación futuras

    Entraining a Robot to its Environment with an Artificial Circadian System

    Get PDF
    As robots become persistent agents in a complex and dynamic world, they must deal with changing environments. This challenge has grown research in long-term autonomy, with particular focus on localization and mapping in dynamic environments. Less attention has been paid to learning these dynamics to adapt or entrain an agent’s behavior to them. Inspired by circadian systems in nature, this dissertation seeks to answer how a robotic agent can both learn the regular cycles and patterns that exist in many environments, and how it can exploit that knowledge. In this work, relevant environmental states are modeled as time series and forecasted into the future. These forecasts are used to estimate the utility of executing some behavior at any point in time during the dominant environmental cycle. The relative utility of executing a behavior at the current time, compared to the potential utility for waiting until later, is passed as one component in an activation-based action selection system. While other components still impact what behaviors execute when, the ‘circadian’ component derived from forecasts biases the behavior to execute at the better times in the environmental cycle. This approach was dubbed the artificial circadian system. As forecasting the future is inherently unreliable, methods to make the approach robust to degrading forecast accuracy are presented. A unitless error measure is used to adapt the weight of the forecasting component in action selection, allowing an autonomous agent to leverage forecasts when they are good, and fall back onto reactive strategies when forecasts fail. As time series models rely on the history for predictions, a temporary disruption to the environment can potentially degrade forecast accuracy for many cycles. Methods to create modified forecasts which exclude potential outlier data are presented, and these forecasts are leveraged only if they improve accuracy. The ideas in this work were validated using an experimental test bed designed to approximate a precision agricultural task, where a solar powered robot monitored individual plants for pests and weeds. The artificial circadian system was shown to effectively entrain the agent’s behavior to the dynamics of its environment in some cases, improving performance. It was also noted that dynamics not on the same time-scale as the robot’s actions could not be exploited, even with forecasted knowledge. The artificial circadian system was reliably able to detect deviations in the environment and remove the influence of forecasts when their accuracy degraded. Successfully removing outlier data to generate better forecasts was less consistent, but achieved in a significant portion of trials.Ph.D
    corecore