725 research outputs found

    Sources of Superlinearity in Davenport-Schinzel Sequences

    Get PDF
    A generalized Davenport-Schinzel sequence is one over a finite alphabet that contains no subsequences isomorphic to a fixed forbidden subsequence. One of the fundamental problems in this area is bounding (asymptotically) the maximum length of such sequences. Following Klazar, let Ex(\sigma,n) be the maximum length of a sequence over an alphabet of size n avoiding subsequences isomorphic to \sigma. It has been proved that for every \sigma, Ex(\sigma,n) is either linear or very close to linear; in particular it is O(n 2^{\alpha(n)^{O(1)}}), where \alpha is the inverse-Ackermann function and O(1) depends on \sigma. However, very little is known about the properties of \sigma that induce superlinearity of \Ex(\sigma,n). In this paper we exhibit an infinite family of independent superlinear forbidden subsequences. To be specific, we show that there are 17 prototypical superlinear forbidden subsequences, some of which can be made arbitrarily long through a simple padding operation. Perhaps the most novel part of our constructions is a new succinct code for representing superlinear forbidden subsequences

    Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Model

    Get PDF

    Large-scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    Full text link
    In computer vision, many problems such as image segmentation, pixel labelling, and scene parsing can be formulated as binary quadratic programs (BQPs). For submodular problems, cuts based methods can be employed to efficiently solve large-scale problems. However, general nonsubmodular problems are significantly more challenging to solve. Finding a solution when the problem is of large size to be of practical interest, however, typically requires relaxation. Two standard relaxation methods are widely used for solving general BQPs--spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high, especially for large scale problems. In this work, we present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the dual problem. Both of them are significantly more efficiently than standard interior-point methods. In practice, the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems. Our experiments on a few computer vision applications including clustering, image segmentation, co-segmentation and registration show the potential of our SDP formulation for solving large-scale BQPs.Comment: Fixed some typos. 18 pages. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Conditional Lower Bounds for Space/Time Tradeoffs

    Full text link
    In recent years much effort has been concentrated towards achieving polynomial time lower bounds on algorithms for solving various well-known problems. A useful technique for showing such lower bounds is to prove them conditionally based on well-studied hardness assumptions such as 3SUM, APSP, SETH, etc. This line of research helps to obtain a better understanding of the complexity inside P. A related question asks to prove conditional space lower bounds on data structures that are constructed to solve certain algorithmic tasks after an initial preprocessing stage. This question received little attention in previous research even though it has potential strong impact. In this paper we address this question and show that surprisingly many of the well-studied hard problems that are known to have conditional polynomial time lower bounds are also hard when concerning space. This hardness is shown as a tradeoff between the space consumed by the data structure and the time needed to answer queries. The tradeoff may be either smooth or admit one or more singularity points. We reveal interesting connections between different space hardness conjectures and present matching upper bounds. We also apply these hardness conjectures to both static and dynamic problems and prove their conditional space hardness. We believe that this novel framework of polynomial space conjectures can play an important role in expressing polynomial space lower bounds of many important algorithmic problems. Moreover, it seems that it can also help in achieving a better understanding of the hardness of their corresponding problems in terms of time

    Scaling Robot Motion Planning to Multi-core Processors and the Cloud

    Get PDF
    Imagine a world in which robots safely interoperate with humans, gracefully and efficiently accomplishing everyday tasks. The robot's motions for these tasks, constrained by the design of the robot and task at hand, must avoid collisions with obstacles. Unfortunately, planning a constrained obstacle-free motion for a robot is computationally complex---often resulting in slow computation of inefficient motions. The methods in this dissertation speed up this motion plan computation with new algorithms and data structures that leverage readily available parallel processing, whether that processing power is on the robot or in the cloud, enabling robots to operate safer, more gracefully, and with improved efficiency. The contributions of this dissertation that enable faster motion planning are novel parallel lock-free algorithms, fast and concurrent nearest neighbor searching data structures, cache-aware operation, and split robot-cloud computation. Parallel lock-free algorithms avoid contention over shared data structures, resulting in empirical speedup proportional to the number of CPU cores working on the problem. Fast nearest neighbor data structures speed up searching in SO(3) and SE(3) metric spaces, which are needed for rigid body motion planning. Concurrent nearest neighbor data structures improve searching performance on metric spaces common to robot motion planning problems, while providing asymptotic wait-free concurrent operation. Cache-aware operation avoids long memory access times, allowing the algorithm to exhibit superlinear speedup. Split robot-cloud computation enables robots with low-power CPUs to react to changing environments by having the robot compute reactive paths in real-time from a set of motion plan options generated in a computationally intensive cloud-based algorithm. We demonstrate the scalability and effectiveness of our contributions in solving motion planning problems both in simulation and on physical robots of varying design and complexity. Problems include finding a solution to a complex motion planning problem, pre-computing motion plans that converge towards the optimal, and reactive interaction with dynamic environments. Robots include 2D holonomic robots, 3D rigid-body robots, a self-driving 1/10 scale car, articulated robot arms with and without mobile bases, and a small humanoid robot.Doctor of Philosoph

    On optimally partitioning a text to improve its compression

    Full text link
    In this paper we investigate the problem of partitioning an input string T in such a way that compressing individually its parts via a base-compressor C gets a compressed output that is shorter than applying C over the entire T at once. This problem was introduced in the context of table compression, and then further elaborated and extended to strings and trees. Unfortunately, the literature offers poor solutions: namely, we know either a cubic-time algorithm for computing the optimal partition based on dynamic programming, or few heuristics that do not guarantee any bounds on the efficacy of their computed partition, or algorithms that are efficient but work in some specific scenarios (such as the Burrows-Wheeler Transform) and achieve compression performance that might be worse than the optimal-partitioning by a Ω(log⁥n)\Omega(\sqrt{\log n}) factor. Therefore, computing efficiently the optimal solution is still open. In this paper we provide the first algorithm which is guaranteed to compute in O(n \log_{1+\eps}n) time a partition of T whose compressed output is guaranteed to be no more than (1+Ï”)(1+\epsilon)-worse the optimal one, where Ï”\epsilon may be any positive constant
    • 

    corecore