
Research Article
Efficient ConvNet Feature Extraction with Multiple
RoI Pooling for Landmark-Based Visual Localization of
Autonomous Vehicles

Yi Hou,1 Hong Zhang,2 Shilin Zhou,1 and Huanxin Zou1

1College of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, China
2Department of Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8

Correspondence should be addressed to Yi Hou; yihouhowie@gmail.com

Received 12 May 2017; Revised 28 July 2017; Accepted 11 October 2017; Published 9 November 2017

Academic Editor: Paolo Bellavista

Copyright © 2017 Yi Hou et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Efficient and robust visual localization is important for autonomous vehicles. By achieving impressive localization accuracy under
conditions of significant changes, ConvNet landmark-based approach has attracted the attention of people in several research
communities including autonomous vehicles. Such an approach relies heavily on the outstanding discrimination power of ConvNet
features tomatch detected landmarks between images. However, a major challenge of this approach is how to extract discriminative
ConvNet features efficiently. To address this challenging, inspired by the high efficiency of the region of interest (RoI) pooling
layer, we propose a Multiple RoI (MRoI) pooling technique, an enhancement of RoI, and a simple yet efficient ConvNet feature
extraction method. Our idea is to leverage MRoI pooling to exploit multilevel and multiresolution information from multiple
convolutional layers and then fuse them to improve the discrimination capacity of the final ConvNet features.Themain advantages
of our method are (a) high computational efficiency for real-time applications; (b) GPUmemory efficiency for mobile applications;
and (c) use of pretrained model without fine-tuning or retraining for easy implementation. Experimental results on four datasets
have demonstrated not only the above advantages but also the high discriminating power of the extracted ConvNet features with
state-of-the-art localization accuracy.

1. Introduction

Efficient and reliable visual localization is a core requirement
for smart transportation applications such as autonomous
cars, self-driving public transport vehicles, and mobile
robots. Its aim is to use visual sensors such as cameras to
solve the problem of “where am I?” and facilitate life-long
navigation, by determining whether the current view of the
camera corresponds to a location that has been already visited
or seen [1]. Compared to the solutions that use other sensors
such as LIDAR, visual localization is inherently more flexible
and cheaper to use [1]. Therefore, visual localization for
transportation systems has become a hot topic. In particular,
recent interest in autonomous vehicles has created a strong
need for visual localization techniques that can efficiently
operate in challenging environments. Although current state-
of-the-art approaches have made great strides [2–12], visual

localization for long-term navigation of autonomous vehicles
still remains an unsolved problem when image appearance
experiences significant changes caused by time of the day,
season, weather, camera pose, etc. [1].

Recently, a ConvNet landmark-based visual localization
approach proposed in [13] has achieved state-of-the-art
localization accuracy under conditions of significant envi-
ronmental and viewpoint changes, raising the interest of the
community [1, 14, 15]. Some sample examples of matched
image pairs produced by such an approach are illustrated in
Figure 1. Its key idea is to leverage the discrimination power
of ConvNet features to describe high-level visual landmarks
in the image, in order to achieve viewpoint invariance [1, 13].
For this point, such an approach relies heavily on the great
descriptive power of ConvNet features to match detected
landmarks between images. At the same time, a practical
consideration forConvNet feature extraction is to be efficient.
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(a) UACampus

(b) St. Lucia

(c) Nordland

(d) Mapillary

Figure 1: Sample examples of matched image pairs produced by a ConvNet landmark-based visual localization approach, which extracted
ConvNet features by one variant of our proposed method, that is,MRoI-FastRCNN-AlexNet (see Section 5.1.2 for details).These images come
from the testing datasets used in our experiments (see Section 5.1.1 for details). Six images on each row come from one dataset, and the three
pairs illustrate images correctly matched by our method. The bounding boxes of the same color in each pair of matched images show the
landmarks that have been matched. For clarity, we show only ten matched landmarks in each image. Best viewed in color.

However, to the best of our knowledge, efficient extrac-
tion has been largely overlooked in visual localization
research, and people rely on existing ConvNet feature extrac-
tion methods introduced for computer vision applications
such as image classification [16–18] and object detection
[19–21], without specializing them for the visual localization
application. As we will discuss in detail in Section 3, these
existing methods fall into two groups: original image-based
and feature map-based. In general, methods in the first group
are accurate enough for localization but time-consuming
while those in the second group are fast enough but not
accurate as the first group for localization. Therefore, there
is an urgent need to develop a method to achieve the speed
and accuracy at the same time.

To this end, in this paper we present a simple yet
efficient method to extract discriminative ConvNet features
for visual localization of autonomous vehicles that is highly
efficient both in computation and in GPUmemory, using the
technique which we refer to as multiple RoI (MRoI) pooling.
As an enhancement of a special pooling layer called region of
interest (RoI) [20], MRoI pooling inherits the high efficiency
of RoI pooling.Therefore, we are able to useMRoI pooling to
efficiently exploit multilevel andmultiresolution information
from multiple convolutional layers, instead of only one as in

previous feature map-based methods. Furthermore, we fuse
information across multiple layers to improve the discrimi-
nation capacity of the final ConvNet features.

Extensive experimental results on four datasets with vari-
ous changes in environmental conditions have demonstrated
that (a) our proposed method is fast, GPU memory efficient,
and based on a pretrained model without fine-tuning or
retraining and (b) the discrimination capacity of ConvNet
features extracted by our method is higher than those of
feature map-basedmethods on all testing datasets. Moreover,
our method is also comparable with those of original image-
based methods, with state-of-the-art localization accuracy.

The rest of this paper is organized as follows. Section 2
briefly reviews related literature with respect to visual local-
ization. Section 3 describes and analyzes existingmethods for
extracting ConvNet features. Section 4 provides the details
of our proposed method. Section 5 presents the experiments
and results. Finally, we conclude the work in Section 6.

2. Related Work

Prior to the emergence of CNN, visual localization ap-
proaches mainly depended on hand-crafted features devel-
oped in computer vision, in order to represent the scenes
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observed by vehicles or mobile robots during navigation. A
popular baseline algorithm among traditional approaches is
FAB-MAP [2]. It used local features like SURF to represent
an image and achieved efficient image matching with bags-
of-words. For SLAM, RTABMap [22, 23] used both SIFT
and SURF. On the other hand, some methods used binary
local features for the high-efficiency matching. For example,
by encoding BRIEF and FAST into a bag of binary words,
[24] performed fast localization. Recently, ORB-SLAM [25]
showed promising performance by employing ORB fea-
tures. However, most of local feature-based approaches have
demonstrated only a limited degree of environmental invari-
ance, despite displaying a reasonable degree of viewpoint
invariance [1]. The reason for this limited success is that local
features are usually only partially invariant to environmental
changes.

In contrast, global feature-based methods have demon-
strated better environmental invariance. For example, Gist
features were used to construct a whole descriptor of an
image in visual localization applications such as [3, 6]. Besides
Gist, BRIEF-Gist [5] further integrated BRIEF to improve the
efficiency of image matching by computing the Hamming
distance. To handle significant environmental changes due
to weather, daylight, and season, SeqSLAM [7] and its
variants [8–10] have been developed.They exploited temporal
information and consistency of image sequences instead of
single images to define places. However, these global feature-
based approaches are known to fail easily in the presence
of viewpoint changes. In summary, traditional approaches
are difficult to satisfy practical requirements in conditions
that experience both environmental and viewpoint changes
simultaneously [1].

With the outstanding power on various visual tasks, CNN
has been popularly applied to visual localization and has
achieved promising results [12, 26, 27]. A comprehensive
evaluation performed in [26] has demonstrated that the
discrimination capacity of ConvNet features is much more
than those of the state-of-the-art hand-crafted features such
as Gist [28], BoW [29], Fisher vector [30], and VLAD [31].
In addition, the advantages of ConvNet features in environ-
ments with various changes have been further confirmed by
another evaluation study [27]. Since then, ConvNet features
have been widely applied to improve some existing visual
localization methods such as SeqSLAM [7] and a season-
robust method using network flows [11], where hand-crafted
features were replaced by ConvNet features [12, 32].

Instead of directly using pretrained CNN models, some
works [33, 34] fine-tuned or redesigned and retrained special-
ized CNNs on datasets that are specific to visual localization,
in order to further improve the discrimination capacity of
ConvNet features. Regardless, becauseConvNet featureswere
still used as a global image descriptor, all these approaches
mentioned above suffer the weakness of viewpoint sensitivity,
although their robustness against environmental changes has
been improved.

To address this problem, a ConvNet landmark-based
approach was proposed in [13]. It has been shown state-of-
the-art localization accuracy in challenging environments.
This success is attributed to two reasons. First, viewpoint

invariance is achieved by combining the benefits of global
and local features [1]. Second, compared to previousmethods
using hand-crafted visual features, this approach improves
the description capability of the detected landmarks, by
making full use of the discrimination power of ConvNet
features [26, 27]. However, the ConvNet feature extraction
method used in such an approach lacks time efficiency that
is required in a visual localization application of autonomous
vehicles. It is the need for producing an efficient solution with
excellent invariance properties that motivated our research
described in this paper.

3. Existing ConvNet Feature
Extraction Methods

In this section, we will describe existing methods for extract-
ing ConvNet features and discuss their advantages and
disadvantages in detail. According to the type of subimages
from which a ConvNet feature is extracted, existing ConvNet
feature extraction methods fall into two groups: original
image-based and feature map-based. Similar to R-CNN [19],
original image-based methods usually first crop correspond-
ing subimages from the original input image according to
the bounding boxes of detected landmarks as shown in
Figure 1 and then resize them to predefined dimensions,
before feeding them into a CNN network to extract ConvNet
features. As shown in [13], the ConvNet features extracted
by such a method are discriminative enough to achieve
the state-of-the-art localization accuracy under challenging
conditions. However, its computation is usually too time-
consuming tomeet the real-time requirement.This is because
these methods need to not only resize the cropped subimages
but also repeatedly evaluate the layers of the CNN network
as many times as there are landmarks detected in an image.
Even though sending all cropped regions into the network
as a batch can reduce the running time, the computational
efficiency is still unsatisfactory. Moreover, the batch process-
ing of all cropped images increases the requirement on GPU
memory, making its implementation difficult in embedded
systems ormobile devices with limitedGPU resources, which
are popularly equipped in an autonomous vehicle.

On the contrary, feature map-based methods are much
more efficient in computation and GPU memory, but their
ConvNet features are less discriminative. Similar to Fast
R-CNN [20], feature map-based methods directly extract
ConvNet features from the feature maps at the last and
coarsest convolutional layer. Specifically, they utilize RoI [20]
to directly pool the feature of a detected landmark on the
feature maps and then generate a fixed-length representation
for describing this landmark. In this way, the convolutional
layers of a CNN network are needed to be computed only
once on the entire image. For this reason, feature map-
based methods are much faster than original image-based
methods. Despite the computational advantage, the ConvNet
features extracted by existing feature map-based methods
are less discriminative than those of original image-based
methods. This is due to the fact that the feature maps are a
downsampled form of the original image, causing a loss in
performance. For example, the size of each feature map at
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Figure 2: Illustration of our proposed ConvNet feature extraction method with multiple RoI pooling (MRoI). For ease of understanding,
we show in (a) the existing feature map-based methods which directly use the Fast R-CNN [20] to extract ConvNet features. In addition, we
also show the principle of a RoI pooling layer in (b). Our method is illustrated in (c). Obviously, our method is very simple because it only
needs to add two extra RoI pooling layers (i.e., RoI

3 and RoI4) behind the Conv3 and Conv4 layers. Note that “𝑝𝑖” (𝑖 = 3, 4, 5) represents the
vectorized RoI pooling features from the corresponding RoI pooling layer. For the purpose of feature fusion, 𝑝𝑖 is first ℓ2-𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 and
then concatenated (�). The final output ConvNet features of Fast R-CNN and our method are denoted as “𝑓𝑜” and “𝑓MoI,” respectively. For
clarity, we present only three of the bounding boxes (BBs) detected within an image.

the Conv5 layer is as small as 14 × 14 pixels when sending
an original input image of 224 × 224 × 3 pixels into the
AlexNet network [16]. Obviously, such a small feature map
is fairly coarse. Consequently, the extracted ConvNet feature
of a landmark may not contain adequate discriminative
information if its bounding box is not large enough. The
deficient discrimination power of ConvNet features often
reduces the final localization accuracy, especially in the case
of significant viewpoint change.

To sum up, existing feature extraction methods have not
successfully tackled the issue of achieving high computational
and GPU memory efficiency and high discrimination power
at the same time, serving as the motivation of our research.

4. Our Proposed Method to
Visual Localization

In this section, we present the proposed method for efficient
ConvNet landmark-based visual localization. Details of our
method are illustrated in Figure 2. As will be seen, our
method is simple and straightforward. Here, we first describe
how to construct the proposedmultiple RoI pooling layer and
then present our feature extraction method.

4.1. MRoI: Multiple RoI Pooling. In essence, our proposed
MRoI is an enhanced version of the RoI pooling layer, which
is a special pooling layer following the Conv5 layer of Fast R-
CNN [20].

The principle of an RoI pooling layer is illustrated in
Figure 2(b). It takes as input the 𝐶 (the number of channels)
feature maps at the corresponding convolutional layer and
the bounding boxes (BBs) of all detected landmarks, as
shown in Figure 2(b)-(i). Based on the transform relationship
between the sizes of the original input image and the feature
maps, these BBs are converted to corresponding regions of
interest (RoIs) on the feature maps. For each RoI, its region
is divided into 6 × 6 spatial bins, as shown in Figure 2(b)-
(ii) (for clarity we draw only 4 × 4 spatial bins). Moreover,
the max pooling is performed within each spatial bin across
all channels. Thus, for each detected landmark, its subimages
on the feature maps, which are a multidimensional array of
size 6 × 6 × 𝐶, can be obtained, as shown in Figure 2(b)-(iii).
These subimages are finally used as the RoI pooling feature
of the landmark. Therefore, by using the RoI pooling layer,
a feature map-based method such as Fast R-CNN computes
the feature maps from the entire image only once and then
pools features in the arbitrary region of a detected landmark
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Table 1: Main properties of four testing datasets used in our experiments. For a dataset with multiple subsets, two subsets with extreme
changes are listed below and will be matched in our experiments. “No.” indicates the number of images in a subset. “—” means the change is
negligible.

Dataset Subset No. Main changes
Illumination Shadow Season Viewpoint

UACampus [35] 06:20
22:15

649
647 large — — —

St. Lucia [36] 2009-09-10 08:45
2009-09-11 15:45

1000
1000 moderate large — minor

Nordland [37] Spring
winter

1000
1000 large — large —

Mapillary [38] mploop1
mploop2

2028
2028 moderate — — large

to generate its representation. Most importantly, RoI pooling
avoids repeatedly computing the convolutional layers. This is
the main reason why feature map-based methods are usually
much faster than original image-based methods.

Despite the speed superiority, the ConvNet features
extracted by existing feature map-based methods are less
discriminative than desired, because these methods extract
features from only one RoI pooling layer after the Conv5
layer, that is, the coarsest convolutional layer. To enhance the
discrimination capacitywhile retaining the high computation
efficiency, we propose a MRoI pooling layer, which are made
up of three RoI pooling layers, to exploit the finer and richer
information from multiple convolutional layers than that
available from a single layer.

The construction of MRoI is simple. As illustrated in
Figure 2(c), we only need to simply add two extra RoI pooling
layers, that is, RoI3 and RoI4, behind the Conv3 and Conv4
layers, respectively. Note that the two extra RoI pooling layers
are easy to insert in any pretrained CNNs, because we only
need to slightly modify the corresponding configuration file,
that is, by replicating the setting of RoI5 behind the Conv3
and Conv4 layers.Therefore, our method can work in a “plug
and play” solution.

4.2. ConvNet Feature Extraction with MRoI. For each land-
mark detected within an image, we extract its ConvNet
feature based on MRoI in three steps:

(S1) MRoI pooling at multiple convolutional layers: from
each RoI pooling layer of MRoI, the RoI pooling
feature corresponding to the detected landmark is
first obtained. As described above, this RoI pooling
feature is a multidimensional array of size 6 × 6 × 𝐶.
So it is then vectorized. We denote the vectorized RoI
pooling features from a RoI pooling layer as 𝑝𝑖, where
𝑖 = 3, 4, 5.

(S2) ℓ2-normalizingMRoI features layer by layer.With this
normalization, we observed an improvement in local-
ization accuracy in our experiments. Its definition is
as follows:

𝑝𝑖
ℓ
2

= ℓ2 norm (𝑝
𝑖) , 𝑖 = 3, 4, 5. (1)

(S3) Fusing normalized features across the MRoI layers.
In order to improve the discrimination capacity of
the final ConvNet feature, 𝑓MoI, we fuse the ℓ2-
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 features across the MRoI layers by con-
catenation:

𝑓MoI = 𝑝
3

ℓ
2

�𝑝4
ℓ
2

�𝑝5
ℓ
2

, (2)

where �means concatenation [34].

The ConvNet features of all detected landmarks are
extracted as described above. Note that Steps 2 and 3 are
considered to postprocess the output ofMRoI layers obtained
by Step 1.

5. Experimental Evaluation

To verify the effectiveness our proposed method, we per-
formed experimental assessments on four datasets. In this
section, the experimental setup is first provided from the
aspects of testing datasets, compared methods, evaluation
prototype, and evaluation metrics. Then, we will present
experimental results with respect to the localization accuracy
reflecting the discrimination capacity of extracted ConvNet
features, the computational cost, and GPU memory effi-
ciency.

5.1. Experimental Setup

5.1.1. Testing Datasets. In this paper, four popular visual
localization datasets that exhibit typical variations in real-
world visual localization applications were used to evaluate
the performance. Main properties of all datasets are listed in
Table 1. Sample images are shown in Figure 1.

(a) For theUACampus [35] dataset, two subsets captured
at 06:20 and 22:15 were used, for the reason that
they exhibit the greatest relative illumination change.
To generate the ground truth, their images were
manually matched.

(b) For the St. Lucia [36] dataset, two subsets collected at
08:45 on September 10, 2009, and at 15:45 on Septem-
ber 11, 2009, were used, because they exhibit the
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greatest appearance changes caused by illumination
and shadow. In our experiments, we used 1000 images
uniformly sampled from each of the two subsets.
To generate the ground truth, two images within 30
metres of the distance calculated based on GPS are
considered to be the same position.

(c) For the Nordland [37] dataset, spring and winter
subsets were used, because they exhibit the great-
est variation in appearance caused by the seasonal
changes. In our experiments, we used 1000 images
uniformly sampled from each of the two subsets. The
fact that these subsets have been time-synchronized
was used to create the ground truth. In other words,
an image with a given frame number in the spring
subset corresponds to the image with the same frame
number in the winter subset.

(d) The Mapillary [38] dataset was downloaded from
Mapillary [39], an alternative service like Google
Street View. It is regarded as an ideal platform that
provides datasets for visual localization under every-
day conditions [13]. To evaluate the performance
under a significant viewpoint change as well as some
appearance changes due to variations in the weather,
we specifically downloaded 2028 image pairs with dif-
ferent viewpoints across several countries in Europe.
Considering the fact that the GPS reading attached in
each image is quite inaccurate, we first used the GPS
readings to create the initial ground truth and then
refined the initial ground truth manually.

5.1.2. Compared Methods. To evaluate the performance of
our proposed method, we compared our method with the
representative methods from the two aforementioned groups
in the following experiments. Moreover, in order to examine
the capability of our method with respect to generalization
to different CNN models, we conducted experiments on
AlexNet [16] and VGG-M1024 [17], two basic and popular
CNNmodels. It is worth noting that our strategy to compare
performance was to use the best performing single CNN
layer (i.e., pool5) as a representative and compare it with the
proposed MRoI method. The relative performance of single
layer was established in an earlier study of ours [26], to justify
the use of pool5 as the representative. For simplicity, in the
rest of this paper we adopt the following notations to refer
the two kinds of compared methods and two variants of our
proposed method:

(i) AlexNet and VGG-M1024 are two typical representa-
tives of existing original image-based methods. They
extract ConvNet features at the pool5 layer of CNN
models of AlexNet and VGG-M1024, respectively.
Note that resized subimages can be fed into the CNN
models in one of two ways: (a) one-by-one and (b)
in a batch. The two ways produce the same ConvNet
features but require different computational costs
and GPU memories, as we will discuss in the result
section.

(ii) FastRCNN-AlexNet and FastRCNN-VGG-M1024 are
two typical representatives of exiting feature map-
based methods. We directly ran Fast-RCNN [20] on
CNN models of AlexNet and VGG-M1024 to extract
ConvNet features at the pool5 layer.

(iii) Two variants of our proposed method are essentially
the enhanced versions of above representatives of
feature map-based methods. Accordingly, they are
denoted as MRoI-FastRCNN-AlexNet and MRoI-
FastRCNN-VGG-M1024. Our method extracts Con-
vNet features at not only the RoI5 layer but also
the added RoI3 and RoI4 layers. With respect to the
values of𝐶 corresponding to the RoI3, RoI4, andRoI5
layer, those ofMRoI-FastRCNN-AlexNet are 384, 384,
and 256, respectively, and those ofMRoI-FastRCNN-
VGG-M1024 are 512, 512, and 512, respectively.

5.1.3. Visual Localization Prototype. To verify the effective-
ness of our proposed method in ConvNet landmark-based
visual localization, we ran visual localization using the state-
of-the-art framework proposed in [13]. Here we provide a
brief summary of this framework for completeness. For more
details regarding this framework, the reader is referred to [13].
Note that our feature extraction method is not specific to this
framework and could easily be adapted to other frameworks
for ConvNet landmark-based visual localization.

(i) Landmark detection: in [13], 100 landmarks per image
were detected. Compared with [13], the difference
of our experiments is that we detected landmarks
using BING [40] instead of EdgeBoxes [41], which are
two object proposal methods developed by the object
detection community.We prefer BING for the follow-
ing three reasons: (a) as has been demonstrated in
[42], compared to EdgeBoxes, BING has slightly bet-
ter repeatability, which is an important property for
localization accuracy; (b) our previous experimental
evaluation also shows that the localization accuracy
achieved by BING is comparable with, or in some
cases even better than, EdgeBoxes in the presence
of severe environmental changes; and (c) BING has
the speed advantage, which is a crucial consideration
for real-time visual localization applications. In our
test, BING is one order of magnitude faster than
EdgeBoxes, with an execution time of 24ms per image
on a desktop PC.

(ii) ConvNet feature extraction and dimensionality re-
duction: to improve the efficiency in the subsequent
image matching and storage, dimensionality reduc-
tion with an appropriate method is usually applied
to the extracted ConvNet features. Following [13],
the dimensions of all extracted ConvNet features in
our experiments were reduced to 1024-D using Gaus-
sian Random Projection (GRP) [43, 44]. Note that
all extracted ConvNet features were 𝑙2-normalized
before GRP was performed.

(iii) Image matching: the method of [13] uses bidirec-
tional matching based on a linear nearest neighbour
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search to find the matched landmarks. This matching
strategy is optimized for accuracy and is therefore
appropriate for comparing the discrimination capac-
ity of extracted ConvNet features. Therefore, we have
implemented the method of [13] for our evaluation.
To ensure the validity of our experimental evaluation,
our implementation has been verified to reproduce
the results in [13].

For each dataset in Table 1, the first subset was considered
as the query set of visual localization, and the second subset
was used as the database (map) set. For each image in the
query set, we find its best-matched image from the database
set. Here we focus on finding the correct location without
the customary verification using, for example, multiview
geometry. Therefore, the corresponding ground truth is
utilized to determine the correctness and then evaluate the
localization accuracy.

Note that all the experiments in this paper were run
on a desktop PC with eight cores CPU@4.00GHz, 32GB
RAM memory, and a single GeForce GTX TITAN X GPU
with 12GB memory. In all the experiments, we use Caffe
[45], which is a popular deep learning framework, to extract
ConvNet features.

5.1.4. Evaluation Metrics. To evaluate the discrimination ca-
pacity of ConvNet features extracted by the proposedmethod
for visual localization, we compare its localization accuracy
with those of compared methods in terms of the following
four popular metrics:

(a) Precision-recall curve is a standard criterion used
to evaluate the localization accuracy for a range of
confidence thresholds [1]. It is defined as follows:
Precision = TP/(TP + FP), Recall = TP/(TP + FN),
where TP, FP, and FN indicate the number of true
positives, false positives, and false negatives, respec-
tively. By varying the confidence threshold, we can
produce a precision-recall curve. In general, a high
precision over all recall values is desirable.

(b) Maximum precision at 100% recall is a popular crite-
rion for directly evaluating the localization accuracy
without using a confidence threshold. This criterion
is useful, especially in environments under changing
conditions or cross multiple different regions. In such
an environment, an optimal confidence threshold is
usually difficult to be predetermined. To avoid miss-
ing out the possible correct localization, in this case
each query image always finds one best match from
the database images without a confidence threshold.

(c) Maximum recall at 100% precision is a key metric to
evaluate the performance of a method in cases of
prioritizing avoidance of false positive localization.

(d) Average precision (AP) is useful when a scalar value
is required to characterize the overall performance
of visual localization [26, 46]. Average precision
captures this property by computing the average of
the precisions over all recall values of a precision-
recall curve.

Besides, the average running time per imagewasmeasured
to evaluate the computational efficiency. Finally, the actual
cost ofGPUmemorywas recorded to assess theGPUmemory
efficiency.

5.2. Localization Accuracy. In this section, we compare the
localization accuracy of two variants of our method, MRoI-
FastRCNN-AlexNet/VGG-M1024, with those of compared
methods in terms of the first four above metrics. The
corresponding results are shown in Figure 3 and Tables 2, 3,
and 4. It can be generally observed from these results that,
among all methods, the two variants of our method are the
best or tying for the best across all of the testing datasets, and
original image-based methods are the second or tying for the
best, followed by featuremap-basedmethods being theworst.
The following observations can be further made.

(a) As can be seen in Figure 3 and Table 2, FastRCNN-
AlexNet/VGG-M1024 are comparable to AlexNet/
VGG-M1024 in environments without significant
viewpoint changes, such as the UACampus, St. Lucia,
and Nordland datasets. However, they are inferior
to AlexNet/VGG-M1024 in handling significant view-
point change as exhibited in the Mapillary dataset.
This demonstrates the problemwe aim to solve in this
paper.

(b) It can be clearly seen from Figure 3 and Table 3
that two variants of our method outperform orig-
inal image-based methods, that is, AlexNet/VGG-
M1024, in environments without significant view-
point change (as exhibited in the UACampus, St.
Lucia, and Nordland datasets) and are comparable to
these original image-based methods in environments
with significant viewpoint variation like theMapillary
dataset.

(c) One can clearly observe fromFigure 3 andTable 4 that
the precision-recall curves and the three numerical
metrics produced by our MRoI-FastRCNN-AlexNet/
VGG-M1024 are higher than those of feature map-
based methods, that is, FastRCNN-AlexNet/VGG-
M1024, on all datasets. Moreover, the superiority of
two variants of our method becomes more obvious
in environments significant viewpoint change such as
the Mapillary dataset. Considering the fact that fea-
ture map-based methods extract features from only
one RoI pooling layer after the coarsest convolutional
layer (i.e., the Conv5 layer), these comparison results
demonstrate that using our MRoI method to fuse the
features extracted from multiple RoI pooling layers
is able to enhance the discrimination capacity of
the final ConvNet features. As a result, our method
improves the localization accuracy of feature map-
based methods in environments with different kinds
of conditional changes.

To qualitatively evaluate the matched results obtained
by our method, Figure 1 shows examples of matched image
pairs and corresponding matched landmark pairs produced
by our MRoI-FastRCNN-AlexNet. Six images on each row
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Figure 3: Comparisons of localization accuracy in terms of the precision-recall curve.
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Table 5: Comparisons of average running time per image and the GPU memory cost between two variants of our method and compared
methods for extracting ConvNet features. The total running time consists of the computational costs for preprocessing, going through the
Caffe and postprocessing. Note that 𝐴𝑙𝑒𝑥𝑁𝑒𝑡𝑏/VGG-M1024b refer to the costs of computation and GPUmemory when sending 100 detected
landmarks into Caffe as a batch of 100. “—” means the computational cost is negligible. We can clearly see that the computation speed and
GPUmemory consumption of two variants of our method are close to those of FastRCNN-AlexNet/VGG-M1024 and several times faster and
fewer than those of 𝐴𝑙𝑒𝑥𝑁𝑒𝑡

𝑏/VGG-M1024b.

Method GPUMemory
(MB)

Average running time (ms)
Pre Caffe Post Total

MRoI-FastRCNN-AlexNet 240 6.9 18.3 3.8 29.0
MRoI-FastRCNN-VGG-M1024 396 33.5 5.8 46.2
FastRCNN-AlexNet 218 6.9 13.3 — 20.2
FastRCNN-VGG-M1024 367 31.0 — 37.9
AlexNet 183

30.3

518.5 — 548.8
VGG-M1024 229 998.8 — 1029.1
𝐴𝑙𝑒𝑥𝑁𝑒𝑡

𝑏 880 115.9 — 146.2
VGG-M1024b 1965 199.7 — 230.0

come fromone dataset, and the three pairs represent correctly
matched images by our method. It can be seen that the
matched landmarks are correctly identified, even in envi-
ronments with different changes. These results demonstrate
that the ConvNet features extracted by our method have
satisfactory discrimination capacity.

5.3. Computational Efficiency. To evaluate the computational
efficiency, we report average running time per image of our
method and compared methods for extracting ConvNet fea-
tures inTable 5. ForAlexNet/VGG-M1024, we also report their
computational cost when sending 100 detected landmarks
into Caffe as a batch of 100. The corresponding cost is
denoted as 𝐴𝑙𝑒𝑥𝑁𝑒𝑡𝑏/VGG-M1024b. Specifically, the table
lists the breakdown of average running time per image, that
is, the computational costs for preprocessing, going through
Caffe and postprocessing. For the preprocessing, the cost
of AlexNet/VGG-M1024 and 𝐴𝑙𝑒𝑥𝑁𝑒𝑡𝑏/VGG-M1024b is the
highest.The reason is as follows. Before feeding into the Caffe
when using an original image-based method, subimages of
detected landmarks need to first be cropped from the original
input image according to their bounding boxes, and all
cropped subimages are then resized to predefined dimensions
to meet the requirement of the networks. As a result, the
computational cost is as high as 30.3ms per image. For the
postprocessing, only our method needs several milliseconds
for 𝑙2-normalizing the output from the MRoI pooling layer.
In addition, some further observations can bemade based on
results in Table 5, as follows.

(a) FastRCNN-AlexNet/VGG-M1024 are much faster
than AlexNet/VGG-M1024 (≈27/27 times) and even
𝐴𝑙𝑒𝑥𝑁𝑒𝑡𝑏/VGG-M1024b (≈seven/six times). This
verifies our motivation, that is, feature map-based
methods are greatly superior in computational effi-
ciency to original image-based methods.

(b) Both variants of our method, MRoI-FastRCNN-
AlexNet/VGG-M1024, are only approximately ninems

per image slower than corresponding feature map-
based methods, FastRCNN-AlexNet/VGG-M1024.
More importantly, the two variants achieve real-time
computing efficiency, with average running times of
29.0 and 46.2ms per image, respectively. Such high
efficiency of the two variants is expected because
they inherit the characteristic of feature map-based
methods.

(c) Two variants of our method are 19 and 22 times faster
than AlexNet/VGG-M1024, respectively, and both are
approximately five times faster than 𝐴𝑙𝑒𝑥𝑁𝑒𝑡𝑏/VGG-
M1024b.

5.4. GPU Memory Efficiency. To evaluate the GPU memory
efficiency, we report the GPU memory cost of our method
and compared methods for extracting ConvNet features in
Table 5. It can be seen that AlexNet/VGG-M1024 require the
minimal GPU memory (183/229MB); however, 𝐴𝑙𝑒𝑥𝑁𝑒𝑡𝑏/
VGG-M1024b consume the maximal GPU memory (880/
1965MB) because they send 100 detected landmarks into
Caffe as a batch of 100 for speed-up. Compared with those
of AlexNet/VGG-M1024, the GPU memory costs of our
methods, MRoI-FastRCNN-AlexNet/VGG-M1024, increase
by 57MB and 167MB, respectively. Nevertheless, our GPU
memory consumption is still approximately four and five
times less than those of 𝐴𝑙𝑒𝑥𝑁𝑒𝑡𝑏/VGG-M1024b, respec-
tively. In addition, compared with those of FastRCNN-
AlexNet/VGG-M1024, our GPU memory consumption only
increase by 22MB and 29MB, respectively, for the reason
of using MRoI pooling layer. Perhaps most importantly, the
GPU memory costs of our two variants still retain 240MB
and 396MB, respectively.This means that our method is able
to meet the requirement of visual localization on embedded
systems or mobile devices with limited GPU resources.

6. Conclusion

In this paper, we have proposed a simple and efficientmethod
of ConvNet feature extraction with multiple RoI pooling for
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landmark-based visual localization of autonomous vehicles.
The aim of our method is to deliver excellent localization
accuracy comparable to original image-based methods while
remaining the high computational efficiency of feature map-
based methods. To achieve this, our method exploits the
efficiency of RoI pooling and fuses the multilevel and mul-
tiresolution information from multiple RoI pooling layers to
improve the discrimination capacity of extracted ConvNet
features.

Experimental results on four popular visual localiza-
tion datasets have demonstrated that the ConvNet features
extracted by our method are discriminative to allow us to
achieve the state-of-the-art localization accuracy and high
computational efficiency with an average running time of
29.0ms per image at the same time. In addition, our method
is GPU memory efficient for mobile devices. Moreover, it is
based on a pretrained CNN model without fine-tuning or
retraining for ease of use, which is important for us to over-
come the difficulty caused by the lack of training data in visual
localization research. In short, the proposed MRoI method
extracts highly discriminating ConvNet features efficiently,
and the idea can be potentially extended in solving other
vision tasks, such as object detection and object recognition.
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