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24/7 place recognition by view synthesis

Akihiko Torii, Relja Arandjelovi¢, Josef Sivic, Masatoshi Okutomi, and Tomas Pajdla

Abstract—We address the problem of large-scale visual place recognition for situations where the scene undergoes a major change in
appearance, for example, due to illumination (day/night), change of seasons, aging, or structural modifications over time such as
buildings being built or destroyed. Such situations represent a major challenge for current large-scale place recognition methods. This
work has the following three principal contributions. First, we demonstrate that matching across large changes in the scene
appearance becomes much easier when both the query image and the database image depict the scene from approximately the same
viewpoint. Second, based on this observation, we develop a new place recognition approach that combines (i) an efficient synthesis of
novel views with (ii) a compact indexable image representation. Third, we introduce a new challenging dataset of 1,125 camera-phone
query images of Tokyo that contain major changes in illumination (day, sunset, night) as well as structural changes in the scene. We
demonstrate that the proposed approach significantly outperforms other large-scale place recognition techniques on this challenging

data.

Index Terms—Place Recognition, View Synthesis, Compact Image Descriptor, Image Retrieval.

1 INTRODUCTION

RECENT years have seen a tremendous progress [1], [2], [3],
[41, [51, [6], [71, [8], [9], [10], [11], [12], [12], [13], [14],
[15], [16] in the large-scale visual place recognition problem [14],
[17]. It is now possible to obtain an accurate camera position
of a query photograph within an entire city represented by a
dataset of 1M images [1], [4], [15] or a reconstructed 3D point
cloud [8], [10]. These representations are built on local invariant
features such as SIFT [18] so that recognition can proceed across
moderate changes in viewpoint, scale or partial occlusion by other
objects. Efficiency is achieved by employing inverted file [19],
[20] or product quantization [21] indexing techniques. Despite
this progress, identifying the same place across major changes
in the scene appearance due to illumination (day/night), change of
seasons, aging, or structural modifications over time [22], [23], as
shown in figure 1, remains a major challenge. Solving this problem
would have, however, significant practical implications. Imagine,
for example, automatically searching public archives to find all
imagery depicting the same place to analyze changes over time
for applications in architecture, archaeology and urban planning;
or visualize the same place in different illuminations, seasons or
backward in time.

In this paper, we demonstrate that matching across large
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Fig. 1. Matching across major changes in scene appearance is easier for
similar viewpoints. (a) Query image. (b) The original database image
cannot be matched to the query due to a major change in scene
appearance combined with large change in the viewpoint. (c) Matching
a more similar synthesized view is possible. (d) lllustration of locations
of (a-c) on the map. The dots and arrows indicate the camera positions
and view directions.

changes in scene appearance is easier when both the query image
and the database image depict the scene from approximately the
same viewpoint. We implement this idea by synthesizing virtual
views on a densely sampled grid on the map. This poses the
following three major challenges. First, how can we efficiently
synthesize virtual viewpoints for an entire city? Second, how
do we deal with the increased database size augmented by the
additional synthesized views? Finally, how do we represent the
synthetic views in a way that is robust to the large changes in
scene appearance?

To address these issues, we, first, develop a view synthesis
method that can render virtual views directly from Google street-
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view panoramas and their associated approximate depth maps, not
requiring to reconstruct an accurate 3D model of the scene. While
the resulting images are often noisy and contain artifacts, we
show that this representation is sufficient for the large-scale place
recognition task. The key advantage of this approach is that the
street-view data is available world-wide opening-up the possibility
for a truly planet-scale [24] place recognition. Secondly, to cope
with the large amount of synthesized data — as much as nine
times more images than in the original street-view — we use the
compact VLAD encoding [25], [26] of local image descriptors,
which is amenable to efficient compression, storage and indexing.
Finally, we represent images using local gradient based descriptors
(RootSIFT [18], [27] in our case) densely sampled across the
image and at multiple scales. We found that this representation
is more robust to large changes in appearance due to illumination,
aging, etc. as it does not rely on repeatable detection of local
invariant features, such as the Laplacian of Gaussian [18]. While
local invariant features have been successfully used for almost
two decades to concisely represent images for matching across
viewpoint and scale [28] they are often non-repeatable across non-
modeled changes in appearance due to, e.g., strong perspective
effects or major changes in the scene illumination [29], [30]. Not
relying on the local invariant keypoint detection comes at a price
of reduced invariance to geometric transformation. However, we
have found this is in fact an advantage, rather than a problem, as
the resulting representation is more discriminative and thus copes
better with the increased rate of false positive images due to the
much larger database augmented with synthetic views.

The paper is organized as follows. In section 2 we describe
related work on large-scale visual place recognition. In section 3
we investigate the challenges in matching local features across ma-
jor changes in scene appearance and illustrate benefits of densely
sampled descriptors. Our view synthesis method for expanding the
database is then described in section 4 and the complete system
for place recognition with view synthesis is outlined in section 5.
Finally, in section 6 we experimentally demonstrate the benefits
of the proposed method on the a new challenging dataset that
contains major changes in illumination (day, sunset, night) as well
as structural changes in the scenes.

2 RELATED WORK

Place recognition with local-invariant features. The large-scale
place recognition is often formulated as a variation of image
retrieval [19], [31] where the query photograph is localized by
matching it to a large database of geo-tagged images such as
Google street-view [2], [4], [5], [6], [7], [11], [14], [15], [16].
The 3D structure of the environment can be also reconstructed
beforehand and the query is then matched directly to the re-
constructed point-cloud [8], [10] rather than individual images.
The underlying appearance representation for these methods is
based on local invariant features [28], either aggregated into an
image-level indexable representation [4], [5], [6], [7], [15], [16],
or associated to individual reconstructed 3D points [8], [10], [12].
These methods have shown excellent performance for large-scale
matching across moderate changes of scale and viewpoint that
are modeled by the local invariant feature detectors. However,
matching across non-modeled appearance variations such as major
changes in illumination, aging, or season are still a challenge.

We investigate compact representations based on descriptors
densely sampled across the image rather than based on local-

invariant features. Densely sampled descriptors have been long
used for category-level recognition [32], [33], [34], [35] including
category-level localization [6], but due to their limited invariance
to geometric transformations have been introduced to instance-
level recognition only recently [36]. While we build on this
work, we show that combining dense representations with virtual
view synthesis can be used for large-scale place recognition
across significant changes of scene appearance. Densely sampled
representations can be also extracted using convolutional neural
networks (CNNs) [37], [38]. In contrast to category-level recog-
nition, most of the recent work that uses CNN descriptors for
instance-level matching [39], [40], [41], however, did not provide
significant improvements over standard RootSIFT descriptors.
Significant improvements using CNNs have been obtained only
very recently by training the image representation directly for the
place recognition task [42], which is complementary to our view
synthesis as we demonstrate in section 6.

Virtual views for instance-level matching. Related to our work
are also methods that generate some form of virtual data for
instance-level matching, but typically they focus on extending
the range of recognizable viewpoints [43], [44], [45] or matching
across domains [29], [46] and do not consider compact repre-
sentations for large-scale applications. Irschara et al. [43] gener-
ate bag-of-visual-word descriptors extracted from existing views
for virtual locations on a map to better model scene visibility.
Shan et al. [44] use 3D structure to synthesize virtual views to
match across extreme viewpoint changes for alignment of aerial
to ground-level imagery. Wu et al. [45] locally rectify images
based on the underlying 3D structure to extend the viewpoint
invariance of local invariant features (SIFT). Their method has
been successfully applied for place recognition [4] but requires
either known 3D structure or rectification on the query side.
Recently, rendering virtual views has been also explored for cross-
domain matching to align paintings to 3D models [29] or to match
SIFT descriptors between images and laser-scans [46].

Modelling scene illumination for place recognition. In place
recognition, the related work on modeling outdoor illumination
has focused on estimating locations and time-stamps from ob-
served illumination effects [47], [48]. In contrast, we focus on
recognizing the same scene across changes of illumination. How-
ever, if illumination effects could be reliably synthesized [49], [50]
the resulting imagery could be used to further expand the image
database.

Handling illumination and appearance changes in robot local-
ization. To compensate for day-and-night illumination changes,
Maddern et al. [51] generate illumination invariant images by
conversion from 3-channel (RGB) to a single channel image
using peaks of spectral responses of the sensor. However, their
method requires a known specification of the sensor hardware
for luminance calibration, which is not available in our set-up
where query images can come from different sources and devices.
To predict appearance changes across seasons, e.g. summer to
winter, Neubert et al. [52] use repeated recordings of the same
scenes across time (captured by a moving train). Local patches
(superpixels) are represented using visual vocabularies trained for
each season where the visual words across different seasons are
associated using the spatial layout of the images, i.e. the images
across different seasons are assumed to be aligned with each other.
In contrast, we focus on the place recognition across significant
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Street-view

(a) Query image

Synthesized view

Fig. 2. Matching across illumination and structural changes in the scene. First row: The same query image is matched to a street-view image
depicting the same place from a different viewpoint (a) and to a synthesized virtual view depicting the query place from the same viewpoint (d).
Second row: Matching sparsely sampled RootSIFT descriptors across a major change in illumination is difficult for the same (e) as well as for the
different (b) viewpoints. Third row: Densely sampled descriptors can be matched across a large change in illumination (c) and the matching is
much easier when the viewpoint is similar (f). In all cases the tentative matches are shown in red and geometrically verified matches are shown in
green. Note how the proposed method (f), based on densely sampled descriptors coupled with virtual view synthesis, obtains significantly higher
inlier ratio (0.76) on this challenging image pair with major illumination and structural changes in the scene.

changes of camera viewpoint as well as more severe appearance
changes that comprise both different seasons and day/night illu-
mination. Convolutional neural network (CNN) descriptors have
been recently used for the robot re-localization task in [53] who
extract object patches across the image and represent them by
concatenating features from convolutional layers (AlexNet conv3)
followed by random Gaussian projection demonstrating increased
robustness to changes in illumination.

This paper is an extended version of [54] with complete
description of our place recognition pipeline including detailed
descriptions of several important components (new section 5)
and several new experimental results including results on an new
extended version of the Tokyo 24/7 image database (section 6).

3 MATCHING LOCAL DESCRIPTORS ACROSS
LARGE CHANGES IN APPEARANCE

In this section we investigate the challenges of using local in-
variant features for image matching across major changes in scene
appearance due to day/night illumination and structural changes in
the scene. We first illustrate that local invariant features based on
the difference of Gaussian (DoG) feature detector are not reliably
repeatable in such conditions. Then we show that densely sampled
descriptors result in better matches, but suffer from limited invari-
ance to geometric transformations (scale and viewpoint). Finally,
we demonstrate that matching can be significantly improved when
we match to a virtual view synthesized from approximately the

same viewpoint. In this section we illustrate the above points on
a matching example shown in figure 2. We verify these findings
quantitatively on the place recognition task in section 6.

In all examples in figure 2 we build tentative matches by find-
ing mutually nearest descriptors. The tentative matches are shown
in red. We then geometrically verify the matches by repeatedly
finding several homographies using RANSAC. The geometrically
consistent matches (inliers) are shown in green. We deem all
geometrically verified matches as correct (though few incorrect
matches may remain). The quality of matching is measured by the
inlier ratio, i.e. the proportion of geometrically consistent matches
in all tentative matches. The inlier ratio is between 0 and 1 with
a perfect score of 1 when all tentative matches are geometrically
consistent.

First, we match the upright RootSIFT descriptors [27] sampled
at DoG keypoints [18] between a query image and a street-view
image depicting the query place (figure 2(a)) from a different
viewpoint. The matches are shown in figure 2(b) and result in
inlier ratio of only 0.05, clearly demonstrating the difficulty of
matching DoG keypoints across large changes in appearance.

Second, we repeat the same procedure for the synthesized view
(figure 2(d)), which captures the query place from approximately
the same viewpoint as the query image. The result is shown in
figure 2(e). The resulting inlier ratio of only 0.12 indicates that
matching the DoG keypoints across large changes in appearance
is difficult despite the fact that the two views have the same
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(a) Street-view panorama

(b) Associated depth-map

(c) Individual scene planes

Fig. 3. Input data for view synthesis. (a) The street-view panorama. (b) The associated piece-wise planar depth-map. Brightness indicates distance.

(c) The individual scene planes are shown in different colors.

viewpoint.

Third, we extract RootSIFT descriptors with a width of 40
pixels (in a 640 x 480 image) on a densely sampled regular
grid with a stride of 2 pixels. The descriptor matching was
performed in the same manner as for the descriptors extracted
at the sparsely detected keypoints. Matching the densely sampled
descriptors across different viewpoints and illuminations already
shows an improvement compared to sparse keypoints, with the
inlier ratio increasing from 0.05 to 0.31 (figure 2(c)). The fact
that the descriptor (RootSIFT) is identical for both sampling
methods suggests that the main problem is non-repeatability of
the Difference of Gaussian local invariant features underpinning
the sparsely sampled method, rather than the descriptor itself.

Finally, we apply the densely sampled descriptors to the
image pair with different illuminations but similar viewpoints
(figure 2(d)). The matches are shown in figure 2(f). The inlier
ratio further increases to 0.76 clearly demonstrating the benefits
of virtual view synthesis for dense descriptor matching.

4 VIEW SYNTHESIS FROM STREET-LEVEL IMAGERY

In this section we describe our view synthesis method that expands
the database of the geo-tagged images with additional viewpoints
sampled on a regular grid. To synthesize additional views, we
use the existing panoramic imagery together with an approximate
piece-wise planar depth map associated with each panorama, as
illustrated in figure 3. The piece-wise planar depth map provides
only a very coarse 3D structure of the scene, which often leads to
visible artifacts in the synthesized imagery. However, we demon-
strate in section 6 that this quality is sufficient to significantly
improve place recognition performance. In addition, this data is
essentially available world-wide [55], thus opening up the possi-
bility of planet-scale view synthesis and place recognition [24].
The view synthesis proceeds in two steps. We synthesize the can-
didate virtual camera locations, which is followed by synthesizing
individual views. The two steps are discussed next.

We generate candidate camera positions on a regular 5m X 5m
grid on the map that covers the original street-view camera
positions. We only generate camera positions that are within
20m distance from the original street-view trajectory, where the
trajectory is obtained by connecting the neighboring street-view
camera positions. We found that going farther than 20m often
produces significant artifacts in the synthesized views. We also use
the available depth maps to discard camera positions that would
lie inside buildings. The camera positions of the synthesized views
are illustrated on the map in figure 4.

To synthesize the virtual views at the particular virtual cam-
era position we use the panorama and depth map downloaded
from Google maps [55]. Each panorama captures 360° by 180°

horizontal and vertical viewing angle, respectively, and has the
size 13,312 x 6,656 pixels, as illustrated in figure 3(a). The
depth map is encoded as a set of 3D plane parameters (normal
and distance for each plane) and an 512 X 256 image of indices
pointing, for each pixel, to one of the planes, as illustrated in
figure 3(c). Using this index we can look-up the corresponding
plane for each pixel, which allows us to generate the actual
depth map for the panorama, as illustrated in figure 3(b). All
views at a particular virtual camera position are synthesized from
the panorama and depth map of the closest street-view image.
Virtual views are synthesized by standard ray tracing with bilinear
interpolation. In detail, for every pixel in the synthesized virtual
view, we cast a ray from the center of the virtual camera, intersect
it with the planar 3D structure obtained from the depth map of the
closest street-view panorama, project the intersection to the street-
view panorama, and interpolate the output pixel value from the
neighboring pixels. For each virtual camera location we generate
12 perspective images of 1,280 x 960 pixels (corresponding to
60 degrees of horizontal field of view) with a pitch direction
12° and the following 12 yaw directions [0°, 30°, ..., 360°]. This
perspective view sampling is similar to e.g. [4], [15]. Examples
of the synthesized virtual views are shown in figures 1, 14
and 15. While the synthesized views have missing information
and artifacts (e.g. incorrectly rendered people or objects), we
found that this simple rendering is already sufficient to improve
place recognition performance. Higher quality synthesis could
be potentially obtained by combining information from multiple
panoramas. Rendering one virtual view takes about a second, but
we expect 1-2 orders of magnitude speed-up using a graphics
processing unit (GPU). We generate the same set of perspective
views for original street-view images and combine the real and
virtual views into a single place recognition database. Note that
virtual views are only needed for extracting the compact dense
VLAD descriptors as described in section 3 and can be discarded
afterwards.

5 PLACE RECOGNITION WITH VIEW SYNTHESIS

In this section, we describe our complete place recognition
method, illustrated in figure 6. Our pipeline has an off-line and
an on-line stage. In the off-line stage, we generate a set of virtual
camera poses, the corresponding perspective views and compute
their densely extracted descriptors, thus significantly expanding
the image database as described in section 4. In the on-line stage,
we extract the dense descriptor from the query image (section 3),
match it to the expanded database and retrieve the GPS positions
of the top matches. Next we describe several important compo-
nents of our system that allows us to perform these operations at
large scale.
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Fig. 4. Combining street-view imagery with synthetic views. The figure shows camera positions for part of the 24/7-Tokyo dataset. The positions
of the original street-view images are shown in orange, the positions of synthesized views (5x5m grid) are shown in grey, and the positions of
query images are shown in blue. The “large 24/7-Tokyo” database of geo-tagged images (left) includes 374,676 views generated from 31,223
street-view panoramas and 2,499, 816 synthesized views generated at 208, 318 virtual camera locations. The area bounded by green rectangle
(middle) indicates the subset of the 24/7 large database that includes 75, 984 views generated from 6, 332 street-view panoramas. The inset (right)

shows a close-up of one road intersection.

(a) Query 1.

(b) Query 2.

(d) Database image

(c) Query 3.

Fig. 5. Example query images from the newly collected 24/7 Tokyo dataset. Each place in the query set is captured at different times of day: (a)
daytime, (b) sunset, and (c) night. For comparison, the database street-view image at a close-by position is shown in (d). Note the major changes
in appearance (illumination changes in the scene) between the database image (d) and the query images (a,b,c).

Dense VLAD in the expanded image database. As observed
in section 3, matching images across large changes in appearance
becomes possible thanks to densely sampled local features ex-
tracted from images with similar viewpoints. We implement this
idea at scale by aggregating the densely extracted features into a
single compact descriptor for an image. In detail, we describe each
image by VLAD descriptor [31] that aggregates densely sampled
RootSIFT descriptors [27], [32]. The dense VLAD descriptor is
extracted from all the images in the expanded database.

Compression using product quantization. The image database
expanded by a 5m X 5m grid of synthetic views has 6 to 8
times larger memory footprint. To reduce these increased memory
requirements we compress the extracted descriptors using product
quantization (PQ) [21], [56], [57]. As will be shown in exper-
iments in section 6 this achieves about an order of magnitude
smaller representation with a negligible loss in place recognition
accuracy.

Shortlist diversity. At query time, the dense VLAD descriptor is
extracted from the query image and matched to the dense VLAD
descriptors extracted offline from the entire database. The outcome
is a short-list of top N matches for the query. One drawback
of adding synthetic views is that the returned shortlist might
be occupied by similar views from close by virtual viewpoints.
Diversifying the returned shortlists [2] is, therefore, particularly
important for our method. We diversify the returned shortlists
using the fact that (synthesized) perspective views are generated
from a much smaller set of street-view panoramic images. In de-

tail, we first group both the synthetic and non-synthetic perspective
views that are generated from the same street-view panoramic
image. Then, we take only the best matching view in each group
and add it into the shortlist.

6 EXPERIMENTS

In this section we describe the newly collected 24/7 Tokyo dataset,
give the place recognition performance measures and outline the
quantitative and qualitative results of our method compared to
several baselines.

6.1 Experimental setup

24/7 Tokyo dataset. We have collected a new test set of 1,125
query images captured by Apple-iPhone5s and Sony-Xperia
smartphones. We captured images at 125 distinct locations. At
each location we captured images at 3 different viewing directions
and at 3 different times of day, as illustrated in figure 5. The
ground truth GPS coordinates at each location were recorded by
manually localizing the position of the observer on the map at
the finest zoom level. We estimate that the error of the ground
truth location is below 5m. The dataset is available at [58]. In
the following evaluation, we use a subset of 315 query images
within the area of about 1,600m x 1, 600m (the green rectangle
in figure 4)).

We have constructed two geo-tagged image databases from
Google street-view panoramas downloaded within the Tokyo
metropolitan area. The larger database covers an area of about
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Fig. 6. Overview of our approach for place recognition with view synthesis. Our approach has an off-line and an on-line stage. The off-line process
generates expanded geo-tagged image database that includes Dense VLAD descriptors computed from perspective images of the original street-
view images as well as the synthesized views. The position of the query image is estimated in the on-line stage by matching its Dense VLAD
descriptor to descriptors in the expanded image database and retrieving the GPS positions of the top matches.

TABLE 1
Number of (perspective) images in the 24/7 Tokyo geotagged database.
Number of original street-view panoramas is indicated in brackets.

Large Small
Street-view 374,676 (31,223) 75,984 (6,332)
Synthesized views | 2,499,816  (208,318) | 597,744  (49,812)

3,700m x 3,700m (the entire area in figure 4, left). The smaller
database corresponds to a sub-area of about 1,600m x 1,600m
(the green rectangle in figure 4). The number of images in each
database is given in table 1. Unless stated otherwise, the smaller
database is used for most of the comparative experiments in the
paper. The large database is used to test the issues related to the
scalability of our method.

Evaluation metric. The query image is deemed correctly recog-
nized at N if at least one of the top IV retrieved database images is
within d = 25 meters from the ground truth position of the query.
This is a common place recognition metric used in e.g. [4], [11],
[15]. The percentage of correctly recognized queries (Recall) is
then plotted for different values of V.

Implementation details. To compute the Dense VLAD descrip-
tor, we re-size each image to have the maximum dimension of
640 pixels. This is beneficial for computational efficiency and
limits the smallest scale of the extracted descriptors. We extract
SIFT [18] descriptors at 4 scales corresponding to region widths
of 16, 24, 32 and 40 pixels. The descriptors are extracted on a

densely sampled regular grid with a stride of 2 pixels. When
using synthesized images, we remove descriptors that overlap with
image regions that have no image data (shown in black in the
synthesized imagery). We use the SIFT implementation available
in Vlfeat [59] followed by the RootSIFT normalization [27],
i.e. L1 normalization followed by element-wise square root. The
visual vocabulary of 128 visual words (centroids) is built from
25M descriptors randomly sampled from the database images
using k-means clustering!. We have kept the original dimension of
the SIFT descriptor, unlike [31]. Each image is then described by
an aggregated intra-normalized [25] VLAD descriptor followed
by a PCA compression to 4,096 dimensions, whitening and L2
normalization [60]. Similarity between the test query and each
database image is measured using the normalized dot product
between their descriptors.

6.2 Comparison with baseline methods

In this section we compare performance of our approach to a
number of baseline methods. We then evaluate benefits of using
higher image resolution.

Baseline methods. We compare results to the following baselines.

e Sparse VLAD. Here upright RootSIFT descriptors ex-
tracted at the Difference of Gaussian (DoG) local invariant

1. Please note that the results presented in this journal version are slightly
different from those in the conference version as we have re-implemented the
view synthesis and the extraction of the Dense VLAD descriptors, as well as
built a new set of visual vocabularies.
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TABLE 2
Comparison with the baseline methods on the 24/7-Tokyo dataset
using 4,096 dimensional image descriptors.

Method Recall

topl top 10 top20 top 50
Dense VLAD SYNTH (our) 66.03 75.87 80.32 85.08
Dense VLAD 60.95 72.06 74.60 80.00
Sparse VLAD 2571 4190 4794 57.46
Dense FV 5429 71.11 7460 77.78
Sparse FV 41.59 59.05 6540 73.65

features [18], [59] are aggregated into a single VLAD
descriptor. Apart from changing the image sampling (from
dense to sparse DoG) the descriptor is extracted in the
same manner as our densely sampled VLAD.

o Sparse FV. Second, we compare with the standard sparse
Fisher vector [31] (Sparse FV), which was shown to per-
form well for place recognition [15]. The Fisher vector is
constructed using the same upright RootSIFT descriptors
as the Sparse VLAD baseline. Following [31], extracted
RootSIFT descriptors are reduced to 64 dimensions by
PCA. A 256-component Gaussian mixture model is then
trained from 25M descriptors randomly sampled from the
database images. As in [31], the resulting 256 x 64 dimen-
sional Fisher vector is reduced to 4, 096 dimensions using
PCA, followed by whitening and L2 normalization [60].

e Dense FV. Third, we evaluate the Fisher vector based on
densely detected features. We use the same descriptors
and normalization as used in our Dense VLAD to eval-
uate impact of the different aggregation schemes. Using
the same 25M of 128 dimensional RootSIFT descriptors
detected on a densely sampled regular grid, we train a 128-
component Gaussian mixture model. Each image is then
described by an intra-normalized FV descriptor followed
by a PCA compression to 4,096 dimensions, whitening
and L2 normalization.

e Sparse BoVW Finally, we also compare results to the
bag-of-visual-words baseline. We construct the bag-of-
visual-words descriptor (Sparse BoVW) using the same
upright RootSIFT descriptors as used in the Sparse VLAD
baseline. A vocabulary of 200, 000 visual words is built
by approximate k-means clustering [19], [61]. The result-
ing bag-of-visual-word vectors are re-weighted using the
adaptive assignment described in [15].

Note that we focus on comparing with other compact image
representations (VLAD / Fisher vectors) and do not compare here
to methods that store local-invariant features for each image, such
as [1], which requires 40 X more memory per image, and 6 X more
memory in total (accounting for the 6.7 X increase in the number
of images due to the novel views).

Benefits of the dense descriptor and synthesized views. First,
in figure 7 and table 2 we evaluate the benefits of having dense
descriptors (Dense VLAD, Dense FV). We compare performance
to the standard VLAD and Fisher vector descriptors sampled at lo-
cal invariant features (Sparse VLAD, Sparse FV). We show results
for all queries (figure 7(a)), but to clearly illustrate the differences
we also separate the query images into daytime (figure 7(b)), and
sunset/night queries (figure 7(c)). Results clearly demonstrate that
dense descriptors (Dense VLAD, Dense FV) improve over the
sparse baselines (Sparse VLAD, Sparse FV). We next evaluate

the benefits of having additional synthesized views (Dense VLAD
SYNTH). While having the dense descriptor (Dense VLAD)
already improves performance, it is the combination of the dense
descriptor with synthetic virtual views (Dense VLAD SYNTH)
which brings improvements especially for queries with difficult
illumination (figure 7(c)), clearly illustrating the importance of
both components of our approach.

Comparison to sparse baselines. In figure 8, we separately show
a comparison of our method (Dense VLAD SYNTH) to several
baselines that use only sparsely sampled local invariant features.
Overall, our method significantly improves over all sparse base-
lines. Further analysis reveals that for VLAD computed from
(sparse) DoG keypoints, adding synthetic virtual views (Sparse
VLAD SYNTH) helps (compared to Sparse VLAD). In contrast,
adding synthetic virtual views to Fisher vector matching (Sparse
FV SYNTH) does not improve over the standard FV without
virtual views (Sparse FV).

Benefits of view synthesis for CNN-based image descriptor
(NetVLAD) [42]. We next evaluate the benefits of view synthesis
for the recent NetVLAD descriptor [42]. This descriptor is based
on a convolutional neural network trained in an end-to-end manner
for the place recognition task using a weakly supervised triplet loss
on Google Street-view time machine imagery. This is a strong
very recent baseline achieving state-of-the-art results on place
recognition benchmarks. Our initial investigation revealed that
applying the NetVLAD descriptor out of the box on synthetic
data can have a negative impact on performance (decreasing the
recall@20 from 98.1% to 97.1% for day time queries). After
further analysis we found that this can be attributed to the view
synthesis artifacts (see the large areas of black pixels in the second
column of figure 14). In the case of DenseVLAD, SIFT descriptors
affected by synthesis artifacts can be easily removed as SIFT has
only a limited extent in the image. However, this is not the case
for NetVLAD where the receptive field of the aggregated conv5
features is large and the artifacts are often affecting all conv5
features across the image. To address this issue, we have re-trained
the NetVLAD descriptor with images having missing pixels with
the hope that the network will learn to ignore those artifacts in a
similar way it learns to ignore transient objects such as cars and
people that are not informative for identifying a specific place [42].
In detail, we have extracted masks of missing pixels from our
synthetic views and overlaid them in a random manner over the
TokyoTM training dataset from [42]. The descriptor was then re-
trained in the same manner as in [42]. Results are shown in figure 9
and clearly demonstrate the benefits of synthetic views for this re-
trained NetVLAD descriptor. Note, however, that training with
missing pixels lowers slightly the absolute performance of the
method compared to the original NetVLAD descriptor. Removing
the artifacts altogether, for example by using multiple images [49],
[50], [62] combined with hole-filling [63], is likely to further
improve the results.

Benefits of higher image resolution. In figure 10, we investigate
how the place recognition performance of the Dense VLAD
descriptor changes when high resolution images are available for
both the query and database. In detail, we use high-resolution
images that have maximum dimension of 1280 pixels (compared
to 640 pixels used in the rest of the paper). Each high-res image is
described by Dense VLAD descriptor (Dense VLAD 1280 x 960,
Dense VLAD SYNTH 1280 x 960) in the same parameter setup as
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Fig. 7. Evaluation on the 24/7-Tokyo dataset. The fraction of correctly recognized queries (Recall, y-axis) vs. the number of top N retrieved database
images (x-axis) for the proposed method (Dense VLAD SYNTH) compared to the baseline methods (Dense VLAD, Dense FV, Sparse FV). The
performance is evaluated for all test query images (a), as well as separately for daytime queries (b), and sunset/night queries (c). The benefits of
the proposed method (Dense VLAD SYNTH) is most prominent for difficult illuminations (c).
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the low-res images. Notice that using higher resolution images re-
quires additional computational time for RootSIFT extraction and
aggregation but no additional space/time for the image descriptor
matching as the dimensionality of the descriptor remains the same.
Interestingly, we observe a significant gain in performance for
both the Dense VLAD and Dense VLAD SYNTH methods. This
suggests that high resolution images should be used whenever
available.

6.3 Scaling-up to city-scale datasets

In this section we investigate several issues related to scaling-
up the proposed method to large image datasets. First, we study
how the place recognition performance decreases with dataset
size. Second, we investigate techniques for compressing image
descriptors. Third, we study the effect of descriptor dimensionality
on the place recognition performance and investigate the effect of
reducing the number of synthesized views. Finally, we present
the qualitative results and outline the limitations of our method.
Details are given next.

Scalability. We evaluate the scalability of our method on the large
Tokyo 24/7 database (figure 4, table 1) that has 4.9 more images
than the small database used in the experiments so far. We use the
same test query set as for the small database in order to investigate
the change in performance with the increased database size.
We choose the standard (sparse) Fisher vector descriptor as the
baseline method as it was found to work well for place recognition
in other work [15] and performed well on the small database. The
results are shown in figure 11 and exhibit a similar pattern as for
the small database (figure 7): Dense VLAD improves performance
compared to the Sparse FV baseline and synthesizing virtual
views (Dense VLAD SYNTH) brings an additional improvement.
Overall, indexing the larger database with our method results in a
small drop in performance (recall@1 going from 62.9% to 62.2%).

Descriptor compression. For the 24/7 Tokyo large dataset, our
method synthesizes 2.5M virtual views compared to 375K per-
spective street-view images in the same area. Hence, our method
needs to index about 6.7 times more images compared to base-
lines without virtual view synthesis. Scaling-up towards place
recognition in the entire city can be achieved by compressing
the extracted descriptors using Product Quantization (PQ) [21]. In
figure 11, we evaluate how the PQ compression changes the place
recognition performance for the dense descriptors and additional

synthesized views. Product Quantization with 4-D blocks encoded
with 4, 096 centroids (12 bits) achieves 10.7x compression with
a negligible loss in accuracy (Dense VLAD PQ vs. Dense VLAD
SYNTH PQ). Note that our method with synthesized views and
compressed descriptors (Dense VLAD SYNTH PQ) requires a
smaller memory than the original Dense VLAD but achieves a
better place recognition accuracy.

Analysis of descriptor dimensionality. In figure 12 we investi-
gate how the place recognition performance changes with reducing
the dimensionality of the Dense VLAD descriptor from 4,096
to 2,048, 1,024 and 512 dimensions. We observe a drop in
performance especially for the lowest dimension. This suggests,
that having a sufficiently rich representation is important for
matching across large changes in appearance.

How many virtual views? In figure 13 we evaluate the required
sampling of virtual views. First, we subsample the virtual views
spatially from 5 x 5 meter grid (used in our method so far) to
10 x 10 meter grid. The spatial subsampling to 10 x 10 can
reduce the number of virtual views by 75% with only a relatively
small drop in place recognition performance. Then we subsample
the number of yaw directions to only 6 per camera position, one
every 60° (Dense VLAD SYNTH 60deg) compared to 12 yaw
directions, one every 30° used in our method. In this experiment
we keep the spatial sampling to 5 X 5 meters. Although the angular
subsampling reduces the number synthetic views by only 50% it
results in a fairly significant drop in performance, especially at the
top 1 position. Note that in some situations a prior information
on typical locations of query images could be available. For
example pictures taken by pedestrians are likely to be taken on
side-walks and imagery from vehicle-mounted cameras is likely
to be captured on the streets. In these situations, we can optimize
where to synthesize virtual views or, alternatively, we can pre-
compute all virtual views in a dense manner and consider only a
subset of descriptors relevant to the query on the fly.

Qualitative results. Figures 14 and 15 show examples of place
recognition results. Notice that query images (left column) include
large changes in both viewpoint and illumination compared to
the available street-view for the same places (right column). The
synthesized views (2nd column) at new positions significantly
reduce the variation in viewpoint and thus enable matching across
large illumination changes, as discussed in section 3.

Limitations. Figure 16 shows examples of queries which remain
very difficult to localize. The typical failure modes are (i) very
dark night time images with limited dynamic range, (ii) places
with vegetation, which is hard to uniquely describe using the
current representation, and (iii) places where view synthesis fails
often due to complex underlying 3D structure not captured well by
the approximate depth maps available with street-view imagery.

7 CONCLUSION

We have described a place recognition approach combining syn-
thesis of new virtual views with a densely sampled but compact
image descriptor. The proposed method enables true 24/7 place
recognition across major changes in scene illumination throughout
the day and night. We have experimentally shown its benefits
on a newly collected place recognition dataset — 24/7 Tokyo —
capturing the same locations in vastly different illuminations. Our
work is another example in the recent trend showing benefits of
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Fig. 11. Scaling-up to the large 24/7-Tokyo database. The place recognition performance for the proposed method (Dense VLAD SYNTH, Dense
VLAD SYNTH PQ) compared to the baseline methods (Dense VLAD, Dense VLAD PQ, Sparse FV).

100

90

80

60

Recall (Percent)

== DenseVLAD SYNTH 8192
m DenseVLAD SYNTH 4096

DenseVLAD SYNTH 2048
40 m——DenseVLAD SYNTH 1024
== DenseVLAD SYNTH 512

30
0 10 20 30 40 50

N - Number of Top Database Candidates

Fig. 12. Evaluation of the dimensionality reduction on the large 24/7-
Tokyo database. The plot shows the fraction of correctly recognized
queries (Recall, y-axis) vs. the number of top N retrieved database
images (x-axis).

100
= Dense VLAD SYNTH (our)
m==Dense VLAD SYNTH 10x10
%0 m——Dense VLAD SYNTH 60deg
80
= S
5
o 70 /,'
o)
S
= 60
o
(9]
o
50
40
30
0 10 20 30 40 50

N - Number of Top Database Candidates

Fig. 13. Evaluation of view sampling density on the large 24/7-Tokyo
database. The plot shows the fraction of correctly recognized queries
(Recall, y-axis) vs. the number of top N retrieved database images (x-
axis).

3D structure for visual recognition. As we build on the widely
available Google street-view imagery our work opens-up the
possibility of planet-scale 24/7 place recognition.
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