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ABSTRACT

Jeffrey Ichnowski: Scaling Robot Motion Planning to Multi-core Processors
and the Cloud

(Under the direction of Ron Alterovitz)

Imagine a world in which robots safely interoperate with humans, gracefully and efficiently

accomplishing everyday tasks. The robot’s motions for these tasks, constrained by the design of the

robot and task at hand, must avoid collisions with obstacles. Unfortunately, planning a constrained

obstacle-free motion for a robot is computationally complex—often resulting in slow computation of

inefficient motions. The methods in this dissertation speed up this motion plan computation with

new algorithms and data structures that leverage readily available parallel processing, whether that

processing power is on the robot or in the cloud, enabling robots to operate safer, more gracefully,

and with improved efficiency.

The contributions of this dissertation that enable faster motion planning are novel parallel

lock-free algorithms, fast and concurrent nearest neighbor searching data structures, cache-aware

operation, and split robot-cloud computation. Parallel lock-free algorithms avoid contention over

shared data structures, resulting in empirical speedup proportional to the number of CPU cores

working on the problem. Fast nearest neighbor data structures speed up searching in SO(3) and

SE(3) metric spaces, which are needed for rigid body motion planning. Concurrent nearest neighbor

data structures improve searching performance on metric spaces common to robot motion planning

problems, while providing asymptotic wait-free concurrent operation. Cache-aware operation avoids

long memory access times, allowing the algorithm to exhibit superlinear speedup. Split robot-cloud

computation enables robots with low-power CPUs to react to changing environments by having

the robot compute reactive paths in real-time from a set of motion plan options generated in a

computationally intensive cloud-based algorithm.

We demonstrate the scalability and effectiveness of our contributions in solving motion planning

problems both in simulation and on physical robots of varying design and complexity. Problems
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include finding a solution to a complex motion planning problem, pre-computing motion plans that

converge towards the optimal, and reactive interaction with dynamic environments. Robots include

2D holonomic robots, 3D rigid-body robots, a self-driving 1/10 scale car, articulated robot arms

with and without mobile bases, and a small humanoid robot.
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CHAPTER 1

Introduction

Consider a robot that needs to plan its motions to autonomously complete a task. The planned

motion needs to avoid obstacles, obey task-specific constraints, and reach a goal within a timely

manner. Computing motion plans quickly can be computationally demanding; the general motion

planning problem is PSPACE-hard [98], and the time required grows exponentially in the robot’s

configurable degree’s of freedom. Thus, while rapid online motion planning around moving obstacles

for robots with few degrees of freedom (e.g., a disc robot vacuuming a floor, or a self-driving

car) may be tractable with modern motion planning algorithms, adding just a few degrees of

freedom to the problem (e.g., an articulated robot arm) requires new tools and more computational

processing power. Fortunately we are living in an era in which computational processing power is

growing exponentially—but tapping into that power requires novel work in parallel and cache-aware

algorithms and concurrent data structures. Moreover, due to physical limits and power constraints,

the computing power required to plan motions may not be housed within the robot’s physical body—

and thus we also need novel approaches to utilizing computing power outside the robot’s body. This

dissertation presents and demonstrates the effectiveness of multi-core parallel computation, made

scalable through concurrent data structures and sped up by making the computation cache-aware,

to solve challenging motion planning problems quickly, both within the robot and via cloud-based

computers.

Taking advantage of multi-core parallelism is increasingly important due to the growth trends

in CPU computational power. Gordon Moore famously predicted that computational power would

grow exponentially [86]. This trend, dubbed Moore’s law, continued for decades and was readily

measured by the number of operations a single thread of execution on a CPU could compute per

second (see Fig. 1.1). Around 2005, single-threaded execution speed reached physical limits, and

no longer continued on the same trend—spelling an end of an age. At about the same time, CPU

manufacturers started introducing multiple computing cores to their CPUs—each of these cores
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Figure 1.1: CPU trends vs. Moore’s law [115]. Moore’s law predicts an exponential trend in
processing performance. Around 2005, due to physical limitations, the trend in single-core processing
power began to taper. Around the same time CPU manufacturers began introducing additional
processing cores to each CPU—allowing them to perform mutiple concurrent threads of operation.
When the single-core performance trend is multipled by the number of cores, the resulting trend
continues on along the Moore’s law prediction. The implication is that in order to continue to
gain exponential growth in performance, computer algorithms must make use of computational
parallelism.

being capable of running one or more independent threads of execution. When we multiply these

trends out, we can observe that computation power has indeed continued on the exponential growth

that Moore’s law predicted. But the implication is that we need to make use of computational

parallelism in order to get this benefit.

Gaining the benefit of computational parallelism in motion planning is made problematic by

many robot motion planning algorithms being inherently sequential in design. Parallelizing these

algorithms requires attention to details such as gaining speedup on all parts of the algorithm (not

just a small portion of it), as well as how to concurrently update shared data structures without

causing data corruption or a program crash. To prevent data corruption and crashes, algorithm

threads can ensure correct operation by locking shared data structures for exclusive access. But when

one thread locks a data structure, other threads end up waiting for exclusive access. When waiting,

these threads are not computing, and thus the algorithm does not speed up proportionally to the

computational parallelism. This problem is made worse by increasing parallelism, as more threads

compete for the same shared data structures and thus spend time waiting instead of computing.

Since increasing parallelism is the trend in modern CPUs, approaches to correct concurrent access
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to shared data structures must look beyond locking for exclusive access. This dissertation presents

and evaluates lock-free data structures, as well as using characteristics inherent to motion planners

that allow for asymptotically diminishing wait times. The result is motion planners that can speed

up in proportion to the amount of computational parallelism available.

One of the side effects of accelerating a motion planner with computational parallelism is that

they can generate a lot of data quickly—quickly enough that the slow access time of RAM becomes a

performance issue. RAM’s slow access time (relative to a CPU’s computing speed) is often effectively

hidden by a CPU’s high-performance memory cache. The cache allows a program’s frequently

accessed data to be serviced quickly without being delayed by RAM; however, the performance

benefit of these caches disappears when a program’s working data set exceeds the size of the memory

cache. The data set grows faster, thus exceeds the cache size sooner, when generated by a highly

parallelized motion planner. In order to avoid having the working data set exceeding the cache size,

this dissertation explores the use of cache-aware algorithms and data structures in motion planning.

Keeping the motion planner’s working data set in cache avoids the bottleneck of slow RAM access

times, and keeps the motion planner running faster for longer.

In order for a robot to plan motions in a dynamic environment, that is, an environment with

moving obstacles, the robot may need more computing power than it can carry and power onboard.

Moving obstacles may block a robot’s previously computed motion plan, or unblock a better path

that the robot should follow—necessitating rapid updates to the existing motion plan, or generation

of a new motion plan. The CPU of a sufficiently high degree-of-freedom robot may not be able

to keep pace with environment changes (e.g., the Nao small humanoid robot [108] in Fig. 1.2 (c)).

This problem is worsened when the physical design of a robot mandates using smaller, lighter, and

lower energy-consuming mobile CPUs. While mobile CPUs benefit from a Moore’s law-like trend in

increasing parallelism, their small size and low energy usage means that they may not be able to

compute motion plans fast enough to interact with dynamically changing environments. Thus, to

get sufficient computing power for motion planning, some robots will have to leverage computing

power from somewhere else.

The cloud is a promising source of networked computing power that is external to robots, scalable,

and cost-effective. Cloud-based computers are unconstrained in size, weight, and power-consumption

in relation to the robot’s design. Cloud-based computers are a scalable solution, since the robot can
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request as little or as much computational parallelism as it needs depending on the complexity of its

motion planning tasks. Cloud-based computers can be cost-effective, since they allow the robot to

potentially have a cheaper onboard CPU, and pay only for the computation that they use, as they

use it. But for all the computational benefits of the cloud, there are challenges in how to coordinate

the split in computation between the robot and the cloud and overcome bottlenecks introduced

by the network connection between the robot and cloud-based computers. In order to overcome

these bottlenecks, this dissertation introduces algorithms in which the robot navigates a dynamically

changing environment using a small, but relevant, portion of the result of a computationally intensive

cloud-based motion planner.

This dissertation advances the ability of robots to solve complex motion planning problems

quickly. It does this through contributions of novel approaches to scalable parallel computation and

concurrent data structures, and by embedded cache awareness. It further enables these advances

to be effectively utilized whether the motion planner runs purely on the robot or in tandem with

the cloud. The effectiveness of all the advances are demonstrated on physical robots in real-world

scenarios. In concert with the research for this dissertation, we also released open-source projects

that will allow these advances to be utilized in practice everywhere.

1.1 Problem and Motivation

In this section we define our motion planning problem, and we motivate extending it to a

cloud-based solution.

1.1.1 Robot Motion Planning and Parallel Computation

Motion planning solves the problem of how to move a robot from a start configuration to a

goal configuration while avoiding obstacles and remaining within task-specific constraints. As the

definition of what is a robot is broad (e.g., Figs. 1.2 and 1.3), so too is the definition of motion

planning for robots. Solving the general case of motion planning typically requires identifying and

planning the motion for the robot’s degrees of freedom—e.g., joint angles for an articulated robot,

or position and orientation on a floor for a vacuuming robot. The degrees of freedom form the

configuration space (C-Space) of the robot’s motion planning problem. Motion planning in the

C-Space allows the motion plan to be naturally converted to a sequence of actions to execute (e.g., a

sequence of angles a joint should take). Unfortunately, while planning in the C-Space ties naturally
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(a) Fetch robot (b) Baxter robot (c) Nao humanoid (d) F1/10 self-driving

Figure 1.2: Physical robots used in experiments. The motion planning algorithm research in
this dissertation computes motion plans that we use to move physical and simulated robots around
obstacles to a goal. The robots have varying characteristics including: (a) a mobile base and single
arm, (b) two articulated arms and a stationary base, (c) arms, legs, and feet, and (d) a wheeled
vehicle.

to the robot’s motions, it causes the dimensionality of the planning problem to grow with the degrees

of freedom and induces complex obstacle geometries in the C-Space that are impractical to compute

(see example in Fig. 1.4). This is one the main reasons that motion planning is computationally

difficult.

In a dynamic motion planning problem, the goal and/or obstacles in the environment change over

the course of the robot’s motion. The robot must still avoid obstacles in such a dynamic environment,

potentially by rapidly recomputing a new motion plan or updating its existing motion plan. If the

robot fails to compute fast enough, the robot may not reach its goal in a timely manner, or worse,

may collide with an obstacle.

A highly successful set of approaches to solving the motion planning problems in the general

case are sampling-based motion planners [20]. Sampling-based motion planners operate by sampling

random robot configurations, testing them against collisions and task-specific constraints, and

connecting them to form a graph of valid motions. By testing random configurations, sampling-based

planners do not need to directly compute obstacle geometries in C-Space and thus avoid one of the

computational complexities of motion planning. When the graph of motions connects the robot’s

starting configuration to a goal configuration through an unbroken path through the graph of valid

motions, the motion planning problem is solved. Solutions for sampling-based motion planners are

probabilistic—if a solution path exists, a probabilistically complete motion planner will find a solution

with probability 1.0 given infinite time. The implication is that probabilistically complete motion

planners will produce a feasible plan with increasing probability as they spend more time computing.

In a similar vein, an asymptotically optimal motion planner will find the optimal solution (according
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(a) 2D Holonomic Disc (b) Alpha puzzle (c) Twistycool

(d) Cubicles scenario (e) Home scenario

Figure 1.3: Simulated robots used in experiments. We experiment with simulations of various
robot types and scenarios. In (a) is an example of a 2D holonomic disc motion planning problem,
and in (b) – (e) are 3D rigid-body problems from OMPL [113] for planning in SE(3).

to a cost function) with probability 1.0, given infinite time. The implication is that asymptotically

optimal motion planners converge towards an optimal solution as they spend more time computing.

In order to find motion plans sooner, or converge towards optimal motion plans faster, a sampling-

based motion planner must thus be able to generate and evaluate more random samples at a faster

rate. Evaluating samples at a faster rate, regardless of algorithmic advances, is inherently tied to

the diminishing single-core performance trend of CPUs, unless the motion planner can make use

computational parallelism. Exploiting computation parallelism in sampling-based motion planners

that are sequential in design (e.g., RRT [76], RRT* [60]), requires novel approaches in order to gain

parallelism that is scalable. With parallelism that is scalable, increasing parallelism by a factor of p

leads to decreasing the solution time by a factor of 1/p. With CPUs having as many as 32 cores (64

threads) becoming readily available, a parallelized motion planning algorithm has the potential to

enable difficult motion planning problems that take minutes on a single-core, to take seconds when

computed in parallel. But scaling to 64 threads requires novel approaches to coordinating the work

between parallel threads in order to avoid slowdown.

1.1.2 Approaches to Parallelizing Motion Planning

One approach to speed up motion planning is to identify and parallelize the chief time-consuming

component of the algorithm’s implementation. For example, if the algorithm spends most of its time
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joint

end effector

base

(a) 2D 2-link planar robot (b) Obstacles in C-space

Figure 1.4: C-space obstacles for a 2D 2-link planar robot [44]. In (a) a 2-link robot operates
in a workspace with four polygonal robots of varying colors. The robot’s links can rotate around
a fixed base and at a single joint, giving the robot two degrees of freedom. These obstacles are
shown with the same colors in the visualization of the C-Space in (b). A rotation around the base
corresponds to moving the + horizontally, and a rotation around the joint corresponds to moving
the + vertically. The shape of the C-Space obstacles are irregular and difficult to define in closed
form, especially in higher dimensions.

checking for collisions, then this approach leads to a solution that parallelizes the collision-detection

subroutines [16]. Or, as analysis shows that the big-O runtime of a motion planner will eventually be

dominated by nearest neighbor searching [68, 45], one might focus attention on speeding up nearest

neighbor searching. However, focusing attention on speeding up one portion of the motion planning

is inherently limited by Amdahl’s law [6]—which argues that the maximum speedup one can observe

is limited by the portion of the code that cannot be parallelized. Thus parallelizing the “outer loop”

of the motion planner avoids this limitation, and is the focus of this dissertation.

Parallelized motion planning algorithms require access to shared data structures to be correct

under concurrent operation. If two or more threads concurrently modify the same portion of a data

structure, the result can be data corruption, data loss, or program failure. To avoid these issues,

threads can employ locks to gain mutually exclusive access to the data structure. Exclusive access

however, leads to slowdown, as threads spend time waiting on a lock instead of computing. This

problem becomes worse with increasing parallelism, as more threads means increased likelihood of

threads contending for the same lock. To enable scaling to increased parallelism, simple lock-based

approaches are often not sufficient, and thus instead, this dissertation contributes approaches that
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use lock-free atomic updates to shared data structures, data structures designed for concurrency, as

well as exploiting properties of the motion planning algorithms to reduce likelihood of contention.

The longer a sampling-based motion planner runs, the larger its underlying data structures grow.

Eventually the data structures will grow to exceed the size of the CPU’s cache. When that happens,

threads will increasingly access the data that they need from much slower RAM. The result can

be a dramatic slowdown in the algorithm’s performance. With a parallelized motion planner, this

cache-based effect happens sooner, and thus this dissertation contributes novel approaches that make

motion planning algorithms cache-aware.

1.1.3 The Economic Case for Robot Cloud Computing

Computing motion plans for high-degree-of-freedom robots typically requires a capital expense

of thousands of dollars to purchase a high-end computer capable of computing timely solutions. As

an alternative, would you prefer gaining access to the latest computational hardware on demand,

and for cents per task? That is the promise of cloud computing for robots—a potential to lower

costs and improve efficiency for a variety of robotics applications.

Cloud computing has the potential to change the way we design, use, and pay for robotic systems.

Unlike traditional robots, which are purchased upfront, cloud computers are billed in units of usage

time. Thus, when using cloud computing one can and should approach solving problems in the most

cost-effective way possible. To illustrate, for $10 000 one could purchase a high-end computer, or one

could get 117 647 hours on a compute-optimized single-core cloud computer, 3 267 hours on a 36-core

cloud computer, or one hour of 117 647 cores1. With a parallel algorithm for motion planning [4] and

externalizing the robot’s computation (e.g., [52]) to a cloud-based computer, one could dramatically

reduce the time to solve a complex task. New robotics algorithms that leverage this computing

power may extend a robot’s service life and battery-based operation time, and reduce its initial and

operating costs.

The cloud is already changing the way we think about computing for robots, but its full potential

has not been tapped. To date, many data-centric, and pre-computation approaches leverage the

cloud [62]. What about solving complex tasks with near-term deadlines by using the cloud to add

1As of March 2018, Amazon offers single-core servers at $0.085/hr, and 36-core at $3.06/hr.
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computing power in response to the changing demands of a problem? This will be particularly

valuable for network-connected robots that face challenging motion planning problems that involve

high-degree-of-freedom systems, dense cluttered environments, learning complex task models, or

managing high levels of uncertainty. In this section, we present an economic motivation for, and

the research challenges posed by, leveraging cloud-based computation in online and interactive

robot motion planning algorithms. Bringing the benefits of cloud-based computing to robots poses

multiple open research challenges, such as: how to cost-effectively allocate computing, how to design

algorithms around network bottlenecks, and how to split computation between a robot and the

cloud.

The cloud changes the cost model of computing by shifting it from a capital expense (CapEx)

to an operational expense (OpEx). Typically, robots require a large upfront CapEx, driven in part

by the cost of the robot’s computer. Using the cloud makes computing become an OpEx over the

service life of the robot. With the right algorithms and utilization, an increase in a robot’s OpEx will

be offset by, not only a reduced CapEx, but also an increased service life, increased battery-based

operation time, and a net improvement in operational efficiency.

Lower CapEx by extending a robot’s service. A robot’s service life may be extended through

the use of cloud computing. The service life starts at purchase and ends when the robot’s utility

decreases to the point it is removed from service. Increasing the service life reduces the number of

robots purchased over time, leading to a reduced CapEx. Consider a home assistance robot that aids

someone with a variety of daily tasks of living. Such a robot could gain additional functionality by

following a process similar to that of installing applications and updates to a smartphone or tablet.

In this scenario, the robot becomes obsolete and needs replacement due to either physical component

wear or due to advances in software exceeding the capabilities of the robot’s computing hardware.

Historically, computing hardware has become obsolete much more quickly than non-computing

hardware (e.g., motors, sensors). Smartphones, as a proxy for a robot’s computing platform, have a

life expectancy in the range of 3 to 4.7 years [8, 28]. Cars, as a proxy for a robot’s non-computing

hardware, have an average age in the US of 11.1 years [34]. The short service life of mobile computing

devices is unsurprising when considering Moore’s law, which observes an 18-month doubling in

computation power as measured by transistor count. At the end of a 4.7 year service life, a robot

9



will have almost 9 times less computing power than its replacement. At the end of a car’s 11.1 years,

a robot will have almost 170 times less. The computing platform on a robot is fixed, but cloud

services offer computers that are routinely upgraded. A robot that effectively utilizes the cloud for

computation could thus potentially extend the time before it becomes computationally obsolete, and

correspondingly extend its service life.

Cheaper robots with longer battery life. Incorporating a reliance on cloud computing into the

physical design of a mobile robot will allow for cheaper robots with longer battery-based operation

time. The computing platform in a robot is necessarily limited by economic factors, including price

and, for mobile robots, physical size and battery capacity. Embedding high-end CPUs and GPUs

enables higher performance computing, but comes at a cost of dramatically increased price and

energy drain for the robot. Higher energy drain either requires increased battery size and weight, or

results in reduced battery-based operation time. If instead, a robot’s designers look to lower-power

computing platforms sufficient to running baseline algorithms, while offloading intensive computation

tasks to the cloud, their robot design can offer decreased battery size or allow for an increased

battery-based operation time, all for a reduced upfront cost.

Robots that learn from their environment and from humans are examples that could naturally

benefit from such a cloud-enabled robot design [120]. Cloud-based computation accelerates the

learning of a model, while the robot need only use the learned model with low-powered computation.

Such a system could be used in robots that are deployed to unfamiliar environments and expected to

adapt rapidly to them as they operate. Novel cloud-based learning solutions [59], and low-powered

fast convolutional network processors [30] and FPGAs [90], are making this closer to reality.

Improved operational efficiency. Cloud computation can not only reduce the initial purchase

costs of a robot, but it can also increase a robot’s operational efficiency, potentially increasing

associated revenue and reducing the need to purchase more robots. Motion planning can be

computationally intensive, whether attempting to find a feasible solution in a complex space,

maximizing a task’s success rate in the presence of uncertainty, or minimizing a motion’s cost (e.g.,

path length, time to completion, energy required). Asymptotically optimal [60] and near-optimal [82]

motion planners work to minimize a motion’s cost by converging towards optimality. They converge
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Figure 1.5: Example of maximizing profit with cloud computing. A warehouse packs
packages using robots (a). The robots avoid collision with an ever-changing inventory by using
motion planning algorithms. In (b), the warehouse wishes to maximize profit/hour, which here is
computed as (revenue/hour) − (cost/hour). Each task the robot completes results in revenue for
the company, thus more tasks/hour means more revenue/hour. The robot uses cloud computation of
an asymptotically optimal motion planner to reduce motion time and thus pack more boxes per
hour. The warehouse can adjust the amount of cloud-based computing resources it uses so that it
maximizes profits.

faster when given more computing power or computational parallelism [49]. By leveraging parallelism

of cloud computers for motion planning [12, 51], robots can complete tasks faster. When accelerating

robot motions results in more revenue, the OpEx associated with cloud computing could be justified

by net improved profits (see Fig. 1.5). When a fixed number of tasks are required per unit time,

faster completion times means fewer robots are required, thus lowering CapEx.

1.2 Research Challenges

In this section we present the research challenges of accelerating motion planning on multi-core

computers and extending it to a cloud-based solution.

1.2.1 Research Challenges in Parallel Computation of Robot Motion Plans

The problem of accelerating motion planning is broken down here into the design of parallel

algorithms, novel concurrent data structures, and cache-aware planning.

Accelerating motion planning with parallel processing. Parallel processing in the form of

multi-core CPUs is readily available in both cloud-based and robot-embedded computers, though

the scale of parallelism is different between the two. For example, the robots in our lab have 4-core

CPUs typically found in modern desktop computers, while cloud services readily offer computers
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with up to 72-cores CPUs. The trend in both robot and cloud-based CPUs is towards increasing core

counts. This problem is thus creating sampling-based motion planning algorithms that make use of

this parallelism, while overcoming scaling limitations, ideally gaining linear (or better) speedup.

Nearest neighbor searching in SO(3) and SE(3). Nearest neighbor searching is an important

performance bottleneck in sampling-based motion planners. Its computational complexity grows as

the motion planner runs longer, and eventually dominates the computation time. Two important

topological spaces in robot motion planning are SO(3) and SE(3), which are used for planning rigid

body motions. This problem is thus accelerating nearest neighbor searching within the context of

our concurrent nearest neighbor data structure using a novel space-partitioning approach.

Concurrent nearest-neighbor searching. In parallelized sampling-based motion planners,

nearest-neighbor searching data structures need to be updated and queried concurrently. In tradi-

tional approaches to nearest neighbor searching data structures, exclusive access is required during

inserts to avoid data structure corruption. Exclusive access, by definition, does not allow concurrent

operation, and thus causes parallel sampling-based motion planners to slow down. This problem is

thus creating a concurrent nearest-neighbor searching data structure that allows concurrent queries

and updates and minimizes the possibility of waits.

Cache-aware motion planning. Gaining the benefits of a parallelized sampling-based motion

planner means that motion plans will have significantly more samples in the same amount of wall-

clock time. This presents a problem not typically seen with non-parallelized motion-planners—the

motion planning graph and nearest-neighbor data-structures exceed the size of the CPU’s high-speed

memory caches. As a result, the traditional approach to sampling-based motion planners begins to

dramatically slow down as memory access time can be orders of magnitude slower than cache access

times. This problem is thus making motion planners cache-aware, and thus able to maintain the

speed benefits of using the CPU’s cache.

Efficient reusable motion planner implementation. Implementing a highly efficient motion

planning algorithm often requires writing robot-specific code. The alternative of leveraging a reusable

software library often trades off efficiency in favor of generality. We wish to put algorithms and
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data structures from this dissertation into a reusable, highly efficient, motion planning software

library. The challenge is thus creating a reusable motion planning software library that has an

expressive language capable of supporting a wide variety of robots, and that produces highly efficient

robot-specific code.

1.2.2 Research Challenges in Cloud-based Computation of Robot Motion Plans

Cloud computing offers many potential benefits, but realizing them presents several open research

problems. Cloud computing services offer scaling computing power in a wide variety of options, from

a single core virtualized on a server, to all cores on a high-end multi-core computer, to arrays of

GPUs, to networked combinations of these. Motion planning algorithms that benefit from parallelism

typically run with fixed parallelism configured a priori. With cloud computing, the amount of

parallelism to allocate to a problem becomes a question of balancing benefit to the cost (instead

of availability) of computing. Robots also must interact with a changing world, and in order to

respond to changes (e.g., to sense and avoid collisions with obstacles) they must take into account

the network latency (i.e., round-trip time) and bandwidth limits. One option is mixing or splitting

computing between multiple sites: the robot’s onboard computer and the cloud-based computers,

ideally gaining the benefits of each site’s strengths while avoiding the weaknesses. This research focus

on using the cloud to speed up the motion planning computation—when the cloud is unavailable, the

robot will have to fallback to slower planning using on-board computing or simply refuse to operate.

The research challenges are thus: how to utilize the parallelism afforded by cloud computing, and

how to adapt algorithms to work around limitations of the network.

Splitting computation between multiple sites. Algorithms can potentially address the re-

source allocation and network concerns by splitting computation between the robot’s on-board

computer, a co-located computer, and cloud-based computers. The robot’s computer has the lowest

latency and highest bandwidth access to its environment via its sensors and actuators. A cloud-based

computer has relatively high latency and low bandwidth. Depending on the scenario in which the

robot operates, some portion of the robot’s computation can be split between the different sites.

As an example, vision processing and motion tracking require a large amount of bandwidth and

low latency in order to react to changes in the environment—matching the characteristics and

(hopefully) capabilities of the robot’s onboard or co-located computer. On the other hand, an
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intensive pre-computation of a robot’s path through its environment (barring dynamic obstacles)

can be rapidly computed by high-performance parallel computing in the cloud. As a general research

challenge, can we design robot algorithms that split portions of computation between multiple

computing sites and thus gain the benefits of the cloud’s massive computing power while meeting

the demands of a problem that requires low-latency computation?

Network bottlenecks and deadlines. Robot algorithms that rely on cloud computing must

consider and address the limitations imposed by the network. Advances in networking technology

may improve the latency and bandwidth to an extent, but communication networks will always be

slower than the interconnect between the robot and its onboard or co-located computer. This limit

is fundamentally insurmountable, since it is a direct result of the speed of light. As such, network

limitations vary by domain, and the challenges imposed by the network bottlenecks for robots in

home and warehouse environments significantly differ from robots tasked with deep-sea and space

exploration. For the class of algorithms and scenarios in which the results can be pre-computed,

the network might not warrant concern. However, robots operate in the real world, and they must

be able to sense and respond quickly to changes in the environment in order to avoid undesirable

or harmful outcomes, especially in safety-critical scenarios, such as warehouse robots operating in

close proximity to humans or with medical robots working with, or operating on, humans. To avoid

undesirable outcomes, we pose the research challenge by borrowing language from the real-time

computing community, and considering computing tasks with hard deadlines and soft deadlines. For

robots computing tasks with hard deadlines (ones that cannot be missed), how can we ensure that

a robot’s motion planning algorithm will meet the deadline (or at worst, minimize the chance of

missing the deadline)? For robotic tasks with soft deadlines (ones for which a miss results in reduced

benefit or increased cost), how can a robotic algorithm maximize the benefit or minimize the cost of

these tasks? More parallel processing can speed up computation to get ahead of the deadline, but

the network remains a bottleneck of fundamental importance to these research challenges.

1.3 Contributions

This thesis makes a number of contributions to accelerating sampling-based motion planning for

robots through the use of parallelization of motion planning algorithms, novel approaches to nearest

neighbor searching, provably correct concurrent data structures, and cache-aware motion planning
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algorithms. This thesis also extends these advancements to work on power-constrained robots using

a novel algorithm and system architecture for partitioning the dynamic motion planning problem

between a robot’s CPU and a cloud-based high-power multi-core CPU. These advancements are

made available as open-source software libraries that make use of a novel template-based software

architecture. This section outlines these aforementioned contributions.

1.3.1 Motion Planning with Superlinear Speedup

To address the challenge of efficiently and scalably parallelizing a sampling-based motion planner,

we take the approach parallelizing the “outer loop” of the RRT [76] and RRT* [60] sampling-based

motion planners. By parallelizing at this level, we parallelize the entire algorithm, and thus avoid the

limitations described by Amdahl’s law. To get around slowdown and contention associated with locks,

we present an algorithm that updates shared data structures through lock-free atomic operations.

With these approaches, the algorithm demonstrates linear speedup with additional parallelism. With

some inherent work-saving from this approach, and a simple partitioning of samples, the motion

planner exhibits superlinear speedup.

This contribution appears in Chapter 2 and was originally presented at IROS [48] and later in

journal form [49].

1.3.2 Fast Nearest Neighbor Searching in SO(3) and SE(3)

To address the challenge of having a fast nearest neighbor searching data structure for topological

spaces common to robotic motion planning problems, we present a novel space-partitioning data

structure for SO(3) and SE(3). For SO(3) searching it uses the distance metric defined by the

shortest great-arc that subtends two rotations. For SE(3), it uses a metric that is the weighted

sum of SO(3) and Euclidean. This data structure is based on the kd-tree [13], but uses partitioning

hyperplanes that pass through the origin of a unit 4-sphere of the quaternion [70] representation of

the rotation. The data structure’s performance is demonstrated both with random samples, and

embedded in a sampling-based motion planner.

This contribution appears in Chapter 3 and was originally presented at WAFR [46].

1.3.3 Concurrent Nearest Neighbor Searching

To address the challenge of having a fast nearest neighbor data structure that allows for concurrent

operation, we present a novel concurrent data structure for nearest neighbor searching. This data

structure is based on the kd-tree and thus supports our novel SO(3) and SE(3) partitioning approach.

15



This data structure defers partitioning decisions in order to generate splits that are better balanced

than prior approaches, resulting in measurably faster performance in sampling-based motion planning

problems. In order to support fast concurrent operation, the data structure makes use of lock-free

atomic operations, memory-ordering directives, and fine-grain locks. We provide proofs of correct

operation under concurrency through the use of linearization points, and we provide a proof of

asymptotically wait-free operation in motion planning.

This contribution appears in Chapter 4 and was originally presented at WAFR [45].

1.3.4 Cache-Aware Sampling-based Motion Planning

To address the challenge induced by sampling-based motion planners generating working data

sets that exceed the CPU’s cache size, we present a novel approach to sampling-based motion

planning that is cache-aware. This approach successively partitions the sampling space to keep

the working data set to a size that fits in the cache. The proposed motion planner integrates its

sampling strategy with a space-partitioning nearest neighbor structure thus constraining its queries

to a small portion of the nearest neighbor data structure. In experiments, the cache-aware approach

leads to measurable performance improvement—as much as halving the wall-clock time to compute

a solution when compared to a non-cache aware approach.

This contribution appears in Chapter 5 and was originally presented at ICRA [50].

1.3.5 Cloud-based Motion Planning in Dynamic Environments

To address the challenge of gaining large-scale multi-core parallelism on power-constrained robots,

we present a novel approach to partitioning the motion plan computation between a robot’s CPU

and a cloud-based computer. In this algorithm and system, the robot, with its fast access to its

environment through its sensors and actuators, is responsible for reacting to and avoiding dynamic

obstacles. The cloud-based computer, with its high degree of parallelism, is responsible for generating

a large asymptotically optimal roadmap of options for the robot. The approach works around network

bottlenecks by selecting and sending only the relevant portions of a roadmap given the robot’s likely

path. We experimentally validate the algorithm and system on a physical robot interacting with a

obstacle sensed through an RGB+depth camera.

This contribution appears in Chapter 6 and was originally presented at WAFR [51].
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1.3.6 Efficient Motion Planners via Templates

To make the contributions available in a reusable form, this thesis also presents and distributes

an open-source software library for concurrent nearest neighbor searching and motion planning on

multi-core system that is based upon C++ templates. The C++ template-based software architecture

uses compile-time polymorphism to generate code that is custom to the robot’s motion planning

tasks. This type of customization produces motion planners run measurably more efficiently (both

in memory and runtime) than equivalent planners based upon runtime polymorphism. While this

library may have wide applicability, it is originally intended to run on power-constrained robots

running multi-core CPUs one might find in mobile phones or similar mobile computing devices. We

demonstrate the performance impact of this software architecture on a suite of benchmarks running

on low-power CPUs.

This contribution is described in Chapter 7, will be presented at ICRA [47], and is available in

source code with a free-to-use license.

1.4 Thesis Statement

This dissertation proposes and demonstrates that motion planning for robots can be accelerated

through the use of algorithmic and data structure advances that leverage multi-core CPU architecture—

whether the CPU is inside the robot or accessed through the cloud. With computational speed that

effectively scales with increasing core count, robots are able to accomplish their tasks faster, thus

enabling new tasks. This dissertation aims to prove the following thesis statement:

Robot motion planning algorithms using multi-core parallelism, concurrent data structures, and

cache-awareness can demonstrate superlinear speedup. With this speedup, robots can solve complex

motion planning problems sooner and converge towards optimal motion plans faster. The resulting

faster motion planning can enable robots to effectively operate in dynamically evolving scenarios,

including cases in which a robot with a low-power CPU gains access to faster motion planning through

computers deployed in the cloud.

The chapters in this dissertation support this thesis statement as outlined below.

1.5 Organization

In Chapter 2 we present a parallelized algorithm for sampling-based motion planning that speeds

up linearly, and in some cases superlinearly, with additional cores. In Chapter 3, we present an

approach for fast nearest neighbor searching in SO(3) and SE(3), resulting in faster motion planning
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of 3D rigid body problems. In Chapter 4, we further accelerate nearest neighbor searching with a

novel provably correct concurrent data structure that defers partitioning decisions to produce a better

balanced tree. In Chapter 5, we introduce a cache-aware sampling-based motion planning, enabling

faster motion planner of problems requiring many samples. In Chapter 6, we split motion planning

between the robot’s CPU and a cloud-based computer while overcoming network bottlenecks in order

to make robots with low-power CPUs interact better with dynamic environments. In Chapter 7, we

present the architecture of an open-source library that allows the aforementioned advancements to

be used in real-world situations. Finally we conclude in Chapter 8 with a discussion of the promising

implications and potential future directions of this work.
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CHAPTER 2

Motion Planning with Superlinear Speedup

Incremental sampling-based motion planners, such as the Rapidly-exploring Random Tree

(RRT) and RRT*, are used in a variety of robotics applications including autonomous navigation,

manipulation, and computational biology [75, 60]. The objective of these planners is to find a feasible

or optimal path through the robot’s free configuration space from a start configuration to a goal

configuration. In this chapter, we introduce PRRT (Parallel RRT) and PRRT* (Parallel RRT*),

parallelized versions of the single-tree RRT and RRT* motion planners that are tailored to execute

on modern multi-core CPUs.

Most modern PCs and mobile devices have between 2 and 32 processing cores with shared memory,

and the number of cores is increasing. PRRT and PRRT* are designed to scale and efficiently utilize

all available cores concurrently, enabling motion planning with substantial speedup with respect to

the number of cores processing in parallel (see Fig. 2.1). Speedup, defined as the factor by which

compute time is reduced with additional processing cores, is ideally proportional to the number of

processing cores. In practice though, speedup is typically hindered by the overhead of coordinating

updates between multiple cores. The methods proposed in this chapter reduce this overhead to the

point at which speedup is near linear with the number of cores—thus, PRRT and PRRT* computing

with p cores can reduce compute time to 1/p over an equivalent single-core motion plan computation.

We have also observed that PRRT and PRRT* in some cases achieve a speedup that exceeds the

number of processing cores, and thus appears to be superlinear. This superlinear speedup effect is

based upon a comparison between the multi-core parallel motion planners presented here and the

standard single-threaded algorithms on which they are based (or, equivalently, the parallel motion

planner running on a single core). While the measured speedup can be superlinear, it should be

understood that in theoretic terms speedup can never be superlinear [38], as one could devise a

(potentially complicated) single-threaded algorithm that mimics the operations of a parallel process,

e.g., through time-slicing. The superlinear effect measured in PRRT and PRRT* is a result of PRRT
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(a) The scenario (b) 1 core (c) 4 cores (d) 32 cores

Figure 2.1: PRRT* on 2D holonomic scenario. We ran PRRT* for a 2D holonomic motion
planning problem for a disc-shaped robot for 10ms on 1, 4, and 32 processor cores. The red line
shows the optimal path found. With the same wall clock time, adding more processor cores increases
the size of the tree, enabling fast computation of higher quality motion plans on modern multi-core
computers.

and PRRT* algorithmic enhancements that allow parallel operation to effectively reduce both the

amount of work required and the time it takes to do that work.

Our focus is on challenging motion planning scenarios for which a large number (tens or hundreds

of thousands) of configuration samples is typically necessary to find a feasible path or to compute a

plan with the desired closeness to optimality. In RRT and RRT*, the time spent computing nearest

neighbors grows logarithmically with each iteration as the number of samples rises, whereas the time

spent per iteration on collision detection decreases as the expected distance between samples shrinks.

Collision detection typically dominates computation time in the early iterations. But as the number

of iterations rises and the number of samples increases, nearest neighbor search will dominate the

overall computation.

To enable speedup regardless of the computational bottleneck (e.g. collision detection or nearest

neighbor searching), we parallelize the outer loop of RRT and RRT*: we create multiple threads that

each generate samples and incrementally extend the motion planning tree based on those samples.

To parallelize at this level, independently working threads must share access to a nearest neighbor

searching data structure and to the motion planning tree.

Shared access is often controlled using locks; when a thread must access a shared data structure, it

first locks the data structure, then accesses it, and finally unlocks it. When another thread attempts

to access a locked data structure it waits (i.e., is blocked) until the data structure is unlocked. When

locking a data structure, there is often a trade-off with granularity—resulting in either blocked
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threads or high overhead; either approach typically results in sublinear speedup. Blocked threads

result from locking too large of a data structure, leading to threads spending time waiting instead of

computing. High overhead results from repeatedly locking small portions of a data structure. With

increasing processor counts, the sublinear effect of locking is only compounded as more threads must

contend for the same resources.

To reduce causes of sublinear speedup and create opportunities, but not a guarantee, for

superlinear speedup, PRRT and PRRT* introduce three key components relevant to multi-core

concurrency. The first is lock-free concurrency using atomic operations. To eliminate slowdowns

caused by lock overhead and contention, PRRT and PRRT* use lock-free shared data structures that

are updated using an atomic compare-and-swap (CAS) operation, a universal primitive [116]. A CAS

operation has three arguments: a location in shared memory, the expected value stored therein, and

a new value to replace the previous. In a single atomic step, CAS loads the value stored in memory,

compares it to the expected value and, only if they are the same, stores the new value in memory.

Without the atomic guarantee, another concurrent thread would be able to store a different value

between the CAS’s load and store. The atomic operation removes the need for locks when updates

to shared data structures can be formulated into a single update. When a comparison fails due to a

change made by another thread, the update is reformulated with the new information and tried again

until it succeeds or is no longer necessary. In PRRT and PRRT* we observe that as the number of

nodes n in a motion planning tree increases, the probability that any of the p threads are updating

the same part of the motion planning tree decreases (limn→∞O(p/n) = 0). As a consequence, CAS

operations rarely fail, and we avoid the unnecessary blocking and overhead associated with locks.

Lock-free operations eliminate the need for locks and hence reduce the overhead that might otherwise

be associated with concurrent access to a shared-memory data structure. Lock-free operations by

themselves at best enable linear speedup, but can be used in conjunction with other components to

create opportunities for superlinear speedup.

The second component introduced in PRRT and PRRT* that sets up conditions in which

superlinear speedup might occur is cache-friendly partition-based sampling. To reduce the size of

each thread’s working data set, we partition the configuration space into non-overlapping regions

and assign a partition to each thread. Partitioning has two benefits. First, it reduces the likelihood

that two threads will simultaneously attempt to modify the same part of the shared data structures,
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reducing CAS failures. Second, as each processor core is expected to work in a smaller subset of the

nearest neighbor data structure, more of the relevant structure can reside in each core’s cache [1], thus

creating an opportunity for superlinear speedup. Cache-efficiency, while not affecting the algorithmic

complexity, can lead to significant real-world performance gains on modern CPU architectures [73].

The third component introduced to create opportunities for superlinear speedup in PRRT* is

parallel work-saving. During the rewiring phase of RRT*, the algorithm evaluates the costs of paths

to nearby nodes, rewires them through the new node if such routing would produce a shorter path,

and percolates updates up the tree. To reduce the number of rewiring operations in RRT*, we

ensure that when multiple threads attempt to rewire the same portion of the tree, only the one

with the better update continues. This frees the other threads to continue expanding the RRT*,

effectively reducing computation effort relative to single-threaded RRT* for percolating rewiring up

the tree. Parallel work-saving can enhance an algorithm’s performance and can in some cases enable

superlinear speedup.

PRRT and PRRT* are designed to run on standard shared-memory, multi-core, CPU-based

computing platforms (rather than, for example, a cluster or a GPU). This facilitates easy direct

integration with existing libraries for collision detection, robot kinematics, and physics-based

simulation [103, 113]. The contributions of this chapter were originally introduced in a conference

paper [48] and a journal paper [49]. We provide pseudocode sufficiently detailed to show where CAS

operations are used, how they impact the surrounding instructions, and how we ensure correctness

under concurrency. We demonstrate the fast performance and scalability of PRRT for feasible motion

planning using the Alpha Puzzle scenario and a random spheres scenario, and we demonstrate

PRRT* for optimal motion planning using the Cubicles scenario, a holonomic disc-shaped robot,

and a SoftBank Nao [108] small humanoid robot performing a 10 degree of freedom 2-handed task.

2.1 Related Work

Sampling-based motion planners include several components that can naturally be parallelized,

and prior work has taken multiple avenues to exploit this parallelism using multi-core and multi-

processor CPUs, clusters, and GPUs. Early work by Amato et al. [4] showed that the batched

operations of sampling-based probabilistic roadmaps (PRMs) can be parallelized. In this chapter,

our focus is on parallelizing the anytime motion planners RRT and RRT*.
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Parallelizing RRT introduces new challenges since the validity of the tree must be maintained as

it is updated by multiple concurrent threads of execution. A direct approach on a shared-memory

system is to use locks on shared data structures, which is one of the methods proposed by Carpin et

al. [19] and implemented as pRRT in OMPL [113]. Parallelizing RRT has also been investigated for

distributed-memory systems common in clusters. Devaurs et al. [23] propose collaborative building of

an RRT across multiple processes using message passing. This approach achieves a sublinear speedup

as the number of available processors increases. Jacobs et al. [57] introduce speedups by adjusting

the amount of local computation before making an update to a global data structures and by radially

subdividing the configuration space into regions. Approaches targeting distributed-memory systems

(e.g., [23, 57]) can also be run on shared-memory systems, but they do not take advantage of shared-

memory primitives that can offer additional opportunities for speedup. KPIECE [114] prioritizes

cells in a discretized grid for sampling based upon a notion of each cell’s importance to solving a

difficult portion of the motion plan and has been demonstrated to parallelize on shared-memory

systems using locking primitives. Our focus is on shared-memory systems (common in PCs and

mobile devices), which enables us to utilize atomic CPU operations and cache-friendly algorithms to

set up conditions under which superlinear speedup might occur for a single RRT.

Several approaches to parallelizing motion planning across multiple cores/processors have utilized

multiple tree-based data structures. Carpin et al. [19] propose an “OR” parallel algorithm in which

several RRT processes run in parallel and the algorithm stops when the first RRT process finds a

solution. Plaku et al. [96] introduced the Sampling-based Roadmap of Trees (SRT) algorithm, which

subdivides the motion planning problem into subproblems that are distributed, solved by another

planner (e.g., RRT), and then connected together. SRT achieves near-linear speedup that slightly

tapers at higher processor counts. Otte et al. [94] also distribute the generation of independent

path planning trees among several processes and achieve significant speedups by sharing information

between processes about the best known path. Unlike the above methods that rely on multiple trees,

we focus on building a single motion planning tree as in RRT and RRT*. Hence, our approach is

complementary to the above multi-tree methods, which utilize multiple single-tree data structures.

Our lock-free methods for shared-memory, multi-core concurrency result in an empirical superlinear

speedup for some scenarios for both feasible and optimal single-tree motion planning.
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Bialkowski et al. [16] parallelize RRT* and related methods by improving the rate of collision

detection. This approach results in substantial speedups for environments where collision detection

dominates processing time. But due to Amdahl’s law [6], parallel performance will taper as the

number of samples increases and nearest neighbor checks begin to dominate computation time.

Partitioning of configuration space has been used to various effect in motion planning. For example,

Rosell et al. [102] hierarchically decomposes C-space to perform a deterministic sampling sequence

that allows uniform and incremental exploration. Morales et al. [87] automatically decompose a

motion planning problem into (possibly overlapping) partitions well-suited for one of many (sampling-

based) planners in a planning library. Yoon et al. [125] show how cache-efficient layouts of bounding

volume hierarchies provide performance benefits in the context of collision detection.

GPU-based parallel computation has also been used to accelerate motion planning, including

GPU-based methods for the PRM [95], rasterization-based planning [77], Voronoi diagram-based

sampling [65, 35], and R* [66]. Implementing GPU-based algorithms is challenging in part because

the single-instruction-multiple-data (SIMD) execution model of GPU’s constrains algorithm design.

When each thread needs to do something different (inherently divergent), such as traversing a space

partitioning tree, the SIMD model loses nearly all ability to parallelize [43]. Another challenge with

GPU approaches is that, while they can gain the benefit of the high computational throughput

associated with GPUs, they sacrifice some interoperability with standard systems and libraries based

upon CPUs.

2.2 Problem Formulation

In this section, we formally define the computing environment and motion planning problem.

2.2.1 Parallel Computing Environment

Our target computing environment is the one available in almost every modern computer: a

multi-core/multi-processor concurrent-read-exclusive-write (CREW) shared-memory system with

atomic operations that synchronize views of memory between threads running on different cores [40].

This is the model in the current generation of x86-64 and ARM multi-core processors as well as

many other CPU architectures.

In this environment, a computer contains one or more processors. Each processor may contain

one or more cores. Each core acts as an independent CPU capable of having a single thread running
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simultaneous to the threads running on the other cores. The total number of cores in the system is:

p = (# of cores per processor)× (# of processors).

For example, a system with four processors, where each processor has 8 cores, has p = 32.

Speedup refers to how much a parallel algorithm is faster than a corresponding sequential

algorithm. Let Tp be the execution time of a program that is executed using p cores. Formally,

speedup Sp is the ratio of the sequential (single-threaded) execution time T1 to parallel execution

time Tp with p cores:

Sp =
T1

Tp
.

Linear speedup means Sp = p, and superlinear speedup means Sp > p.

To avoid sublinear speedup, we use the atomic compare-and-swap (CAS) operation for fast

lock-free updates to data structures. To help enable superlinear speedup, we exploit the fast, but

limited in size, CPU memory cache. Modern processors typically have a cache hierarchy between the

core and RAM that includes one or more small but fast caches local to each core (L1 and L2) and a

larger and slower cache shared among cores (L3). When the data set in use by a core is smaller, the

core uses the faster local caches more often and gains a proportional speed benefit. CPU caches can

be leveraged to gain superlinear speedups by distributing the working dataset into smaller chunks

across multiple cores.

2.2.2 Problem Definition

Let q ∈ C be a d-dimensional vector representing the configuration of a robot, d is the number of

degrees of freedom, and C is the set of all possible configurations the robot may take (the configuration

space). Let Cfree ⊆ C denote the subset of the configuration space for which the robot is not in

collision with an obstacle.

The objective of PRRT (feasible motion planning) is to find a path in the robot’s configuration

space that is feasible (e.g., avoids obstacles) and reaches the goal region. Formally, the objective of

PRRT is to compute a path Π : (q0,q1,q2, . . . ,qend) such that q0 = qinit, qend ∈ Qgoal, Π lies in

Cfree, qinit is the starting configuration of the robot, Qgoal ⊆ Cfree is the set of goal configurations.

The objective of PRRT* (optimal motion planning) is to compute a feasible path that reaches the
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goal region and minimizes a user-defined cost function. An example cost function is the minimum

total Euclidean length of the segments in the planned path.

2.2.3 Problem-specific Functions

Similar to their sequential motion planning counterparts RRT and RRT*, PRRT and PRRT*

require as input the definition of problem-specific functions. For two configurations q1,q2 ∈ C, the

function STEER(q1,q2) returns a new configuration that would be reached if taking a trajectory from

q1 heading toward q2 up to some maximum user-specified distance. The function FEASIBLE(q1,q2)

returns false if the local path from q1 to q2 collides with an obstacle or violates some motion

constraint, and true otherwise. For PRRT*, the function COST(q1,q2) specifies the cost associated

with moving between two configurations q1 and q2, which can equal control effort, Euclidean distance,

or any problem-specific user-specified metric that can be used with RRT* [60]. We also require a

function GOAL(q) that returns true if q ∈ Qgoal and false otherwise.

The above problem-specific functions are standard in RRT and RRT*, which enables current

implementations of these problem-specific functions to be used in PRRT and PRRT* unchanged,

provided the functions allow for correct concurrent evaluation.

2.3 PRRT

In this section, we present Parallel RRT (PRRT), a lock-free parallel extension of the RRT

algorithm. We describe the algorithm in sufficient detail to show where atomic operations are used,

how they impact the algorithm design, and how we ensure correctness under concurrency.

The PRRT algorithm maintains data structures that are shared across all threads, including the

data structure for nearest neighbor searching, the RRT tree τ , the approximate iteration number,

and whether or not a path to the goal has been found. As shown in Algorithm 1, PRRT begins

by partitioning the configuration space into non-overlapping regions and launching an independent

thread for each partition. For peak performance, each thread runs on a dedicated core. The impact

of partitioning is that it localizes each thread’s operations (e.g. random sampling, nearest neighbor

searching, and collision detection) to a smaller portion of the configuration space. This allows for

more effective use of each core’s caches and contributes in some cases to our method’s empirical

superlinear performance.
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Algorithm 1 PRRT

1: initialize τ
2: for i = 1 . . . thread_count do
3: s← partition(i, thread_count)
4: wi ← start new thread PRRT_Thread(τ, s)

2.3.1 PRRT Threads

The algorithm for each thread of PRRT is shown in Algorithm 2. PRRT is nearly identical to

the standard RRT algorithm except that (1) each thread only samples in its partition, (2) PRRT

uses a lock-free nearest-neighbor data structure (introduced in Sec. 2.3.2), and (3) all graph updates

are lock-free. We note that although sampling is local to a partition, the nearest-neighbor data

structure and graph of motions spans the entire configuration space and is shared by all threads.

As in the standard RRT algorithm, the function PRRT creates a new node for qnew and sets its

parent pointer to the node of qnear (line 6) and then inserts the node into the lock-free kd-tree (line 7).

The ordering is important since PRRT must ensure that other threads only see fully initialized nodes,

and the new node will become visible as soon as it is inserted into the kd-tree.

Complicating matters, modern CPUs and compilers may speculatively execute memory reads and

writes out-of-order as a performance optimization. These optimizations are done in a manner that

guarantees correctness from the view of a single thread, but out-of-order writes may cause a thread

executing concurrently on another core to see uninitialized or partially initialized values, resulting in

an incorrect operation. The solution to this problem is to issue a memory barrier (also known as

a memory fence) [83]. A memory barrier tells the compiler and CPU that all preceding memory

operations must complete before the barrier, and similarly no memory operations may speculate

ahead of the barrier until after the barrier completes. In many CPU architectures, atomic operations

such as compare-and-swap imply a memory barrier. For PRRT_Thread to operate correctly, it must

ensure that a memory barrier is issued before a new node becomes visible to another thread, which

is done in the lock-free kd-tree insertion algorithm described next.

2.3.2 Building a Lock-Free kd-Tree

The RRT algorithm requires an algorithm Nearest(τ,q) for computing the nearest neighbor in

τ to a configuration q in configuration space. Using a logarithmic nearest neighbor search rather

than a brute-force linear algorithm often results in a substantial performance gain [123]. In PRRT,
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Algorithm 2 PRRT_Thread(τ, s)
1: while not done do
2: qrand ← random sample from s
3: qnear ← Nearest(τ,qrand)
4: qnew ← STEER(qnear,qrand)
5: if FEASIBLE(qnear,qnew) then
6: τ ← τ ∪ edge(qnear,qnew)
7: LockFreeKDInsert(qnew)
8: if GOAL(qnew) then
9: done ← true

Algorithm 3 LockFreeKDInsert(qnew)
1: nnew ← {value:qnew, split:∅, a:∅, b:∅}
2: qmin ← minimum bounds of sample space
3: qmax ← maximum bounds of sample space
4: nptr ← pointer to kd_root
5: for d = 0→∞ do
6: a← d mod κ
7: if node in nptr is null then
8: nnew.split← Split(qmin,qmax,qnew, a)
9: — memory barrier —

10: if CAS(nptr, null, nnew) then
11: return
12: if q[a] < nptr.split then
13: qmax[a]← nptr.split
14: nptr ← pointer to nptr.a
15: else
16: qmin[a]← nptr.split
17: nptr ← pointer to nptr.b

for nearest neighbor searches we use a variant of a kd-tree data structure [13] that we adapt to allow

for concurrent lock-free inserts using CAS.

Each node of the kd-tree is a k-dimensional point (i.e., a configuration in PRRT), where k = d is

the dimension of the configuration space. The kd-tree is a binary tree in which each non-leaf node

represents an axis-aligned splitting hyperplane that divides the space in two—points on one side of

this hyperplane are in the left subtree of that node and the other points are in the right subtree.

The axis associated with a node is based on its depth (i.e., level) in the tree. For example, in 3D

Euclidean space the hyperplane for a node in the first level of the kd-tree is perpendicular to the

x-axis based on that node’s x dimension value. For successive layers, the splitting is perpendicular

to the y-axis, then the z-axis, and then repeating x, y, z, x, y, z, . . . down the tree.
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To insert a node in the kd-tree for fast nearest neighbor searching, PRRT_Thread calls the

lock-free kd-tree insert function LockFreeKDInsert shown in Algorithm 3. It starts with a pointer

to the root (line 4), then traverses down the kd-tree by different dimensions (lines 5, 6) until it

finds an empty branch (line 7). Once found, it generates and records the split (line 8), performs a

memory barrier, and then a CAS (lines 9, 10) to change the pointer from null to the new node that

was allocated and initialized in line 1. If the CAS succeeds, the node is inserted and the algorithm

returns. If another thread already updated the pointer, the CAS will fail, and the algorithm will

continue to walk down the tree until it can attempt another insert. The memory barrier before the

CAS ensures that the node is fully initialized before it is visible to other threads when the CAS

succeeds.

In line 8, Split denotes a function that generates the hyperplane. The split is generated based

upon the bounds of the region of the node’s parent. The bounds are initialized in lines 2 and 3 and

updated in lines 15 and 18. If the bounds are known and finite, Split forces a mid-point split [81]

by returning (qmin + qmax)/2. If the bounds are not known, as might happen with the initial values

at the root of the tree, Split returns qnew[a], causing the inserted value to define the split.

The kd-tree handles most spaces relevant to motion planning in configuration spaces, including

Rn, T n, and combinations thereof with an appropriate distance metric [123]. For Rn spaces,

we consider Euclidean distance metrics. For T n spaces (with unbounded revolute joints where

θ = θ + 2nπ for any integer n) we consider distance metrics based on a circular distance in the form

distS1(θ1, θ2) = min(|θ1 − θ2|, 2π − |θ1 − θ2|). For a combination of these spaces, we consider the

root sum of squares.

We augment the lock-free kd-tree to support SE(3) and SO(3) by defining splits based on the

approach of vantage-point trees (vp-trees) [124]. The kd-tree defines a split on an SO(3) component

using an orientation asplit in space and a pre-defined distance φ from the orientation. The distance

function is the shortest arc-length between two orientations and thus ranges from 0 to π. Representing

orientations using quaternions [39], distSO3(a1,a2) = arccos |a1 · a2|. Orientations that are less than

φ away from asplit are on one side of the split, and orientations greater than φ away are on the other

side. We preselect φ as sec 30◦, as that produces an even split on the orientations in SO(3). The

Split function on the SO(3) component generates a split orientation by rotating the orientation

component anew of the inserted point by φ about an arbitrary axis. This causes anew to lie exactly
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on the split. This vp-tree-based approach enables the lock-free kd-tree to efficiently support the

SE(3) and SO(3) configuration spaces.

PRRT and PRRT* builds up the lock-free kd-tree on the fly by inserting randomly generated

configuration samples. The resulting tree remains relatively balanced. It can be shown that the

expected number of comparisons required to insert a random sample into a binary tree generated

with uniform random insertions is about 2 lnn [69, p. 430–431].

The kd-tree can be used for any number of dimensions, but may become inefficient in very high

dimensional spaces [123]. Even in such cases, kd-trees distribute random updates throughout the

tree, leading to low contention over insertion points. In brute-force approaches based upon arrays or

lists, inserts at a single insertion point (e.g. the tail of the list/array) may result in contention.

2.3.3 Querying a Lock-Free kd-Tree

For a given query sample, Nearest and Near search the lock-free kd-tree for the sample closest

to it, or all samples within a radius of it, respectively. They successively compare the query to each

traversed node’s splitting hyperplane, and recurse down the side on which the query sample lies (the

“near” side). Recursion ends when encountering empty branches. Upon return from the near side,

the methods traverse the “far” side of the hyperplane only if it is possible that points in that part of

the tree would be closer than the closest found so far (Nearest) or within the search radius (Near).

In practice PRRT can be used with other nearest-neighbor search approaches that allow for

non-blocking searches and low-contention updates, and provide partitioned locality properties. The

alternative of using a nearest-neighbor data structure with locks is also possible, but as shown in the

results in Sec. 2.5, unlike the lock-free kd-tree, a lock-based kd-tree will result in sublinear speedup

as different threads contend for access to the structure.

In our implementation, we consider two schemes for configuration space partitioning that naturally

align with the nearest neighbor search kd-tree: (1) an even subdivision created by “slicing” along the

first dimension of configuration space, and (2) a multi-dimensional grid. In both cases, each thread

samples within their assigned (and unchanging) partition. While more sophisticated partitioning

approaches (e.g. [114, 102, 87]) might look for ways to focus sampling on regions of difficulty (such

as regions containing narrow passages), our motivation in partitioning is to create locality with

sampling and nearest neighbor searches, and thus improve CPU cache utilization. As seen in the
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Algorithm 4 PRRT∗

1: initialize τ
2: for i = 1 . . . thread_count do
3: s← partition(i, thread_count)
4: wi ← start new thread PRRT∗_Thread(τ, s)

results, the choice of partitioning scheme has an impact on the overall performance of the motion

planner depending on the scenario.

2.4 PRRT*

In this section, we present Parallel RRT* (PRRT*), a lock-free parallel extension of the RRT*

algorithm. The PRRT* algorithm shares across all threads the data structure for nearest neighbor

searching, the RRT* tree τ , the approximate iteration number, and the best path to the goal found

by any of the threads. PRRT*, shown in Algorithm 4, begins just like PRRT except it launches

threads of PRRT∗_Thread(τ, s).

2.4.1 PRRT* Threads

PRRT* expands the motion planning tree much like PRRT except that it includes the additional

step of “rewiring” a small neighborhood of the tree to enable finding optimal paths. PRRT∗_Thread,

shown in Algorithm 5, is the main loop of a thread of PRRT*.

At a high level, PRRT* works much like standard RRT*. In the outer loop, it randomly samples

a configuration, finds the sample’s nearest neighbor in the motion planning tree, and computes a new

configuration by steering from the nearest neighbor toward the sampled configuration (lines 2–5).

PRRT* then searches for all the configurations in a ball around the new configuration (line 6) using

the ball radius from RRT*[60]. PRRT* then connects the new configuration to the configuration

in the ball that produces the shortest path (lines 8–17), and then inserts the newly connected

configuration into the nearest neighbor structure (line 21). Finally, it rewires any configuration in

the ball radius that produces a shorter path to goal through the newly added configuration.

The notable differences from standard RRT* are: (1) each thread samples within a partition of

the configuration space (line 2), (2) nearest neighbors are found using a lock-free kd-tree (lines 3

and 6), (3) new configurations are added to the RRT* tree in a manner that accounts for parallelism

by fully initializing them before adding them to the nearest-neighbor structure (lines 18–20), and (4)

rewiring is accomplished entirely via lock-free operations.
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Algorithm 5 PRRT∗_Thread(τ, s)
1: while not done do
2: qrand ← random sample from s
3: nnearest ← Nearest(τ,qrand)
4: qnew ← STEER(nnearest.config,qrand)
5: if FEASIBLE(nnearest.config,qnew) then

6: Nnear ← Near(τ,qnew,min {γ
(

log |τ |
|τ |

)1/d
, η})

7: cmin ←∞
8: for all nnear ∈ Nnear do
9: if FEASIBLE(nnear.config,qnew) then

10: clink ← COST(nnear.config, qnew)
11: cpath ← nnear.edge.cost +clink

12: if cpath < cmin then
13: nmin ← nnear

14: cmin ← cpath

15: nnew.config ← qnew

16: enew ← (nnew, cmin, nmin)
17: nnew.edge ← enew

18: LockFreeKDInsert(nnew)
19: if enew is expired then
20: PRRT∗_Update(nnew.edge, enew)
21: if GOAL(enew) then
22: record goal
23: for all nnear ∈ Nnear \ {nmin} do
24: PRRT∗_Rewire(τ, nnear, nnew)

2.4.2 PRRT* Rewiring

During the rewiring phase of RRT*, the algorithm considers paths to configurations nearby the

newly added configuration, and it rewires the RRT* tree if re-routing those paths through the newly

added configuration is both FEASIBLE and results in a shorter path. Following the approach of prior

implementations of RRT* [60, 113], we store the path cost to that node’s configuration within each

RRT* node and push updates down the tree when a node is rewired.

PRRT* formulates rewiring (Algorithm 6) into a CAS operation that guarantees rewiring is

completed correctly, even if another thread is concurrently accessing or rewiring the same node. If

the CAS update fails, the assertion about the new trajectory being shorter may now be incorrect. In

that case, the update is re-evaluated and tried again if the rewiring would still result in a shorter

path.

CAS operations only work on single memory operands. The rewiring assertion however is made

about two pieces of information: the trajectory and the cost of that trajectory. We thus modify
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Algorithm 6 PRRT∗_Rewire(τ, nnear, nnew): conditionally rewires a near node through a newly
created node, if doing so creates a short path
1: enew ← nnew.edge
2: enear ← nnear.edge
3: clink ← COST(nnew.config, nnear.config)
4: c′near ← enew.cost +clink

5: if c′near ≥ enear.cost or
not FEASIBLE(nnew.config, nnear.config) then

6: return
7: repeat
8: e′near ← (nnear, c

′
near, nnew)

9: — memory barrier —
10: if CAS(nnear.edge, enear, e′near) then
11: add e′near to enew.children
12: PRRT∗_Update(e′near, enear)
13: if enew is expired then
14: PRRT∗_Update(nnew.edge, enew)
15: remove enear from enear.parent.children
16: return
17: enear ← nnear.edge
18: until c′near ≥ enear.cost

the data structures to encapsulate both trajectory and cost into a single unit making it suitable for

a CAS. The data structures we define are nodes, representing reachable valid configurations, and

edges, representing trajectories from one node to another. The edges form a linked tree structure

that represents known trajectories to any nodes. To get from the initial configuration to any node’s

configuration, the edge structure is followed (in reverse) from the node back to the root of the

tree where the initial configuration is stored. An edge’s path to root never changes, and thus its

computed trajectory cost never changes. When PRRT* finds a shorter path to a node, the node’s

edge is CAS with the better edge. Here again, we issue a memory barrier and ensure that the new

edge is fully initialized before the CAS. The old edge will still essentially be present in the edge tree,

but is no longer referenced from the node. We call an edge in this state “expired”, and detect it

when edge.node.edge 6= edge. Expired edges can be garbage collected and their associated memory

reused, but care must be taken to avoid the “ABA” problem [116]. (The ABA problem occurs when

a thread reads ‘A’ from a shared memory location and, before it performs the CAS, another thread

modifies the shared location to ‘B’ and back to ‘A’, which causes the first thread to treat the shared

memory location as unmodified.)
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Algorithm 7 PRRT∗_Update(enew, eold): Moves all the active children from a now expired parent
edge to the new parent edge.
1: nparent ← enew.parent
2: done ← false
3: repeat
4: echild ← remove_first eold.children
5: if echild = ∅ then
6: if enew is expired then
7: PRRT∗_Update(enew.node.edge, enew)
8: done ← true
9: else if echild is not expired then

10: nchild ← echild.node
11: c′child ← enew.cost +COST(nchild, nparent)
12: if c′child < echild.cost then
13: e′child ← (nchild, c

′
child, enew)

14: — memory barrier —
15: if CAS(nchild.link, echild, e′child) then
16: add e′child to enew.children
17: PRRT∗_Update(e′child, echild)
18: until done

By computing CAS operations around an edge, PRRT* guarantees that any update it makes

results in an equal or better path, a requirement for the solution to converge towards optimality.

After rewiring a node through a better path, the new shorter path is recursively percolated to the

nodes that link in to the rewired node. This update process (Algorithm 7) atomically replaces edges

to the expired parent with shorter ones. It repeatedly removes the old children one at a time (line 4)

from a lock-free list structure [85, 116] until no more children remain (line 5). It then creates the

new child edge with the updated cost, and CAS it into place (line 15). A memory barrier before

the CAS ensures that the edge is fully initialized before another thread can access it. Note that by

using the lock-free list removal, the algorithm ensures that only one thread is updating a particular

child at any time. In the case in which two threads are competing to update the same portion of the

tree, the thread(s) producing the longer update terminate early (lines 10, 13), and only the thread

producing the shorter update proceeds, thus providing work savings and improving speedup.

2.4.3 Asymptotic Optimality of PRRT*

In the case of single-threaded execution, PRRT* runs exactly like sequential RRT* and hence is

asymptotically optimal.

34



Next, let us consider PRRT* running with multiple threads and without partitioning. Each of the

p threads is operating independently on a shared RRT* graph. Each thread begins its computation

by observing the size nt of the current graph and ends an iteration adding a configuration to the

graph that is of size n′t. When a single thread is running, n′t = nt. When multiple threads are

running concurrently, n′t ≥ nt due to updates from other threads. Since the ball radius used in

iteration t is based on nt, as t increases and the ball radius shrinks, each thread is operating with a

ball radius greater than or equal to what is necessary for asymptotic optimality according to the

proofs from RRT* [60]. Thus it follows from the proof of asymptotic optimality of RRT* [60] that

PRRT* when running without partitioning is asymptotically optimal.

Finally, let us consider PRRT* running with multiple threads and with partitioning. The impact

of partitioning on the sampling distribution is that (1) PRRT* samples uniformly in independent

static partitions rather than globally, and (2) each partition (due to the nature of the underlying

planning problem) may sample at a different rate. If all threads sample their partition at the same

rate, the sampling distribution of the entire space, in the limit, is uniform. We will denote this

RRT* graph resulting from these samples at iteration t as Gt. If the sampling rate differs between

threads, then we can consider Gt as the graph that results from running all the threads at the

sampling rate of the slowest thread. Samples added by the threads with a faster sampling rate result

in a graph G′t that is a superset of Gt. The rewiring step of PRRT* guarantees that the quality

of plans found on G′t are at least as good as the plans found on Gt. If the ball radius of PRRT*

is thus defined to guarantee asymptotic optimality of the slowest thread’s partition, we guarantee

asymptotic optimality of Gt as t increases. The graph G′t, as a superset, is thus also guaranteed to

be asymptotically optimal as t increases. Hence, PRRT* carries the same asymptotic optimality

guarantee as RRT*.

2.5 Results

We evaluate our method with five scenarios: (1) PRRT on the Alpha Puzzle [121] scenario, (2)

PRRT on a 10,000 random spheres scenario, (3) PRRT* on the OMPL [113] Cubicles scenario, (4)

PRRT* on a holonomic disc-shaped robot moving in a planar environment, and (5) PRRT* on an

SoftBank Nao [108] small humanoid robot performing a 2-handed task using 10 DOF. Results are

computed on a system with four Intel x7550 2.0GHz 8-core Nehalem-EX processors for a total of 32
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(a) starting configuration (b) goal configuration

Figure 2.2: The Alpha 1.2 scenario. The yellow alpha is the obstacle, and the red alpha is the
robot in SE(3). The robot must move from inside the obstacle (a) to outside the obstacle (b) by
sliding through the narrow passage at an appropriate orientation.

cores. Each processor has an 18MB shared L3 cache and each core has a private 256KB L2 cache as

well as 32KB L1 data and instruction caches.

2.5.1 PRRT on the Alpha Puzzle Scenario

The Alpha Puzzle scenario [121] is a motion planning problem containing a narrow passage in

the configuration space. The puzzle consists of two tubes, each twisted into an alpha shape. The

objective is to separate the intertwined tubes, where one tube is considered a stationary obstacle and

the other tube is the moving object (robot), as shown in Fig. 2.2. We specifically use the Alpha 1.2

variant included in OMPL [113], where different variants scale the size of the narrow passage (with

smaller numbers being more difficult to solve).

Using the Alpha 1.2 scenario, we evaluate PRRT’s ability to speed up computation as the number

of available CPU cores rises. We note that there has been much work on developing sampling

strategies that improve RRT’s ability to solve the Alpha Puzzle scenario quickly—we however

use the standard uniform sampling (with and without partitioning) to demonstrate the multi-core

performance of PRRT. As with other RRT variants, customized sampling strategies could be used

with PRRT (with and without partitioning) to obtain results even more quickly. We evaluated PRRT

for both slice and grid-based partitioning on different numbers of processor cores up to 32. For each

core count, we ran 500 trials. We also consider PRRT with lock-free data structures but without

partition-based sampling. We plot the median computation times and speedups in Fig. 2.3 (a) and

(b), respectively. For comparison, we include results from multi-threaded locked variants of RRT in

which each thread independently samples and computes feasibility, but the shared kd-tree is locked
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Figure 2.3: Performance of PRRT and related methods run on the Alpha Puzzle scenario.
PRRT finds a solution with superlinear speedup with respect to the number of processor cores.
PRRT without partition-based sampling finds solutions with a slightly sublinear speedup but good
scalability. In contrast, RRT using a locked kd-tree does not scale as well. Coarse-grain locking
causes too much lock-contention, and fine-grain avoids some lock-contention but adds the overhead
of repeated locking. For this scenario, the multi-tree OR parallel RRT acheives greater speedups
than accelerating the construction of a single tree.

either at the tree level (“coarse-grain locking”) or at the node level (“fine-grain locking”). We also

compare to the multi-tree OR-parallel RRT [19] in which each thread creates its own tree and all

threads stop as soon any find a solution.

As shown in Fig. 2.3, PRRT achieves a superlinear speedup for the Alpha 1.2 scenario for all

processor counts. PRRT’s speedup for 32 cores was 39.4x. PRRT without partitioning achieves

sublinear speedup, but due to the lock-free data structures still scales well as the number of cores

rises. In contrast, RRT with a locked nearest neighbor data structure scales poorly; lock contention

is very high due to the large number of configuration samples necessary to solve this motion planning

problem. PRRT’s use of lock-free data structures and partitioning enable a superlinear speedup

for the Alpha 1.2 scenario on the multi-core computer. OR-parallel RRT performs best on this

scenario, which requires creating samples inside a short, narrow passage. We hypothesize that

the independence of the RRT’s in OR parallel RRT facilitates landing the critical samples inside

the short, narrow passage, and hence is better for this scenario than an approach that accelerates

construction of a single RRT.

2.5.2 PRRT on 6-DOF, 10,000 Random Spheres

We apply PRRT and related methods to a random spheres scenario in which a holonomic spherical

robot must navigate through an obstacle course of 10,000 randomly placed spheres in 6-dimensional
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Figure 2.4: PRRT and related methods run on the 6-DOF random spheres scenario.
PRRT scales well with additional cores, which allow it to rapidly generate configuration samples
and make progress towards the goal.

(a) (b) (c)

Figure 2.5: PRRT* solves on the Cubicles scenario. The “L”-shaped robot must move from its
start pose on one side of a wall to the goal pose on the other side of the wall by moving through a
lower floor (a). We illustrate an example path produced with 50,000 configurations (b, c).

C-space. The objective for the robot is to navigate from the center of the C-space to a corner while

avoiding collision with the obstacles. The problem does not have a single difficult narrow passage

like the Alpha problem, but the problem is still difficult because solutions necessarily have many

segments.

In the random spheres scenario, OR parallel RRT does not perform as well as in the Alpha

Puzzle scenario, likely because this scenario does not include a short, narrow passage requiring a

“lucky” few samples to solve. In contrast, PRRT scales well with additional cores, which allow it to

rapidly generate configuration samples and make progress towards the goal. The results are plotted

in Fig. 2.4.
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Figure 2.6: Performance of PRRT* and related methods run to 50,000 configurations
on the Cubicles scenario. PRRT* without partitioning and with slice partitioning both achieve
superlinear speedups with respect to the number of processor cores. PRRT* with grid partitioning
suffers in performance as some cores are confined to sampling inside partitions that are disconnected
by obstacles from the start and goal. RRT* with a locked kd-tree nearest neighbor data structure
scales poorly due to lock contention.

2.5.3 PRRT* on the Cubicles Scenario

The Cubicles scenario, included in OMPL [113], is a motion planning problem in which an

“L”-shaped robot must move in SE(3) through a 2-story office-like environment. As shown in Fig. 2.5,

to move from the start pose to the goal pose, the robot must find a path through SE(3) that includes

traveling through a different floor. For computing path cost, we use OMPL’s configuration space

distance metric that sums the weighted spatial and orientation components. The objective is to

compute a feasible path from the start pose to the goal pose that minimizes path cost.

Using the Cubicles scenario, we evaluate PRRT*’s ability to speed up computation as the number

of available CPU cores rises. We evaluate PRRT* with and without partition-based sampling on

different numbers of processor cores up to 32. For each core count, we ran 100 trials of each method,

generating trees with 50,000 configurations in each trial. We plot the median computation times

and speedups in Fig. 2.6(a) and (b), respectively. As with RRT, we compare against multi-threaded

locked variants of RRT*. In the locked-RRT* fine-grain variant, access to the kd-tree and the

rewiring updates of the tree are locked at the node (i.e., configuration) level—at most times multiple

locks must be acquired to guarantee only one thread is updating a portion of the graph at any

given moment, and locks are always acquired in the same order to avoid deadlock. We also compare

against a multi-threaded OR-parallel RRT*, in which each thread computes an independent RRT*

graph, and the final computed path is the one with the minimum cost selected from all graphs.
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Figure 2.7: PRRT* run for 10 ms on the 2D holonomic disc-shape robot scenario. PRRT*
generates more samples, and produces a better quality solution with more cores, even in this short
time interval.

PRRT* with slice partitioning and PRRT* without partitioning achieve superlinear speedup on

the Cubicles scenario. On 32 cores, PRRT* with slice partitioning achieves a speedup of 36.6x and

PRRT* without partitioning achieves a speedup of 38.9x. All methods achieved median solution

path costs that are within 1% of one another, indicating that parallelization and partitioning do not

significantly affect path quality when the size of the tree (50,000 configurations in this case) is held

constant. In this scenario, PRRT* with grid partitioning does not perform as well as other PRRT*

variants because some of the threads sample in partitions that are unreachable (i.e., the space on

the left of Fig. 2.5(c)) from the start and goal configurations. At 32 cores, grid partitioning allocates

8 cores to partitions entirely in the unreachable space. PRRT* performs substantially better than

RRT* with a locked kd-tree for nearest neighbor searching, which achieved sublinear speedup for

both fine and coarse grain locking due to lock overhead and contention.

2.5.4 PRRT* for a 2D Holonomic Disc-shaped Robot

We executed PRRT* for a 2D holonomic disc-shaped robot that must move to the goal in the

environment shown in Fig. 2.1(a). We executed RRT* on one core and PRRT* on 4 and 32 cores

for 10ms of wall clock time. The quality of paths is shown visually in Fig. 2.1 and quantitatively

in Fig. 2.7. With more cores, the size of the constructed tree in the 10ms increases substantially,

visibly improving the quality of the computed motion plan. More space is explored and more narrow

passages are discovered.

As stated in section 2, the focus of PRRT and PRRT* is on challenging scenarios requiring tens

or hundreds of thousands of samples, and this 10ms scenario does not fall into that category. In
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: An example PRRT* motion plan created for the Aldebaran Nao robot. The
robot carries an effervescent antacid in one hand and places it over a glass of water held in the
other hand, all while avoiding the bottles on the table and not spilling the water (i.e. FEASIBLE
is constrained to keep the glass mostly level). In the last frame, after the robot reaches the goal
configuration, it drops the antacid into the water.

Fig. 2.7, we see that as we add more cores above 12, PRRT* begins to show a diminishing return

on samples generated and quality of solution due to several factors: (1) the PRRT* tree grows

faster thus causing the per-query time for nearest neighbor to also increase, (2) PRRT* is rapidly

converging towards the optimal solution, and (3) 10ms is a short enough interval that we observe the

overhead of startup. In the early growth of the roadmap, where the number of samples n is small, as

we add more cores p, the expected contention rises (limp→∞O(p/n) =∞). As we show in Sec. 2.5.5,

the PRRT* startup overhead quickly disappears with additional computation time. We also note

that this 10ms scenario performs well for current readily available multi-core systems (typically in

the range of 2–12 cores), producing the significant and visible improvements shown in Fig. 2.1.

2.5.5 PRRT* for a 2-handed SoftBank Nao 10 DOF Task

We evaluated PRRT* on an SoftBank Nao small humanoid robot [108] with the task of dropping

an object held in one hand into a cup held in the other hand while avoiding obstacles. Each arm of

the Nao robot has 5 degrees of freedom (shoulder pitch/roll, elbow yaw/roll and wrist yaw), resulting

in a 10 dimensional configuration space for this problem. All joints are bounded revolute joints,

and we define COST as a Euclidean distance in configuration space. The robot must avoid obstacles

on the table in front of it while keeping the cup upright throughout its motion—i.e. the function
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Figure 2.9: Performance of PRRT* and related methods run on the Nao 10 DOF task
for 100,000 configurations. PRRT* achieves superlinear speedups with respect to the number
of processor cores. In contrast, RRT* with a course-grain locked kd-tree nearest neighbor data
structure cannot exceed 4x speedup due to lock contention.

FEASIBLE tests if the robot will collide with objects in the environment and also tests if the robot’s

joint angles will result in the cup being upright subject to a tolerance. We define GOAL to return true

for configurations that satisfy the following constraints within a tolerance: (1) the (x, y) coordinates

for the left hand and the right hand are the same, (2) the left hand’s z coordinate is higher than the

right hand, (3) the object in the left hand is pointing down, and (4) the cup in the right hand is

held upright. We show the Nao robot using PRRT* successfully performing the task in Fig. 2.8.

To demonstrate PRRT*’s ability to compute high quality solutions faster on multiple cores, we

executed the Nao 10 DOF task for n = 100, 000 configurations with varying core counts and averaging

over 10 runs. As shown in Fig. 2.9, we observe superlinear speedup with PRRT*. Executing PRRT*

on one core (thus making it equivalent to standard RRT*) requires 420 seconds. On 32 cores, PRRT*

required only 11.6 seconds for the same number of samples. PRRT* was 36x faster with no significant

difference in the quality of the computed paths.

The use of lock-free data structures and partitioning in PRRT* both have an impact on perfor-

mance. PRRT* without partition-based sampling performed slightly worse than PRRT*, achieving

approximately a linear speedup as shown in Fig. 2.9. We also executed RRT* parallelized by locking

the kd-tree. At 100,000 configurations, nearest neighbor searches dominate the computation time, so

threads spend most of their time waiting for access to the kd-tree when using locks. Consequently,

the lock-based approach cannot exceed 4x speedup.
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among them. For target path cost 6.8, OR parallel RRT* exceeded the allotted time and is plotted
only to 100 seconds. We do not include the coarse-grained locking in this graph—in all cases it
exceeded the allotted time.

We note that the relative performance of motion planning using lock-free and lock-based nearest

neighbor searching varies with the size of the motion planning tree τ . When the size of the tree τ

is smaller, collision-detection dominates computation time and the lock-based approach achieves a

more reasonable speedup. At 2,000 samples on 32 cores, we observe a 16.4x speedup with locked

kd-trees, although PRRT* still outperforms with a 28.9x speedup. The locked version’s speedup

diminishes as more samples are added, as shown in Fig. 2.11. In contrast, the lock-free PRRT*

overcomes thread startup overhead and reaches 32x speedup by the 20,000th configuration before

increasing to 36x speedup by 100,000 configurations.

To demonstrate how PRRT* can be used to produce better results per unit time, we also ran the

Nao 10 DOF task 50 times for 3 seconds at various processor core counts. As shown in Fig. 2.12,

increasing the number of processor cores enables us to build trees with more samples per second and

find better solutions. The path cost from the initial configuration to the goal shows convergence to

an optimal solution as the number of samples increases, as expected with RRT*. In contrast to the

10ms runs for the holonomic disc-shaped robot, in these 3-second runs for the Nao robot the impact

of startup overhead is no longer significant and we see the number of samples generated scale well

with the number of cores. We also observed that RRT* would find paths to the goal in only 80%

of the 3-second runs on one core. With two cores, PRRT* found solutions in 98% of the runs. At

higher core counts, PRRT* found solutions in all runs.
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Figure 2.12: PRRT* run for 3 seconds on the Nao 10 DOF task. Increasing the number of
processor cores results in samples being generated at a higher rate and better quality solutions.

2.5.6 PRRT* for 1/10 Scale Self-Driving Car

To demonstrate the ability of PRRT* to compute motion plans for additional robot types, we

have the 4-core processor on a 1/10 scale self-driving car (Fig. 2.13 (a)) repeatedly compute a

path around obstacles sensed using its LIDAR. Motion planning in this demonstration connects

configurations in the tree using a Dubins path [26]. Dubins paths are forward-only paths with

constraints on curvature (i.e., turning radius) which can be visualized in the tree and the path that

the planner generates as shown in Fig. 2.13 (b). Due to the constraints on the path, it is non-trivial

to compute a space-partitioning nearest neighbor data structure, so we modify nearest neighbor

searching to use a lock-free linked list [116]. This results in an O(n) nearest neighbor search, which
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(a) 1/10 scale car (b) PRRT* path

Figure 2.13: PRRT* planning for 1/10 scale self-driving car. A 1/10 scale self-driving car
(a) uses PRRT* to plan a path around an obstacle (in blue) detected by LIDAR. The car starts on
the left side and has a goal of entering the green rectangle to its right. The tree it computes (b)
is shown in grey, while the best path it found (and thus will follow), is shown in light green. The
onboard computer, an NVIDIA Jetson TX1, has a 4-core ARM-based processor.

we found acceptable in this case due to the short time we spent planning, and the ability to scale

with the parallelism of the onboard multi-core processor.

2.6 Conclusion

In this chapter, we presented PRRT (Parallel RRT) and PRRT* (Parallel RRT*), single-tree

sampling-based methods for feasible and optimal motion planning that are tailored to execute

on modern multi-core CPUs. Using atomic updates and lock-free data structures, PRRT and

PRRT* remove barriers to scaling to higher processor core counts. We further observe that using

a non-overlapping partition-based sampling strategy increases cache efficiency by localizing each

thread’s computation to a region of memory. While not guaranteed, we empirically observed that

these contributions enable PRRT and PRRT* in some scenarios to achieve superlinear speedup.

Our method is best suited for challenging motion planning problems in which a large number of

samples is required to find a feasible or near optimal solution. As the number of samples increases,

computation time gradually changes from being dominated by collision detection to being dominated

by nearest neighbor search. PRRT and PRRT* parallelize the entire computation of the motion

planning tree and thus maintain speedup ratios regardless of which portion of the computation is
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dominating. We demonstrated fast performance and significant speedups in 5 scenarios including

the Alpha Puzzle and Cubicles scenarios and an SoftBank Nao small humanoid robot performing a

two-handed, 10 DOF task.

The methods in this chapter demonstrate scalable parallelism that should be applicable to a

variety of sampling-based motion planners. However it is possible to do better with methods outlined

in subsequent chapters. Planning for rigid-body motions will benefit from a faster nearest neighbor

searching strategy that is presented in chapter 3. Additionally, while the kd-tree presented here

ensures lock-free operation, it is optimized for fast inserts that come at the expense of reduced

query performance—a problem that the concurrent nearest neighbor data-structure presented in

chapter 4 addresses. Finally, the static partitioning in this chapter, while having an impact on many

real-world level problems, does not produces a sustainable cache-locality in the limit. Eventually, the

cache-benefit of the static partitioned locality will run out. Other work in the field of cache-aware

and cache-oblivious algorithms (e.g., [37, 27]) has shown how to create a sustained cache-based

performance improvement, regardless of problem size, and this concern is addressed in chapter 5.
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CHAPTER 3

Fast Nearest Neighbor Searching in SO(3) and SE(3)

Nearest neighbor searching is a critical component of commonly used motion planners. Sampling-

based methods, such as probabilistic roadmaps (PRM), rapidly exploring random trees (RRT), and

RRT* [20, 60], create a motion plan by building a graph in which vertices represent collision-free robot

configurations and edges represent motions between configurations. To build the graph, these motion

planners repeatedly sample robot configurations and search for nearest neighbor configurations

already in the graph to identify promising collision-free motions.

Because nearest neighbor search is a fundamental building block of most sampling-based motion

planners, speeding up nearest neighbor searching will accelerate many commonly used planners. This

is especially true for asymptotically optimal motion planners, which typically require a large number

of samples to compute high-quality plans. As the number of samples in the motion planning graph

rises, nearest neighbor search time grows logarithmically (or at worst linearly). As the samples fill

the space, the expected distance between samples shrinks, and correspondingly reduces the time

required for collision detection. Collision detection typically dominates computation time in early

iterations, but as the number of iterations rises, nearest neighbor search will dominate the overall

computation—increasing the importance of fast nearest neighbor searches.

In this chapter, we introduce a fast, scalable exact nearest neighbor search method for robots

modeled as rigid bodies. Many motion planning problems involve rigid bodies, from the classic piano

mover problem to planning for aerial vehicles. A planner can represent the configuration of a rigid

body in 3D by its 6 degrees of freedom: three translational (e.g., x, y, z) and three rotational (e.g.,

yaw, pitch, roll). The group of all rotations in 3D Euclidean space is the special orthogonal group

SO(3). The combination of SO(3) with Euclidean translation in space is the special Euclidean group

SE(3).

Our approach uses a set of kd-trees specialized for nearest neighbor searches in SO(3) and SE(3)

for dynamic data sets. A kd-tree is a binary space partitioning tree data structure that successively
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splits space by axis-aligned planes. It is particularly well suited for nearest neighbor searches in

Minkowski distance (e.g., Euclidean) real-vector spaces. However, standard axis-aligned partitioning

approaches that apply to real-vector spaces do not directly apply to rotational spaces due to their

curved and wrap-around nature.

The primary contribution of this chapter is the novel way of partitioning SO(3) space to create

a kd-tree search structure for SO(3) and by extension SE(3). This chapter’s contribution, and

its evaluation, are single-threaded—chapter 4 makes use of this chapter’s contribution to allow

for concurrent and faster nearest neighbor searching operations with novel modifications to the

kd-tree data structure. Our SO(3) partitioning approach can be viewed as projecting the surface

of a 4-dimensional cube onto a 3-sphere (the surface of a 4-dimensional sphere), and subsequently

partitioning the projected faces of the cube. The 3-sphere arises from representing rotations as

unit quaternions which in turn can be represented as 4-dimensional vectors. The projection and

partitioning we describe has two important benefits: (1) the dimensionality of the rotation space is

reduced from its 4-dimensional quaternion representation to 3 (its actual degrees of freedom), and (2)

the splitting hyperplanes efficiently partition space allowing the kd-tree search to check fewer kd-tree

nodes. We propose efficient methods to handle the recursion pruning checks that arise with this

kd-tree splitting approach, and also discuss splitting strategies that support dynamic data sets. Our

approach for creating rotational splits enables our kd-tree implementation to achieve fast nearest

neighbor search times for dynamic data sets.

We demonstrate the speed of our nearest neighbor search approach on scenarios in OMPL [113]

and demonstrate a significant speedup compared to state-of-the-art nearest neighbor search methods

for SO(3) and SE(3).

3.1 Related Work

Nearest neighbor searching is a critical component in sampling-based motion planners [20]. These

planners use nearest neighbor search data structures to find and connect configurations in order to

compute a motion plan.

Spatial partitioning trees such as the kd-tree [13, 36, 109], quadtrees and higher dimensional

variants [33], and vp-trees [124] can efficiently handle exact nearest neighbor searching in lower

dimensions. These structures generally perform well on data in a Euclidean metric space, but because
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of their partitioning mechanism (e.g., axis-aligned splits), they do not readily adapt to the rotational

group SO(3). Kd-trees have a static construction that can guarantee a perfectly balanced tree for a

fixed (non-dynamic) data set. Bentley showed how to do a static-to-dynamic conversion [14] that

maintains the benefits of the balanced structure produced by static construction, while adding the

ability to dynamically update the structure without significant loss of asymptotic performance.

Yershova and LaValle [123] showed how to extend kd-trees to handle Rn, S1, SO(3), and the

Cartesian product of any number of these spaces. Similar to kd-trees built for Rn, they split SO(3)

using rectilinear axis-aligned planes created by a quaternion representation of the rotations [105].

Although performing well in many cases, rectilinear splits produce inefficient partitions of SO(3)

near the corners of the partitions. Our method eschews rectilinear splits in favor of splits along

rotational axes, resulting in splits that more uniformly partition SO(3).

Non-Euclidean spaces, including SO(3), can be searched by general metric space nearest neighbor

search data structures such as GNAT [17], cover-trees [15], and M-trees [21]. These data structures

generally perform better than linear searching. However, except for rare pathological cases, these

methods are usually outperformed by kd-trees in practice [123].

Nearest neighbor searching is often a performance bottleneck of sampling-based motion planning,

particularly when the dimensionality of the space increases [53, 97]. It is sometimes desirable in

such cases to sacrifice accuracy for speed by using approximate methods [53, 97, 10, 72, 89]. These

methods can dramatically reduce computation time for nearest neighbor searches, but it is unclear if

the proofs of optimality for asymptotically optimal motion planners hold when using approximate

searches. Our focus is on exact searches, though we believe that some approximate kd-tree speedups

can be applied to our method.

3.2 Problem Definition

Let C be the configuration space of the robot. For a rigid-body robot, the configuration space is C

= Rm if the robot can translate in m dimensions, C = SO(3) = P 3 if the robot can freely rotate in 3

dimensions, and C = SE(3) = R3P 3 if the robot can freely translate and rotate in 3 dimensions. Let

q ∈ C denote a configuration of the robot. When C = Rm, q is an m-dimensional real vector. When

C = P 3, we define q as a 4-dimensional real vector in the form [a b c d]T representing the components

of a unit quaternion q = a+ bi+ cj+dk, where i, j, and k are the fundamental quaternion units, and

‖q‖ = 1. The unit quaternion representation of rotations have a double-coverage property [105] in
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which q and −q represent the same rotation. We use the notation q[x] to represent the x component

of a configuration q.

Computation of nearest neighbors depends on the chosen distance metric. Let DIST (q1,q2) be

the distance between two configurations. We will focus on distance functions commonly used in

robot motion planning software (e.g., OMPL [113]). In Rm we use the Minkowski distance of order

p = 2:

DISTRm(q1,q2) =

( m∑
i=1

|q1[i]− q2[i]|p
)1/p

,

which is the L2 or Euclidean distance. In P 3 we use a distance of the shorter of the two angles

subtended along the great arc between the rotations [105, 113, 123]. This metric is akin to a

straight-line distance in Euclidean space mapped on a 3-sphere:

DISTP 3(q1,q2) = arccos |q1 · q2| = arccos

∣∣∣∣ ∑
i∈{a,b,c,d}

q1[i]q2[i]

∣∣∣∣.
In R3P 3, we use the weighted sum of the R3 and P 3 distances [113]:

DISTRmP 3(q1,q2) = α DISTRm(q1,q2) + DISTP 3(q1,q2).

where α > 0 is a user-specified weighting factor. As defined, the distance function is symmetric, i.e.,

DIST (q1,q2) = DIST (q2,q1). We also define DIST (q,∅) =∞.

We apply our approach to solve three variants of the nearest neighbor search problem commonly

used in sampling-based motion planning. Let Q denote a set of n configurations {q1 . . .qn} ⊂ C.

Given a configuration qsearch, the nearest neighbor search problem is to find the qi ∈ Q with the

minimum DIST (qsearch,qi). In the k-nearest neighbors variant, where k is a positive integer, the

objective is to find a set of k configurations in Q nearest to qsearch. In the nearest neighbors in

radius r search, where r is a positive real number, the objective is to find all configurations in Q

with DIST (qsearch,qi) ≤ r.

Sampling-based motion planners make many calls to the above functions when computing a

motion plan. Depending on the planner, the set of nodes Q is either a static data set that is constant

for each query or Q is a dynamic data set that changes between queries. Our objective is to achieve
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efficiency and scalability for all the above variants of the nearest neighbor search problem for static

and dynamic data sets in SO(3) and SE(3).

3.3 Method

Our method enables fast nearest neighbor searching by partitioning samples into a kd-tree-like

data structure. A kd-tree is a binary tree in which each branch node recursively subdivides space by

an axis-aligned hyperplane, and each child’s subtree contains only configurations from one side of

the hyperplane. The recursive subdivision speeds up nearest neighbor searching enabling the search

algorithm to test a small portion of the entire set of samples. In a real vector metric space, such as

Euclidean space, it is common for each split to be defined by an axis-aligned hyperplane, though

other formulations are possible [109]. For performance reasons it is often desirable for the splits to

evenly partition the space, making median or mean splits good choices [88]. We will describe these

methods and how to apply our SO(3) partition scheme to them.

In our method, we eschew rectilinear axis-aligned splits in favor of partitions that curve with

the manifold of SO(3) space. The set of all unit quaternion representations of rotations in SO(3)

forms the surface of a 4-dimensional sphere (a 3-sphere). We create top-level partitions of this

3-sphere by projecting the 8 faces of a 4-dimensional cube onto the 3-sphere. Because of the

double-coverage property, half of the top-level projected surface partitions are redundant, and thus

we only need 4 top-level partitions. After creating the top-level partitions, we build four kd-trees

(one for each projected face) by recursively subdividing the top-level projected surface partitions.

Similar projections are used in [122] to generate deterministic samples in SO(3), and in [91] to create

a minimum spanning tree on a recursive octree subdivision of SO(3). When subdividing a top-level

surface partition into a kd-tree, we apply a novel approach in which the partitioning hyperplanes

pass through the center of the 3-sphere, and thus radially divide space. These partitions are curved,

and thus standard kd-tree approaches that apply to real-vector spaces must be adapted to maintain

consistency with the great arc distance metric we use for SO(3). In Fig. 3.1, we depict a lower

dimensional analog consisting of the faces of a 3-dimensional cube projected onto a 2-sphere, with

only one of the projected cube faces subdivided into a kd-tree.

3.3.1 Projected Partitioning of SO(3)

The top-level partitioning on the 3-sphere, requires four top-level partitions, and provides two

advantages: (1) we reduce the dimensionality of the rotation representation from a 4-dimensional
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Figure 3.1: Kd-tree projected onto the surface of a 2-sphere. An axis-orthogonal cube is
projected into a sphere. Each face of the cube is a separately computed kd-tree; however, for
illustrative purposes, we show the kd-tree of only one of the faces. In our method we extend the
analogy to 4-dimensional ambient space for use with quaternions.

quaternion to a 3-dimensional position on the top-level projected partition, and (2) it allows radially

aligned splitting hyperplanes that follow the curve with the manifold. There is, however, a small

cost for these benefits. The projection leads to building four kd-trees, although asymptotically the

cost is at worst a constant factor.

In the projection of the surface of a 4D cube onto the surface of a 3-sphere we label each of the

top-level projected 3D surface partitions by their projected axis of greatest magnitude, thus +a,

+b, +c, and +d. In the lower dimensional analog in Fig. 3.1, these volumes coorespond to the red,

green, and blue axes. The double-coverage property of quaternions means that the negative top-level

partitions (i.e., −a, −b, −c, −d) are redundant. We negate any configuration whose quaternion is in

a negative top-level partition, and thus place the quaternion in the positive top-level partition.

To determine in which top-level projected partition a quaternion q lies, we find its component of

greatest absolute magnitude. Thus:

top_level_partition (q) = argmax
i∈a,b,c,d

|q[i]| .

In order to build a kd-tree within each top-level partition, the space needs to be recursively

subdivided. As with rectilinear kd-trees on Minkowski spaces, we use a partitioning hyperplane to

define the recursive split. Unlike rectilinear kd-trees, the hyperplane we use for SO(3), passes through
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the origin, and can thus be defined by the hyperplane’s normal (instead of offset). To understand

how to create and use these splitting hyperplanes, we first look at how to compute the angle between

a unit quaternion and a hyperplane normal. If θ is the angle between the unit quaternions q and n,

then q · n = cos θ. This property allows us to represent bounding and splitting hyperplanes by their

normals n. Determining on which side a quaternion q lies is a matter of evaluating the sign of the

dot product—positive values are on one side, negative values are on the other, and a dot product of

0 lies on the hyperplane.

We will focus our discussion on the top-level projected +a-partition, with the other top-level

partitions (+b, +c, and +d) being permutations on it. The normals bounding the 6 sides of the

projected a-partition are the unit quaternions:

√
0.5 [1 1 0 0]T

√
0.5 [−1 1 0 0]T +b-axis bounds

√
0.5 [1 0 1 0]T

√
0.5 [−1 0 1 0]T +c-axis bounds

√
0.5 [1 0 0 1]T

√
0.5 [−1 0 0 1]T +d-axis bounds

We observe that within the projected +a-partition, the a component of the hyperplane normals

varies between
√

0.5 and −
√

0.5, the axis component varies between
√

0.5 at the boundaries to 1 at

a = 0, and the other components are always zero. The bounds for the b, c, and d projected partition

follow similarly.

In order to define a splitting hyperplane, it can be useful to determine the normal of the

hyperplane that passes through a quaternion in the set we are subdividing. To determine the normal,

we solve for n in q ·n = 0. We define axisnormvol,axis(q) as the axis-aligned normal within a top-level

projected partition for quaternion q. The +a-partition definitions for axisnorm are:

axisnorma-vol,b-axis(q) = normalize(−q[b],q[a], 0, 0)

axisnorma-vol,c-axis(q) = normalize(−q[c], 0,q[a], 0)

axisnorma-vol,d-axis(q) = normalize(−q[d], 0, 0,q[a]),

where normalize(q) normalizes its input vector to a unit quaternion. From the axisnorm we also

gain the useful property of being able to define an angle of rotation about the axis. This angle forms

the basis for a relative ordering around the axis, which we will use later to select median partitioning
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Algorithm 8 BuildKDTreeQ

Require: Q is a set of configurations of size n > 0
1: if Q has 1 configuration then
2: return leaf node with Q1

3: else
4: axis← CHOOSE_PARTITION_AXIS (Q)
5: (Q′, split, m)← PARTITION (Q, axis)
6: left← BuildKDTree

(
Q′1..m−1

)
7: right← BuildKDTree (Q′m..n)
8: return branch node with split on (axis, split) and children (left, right)

hyperplanes. The angle about the axis is the arctangent of the normal’s partition component over

the normal’s axis component, thus for example, q’s angle about the b-axis in the +a-partition is

tan−1(−q[a]/q[b]). When computing relative ordering of rotation about and axis, the exact angle

is unimportant, and we can shortcut the trigonometric computation by comparing the partition

component alone, as follows:

q1[a] < q2[a] ⇐⇒ tan−1(−q1[a]/q1[b]) > tan−1(−q2[a]/q2[b]).

3.3.2 Static KD-Tree

In a static nearest neighbor problem, in which Q does not change, we can use an efficient one-time

kd-tree construction that allows for well-balanced trees. Alg. 8 outlines a static construction method

for kd-trees on real-vector spaces. The algorithm works as follows. First it checks if there is only one

configuration, and if so it returns a leaf node with the single configuration (lines 1–2). Otherwise the

set of configurations is partitioned into two subsets to create a branch. CHOOSE_PARTITION_AXIS (Q)

in line 4 chooses the axis of the partition. A number of policies for choosing the axis are possible,

e.g., splitting along the axis of greatest extent. Then, PARTITION (Q, axis) (line 5) splits Q along

the axis into the partially ordered set Q′ such that ∀qi ∈ Q′1..m−1 : qi[axis] ≤ split and

∀qj ∈ Q′m..n : qj [axis] ≥ split. Thus a median split chooses m = n/2 and creates a balanced tree.

The PARTITION function is implemented efficiently either by using a partial-sort algorithm, or

sorting along each axis before building the tree. Assuming median splits, BuildKDTree builds a

kd-tree in O(n log n) time using a partial-sort algorithm.

In our SO(3) projection, we define an axis comparison that allows us to find the minimum and

maximum along each projected axis, and to perform the partial sort required for a median partition.
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The axis comparison is the relative ordering of each quaternion’s axisnorm angle for that partition

and projection.

The minimum and maximum extent along each axis is the quaternion for which all others are not-

less-than or not-greater-than, respectively, any other quaternion in the set, according to the ordering

of axisnorm. The angle of the arc subtending the minimum and maximum axisnorm values is the

axis’s extent. Thus, if we define N as the set of all axisnorm values for Q in the +a-partition and

along the b-axis therein: Na,b = {axisnorma-vol,b-axis(q) : q ∈ Q} , then the minimum and maximum

axisnorm along the b-axis is:

nmin = argmin
ni∈Na,b

ni[a] nmax = argmax
nj∈Na,b

nj [a]

and the angle of extent is arccos |nmin · nmax|. After computing the angle of extent for all axes in

the partition, we select the greatest of them and that becomes our axis of greatest extent.

3.3.3 Dynamic KD-Tree

Sampling-based motion planners, such as RRT and RRT*, generate and potentially add a random

configuration to the dataset at every iteration. For these algorithms, the nearest neighbor searching

structure must be dynamic—that is, it must support fast insertions interleaved with searches. In

[14], Bentley and Saxe show that one approach is to perform a “static-to-dynamic conversion”.

Their method builds multiple static median-split kd-trees of varying sizes in a manner in which the

amortized insertion time is O(log2 n) and the expected query time is O(log2 n). In the text that

follows, we describe our implementation for modifying the kd-tree to a dynamic structure, and we

compare the approaches in Sec. 3.4.

The kd-tree may also be easily modified into a dynamic structure by allowing children to be added

to the leaves of the structure, and embedding a configuration in each tree node. When building such

a dynamic kd-tree, the algorithm does not have the complete dataset, and thus cannot perform a

balanced construction like the median partitioning in Sec. 3.3.2. Instead, it chooses splits based upon

an estimate of what is likely to be the nature of the dataset. When values are inserted in random

order into a binary tree, Knuth [69, p. 430–431] shows that well-balanced trees are common, with

insertions requiring about 2 lnn comparisons, and the worst-case O(n) is rare. In our experiments,

we observe results suggesting that the generated trees are indeed well-balanced across a variety
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Algorithm 9 DynamicKDInsert (q)

1: n← &kdroot

2: (Cmin,Cmax)← partition bounds
3: for depth = 0→∞ do
4: (axis, split)← KD_SPLIT (Cmin,Cmax, depth)
5: if n = ∅ then
6: ∗n← new node with (axis, split,q)
7: return
8: if q[axis] < split then
9: n← & (∗nleft)

10: Cmax[axis]← split

11: else
12: n← & (∗nright)
13: Cmin[axis]← split

of sampling-based motion planning scenarios. In the results section, we split at the midpoint of

the bounding box. A few possible choices that empirically work well with sampling-based motion

planners are: (1) split at the midpoint of the bounding box implied by the configuration space and

the prior splits, (2) split at the hyperplane defined by the point being added, or (3) an interpolated

combination of the two.

DynamicKDInsert (Alg. 9) adds a configuration into a dynamic kd-tree. In this formulation, each

node in the kd-tree contains a configuration, an axis and split value, and two (possibly empty) child

nodes. Given the bounding box of the partition and a depth in the tree, the KD_SPLIT function

(line 4) generates a splitting axis and value. In Euclidean space, KD_SPLIT can generate a midpoint

split along the axis of greatest extent by choosing the axis that maximizes Cmax[axis]−Cmin[axis],

and the split value of (Cmin[axis] + Cmax[axis])/2.

In our SO(3) projection, the axis of greatest extent is computed from the angle between cmin

and cmax, where cmin and cmax are an axis’s bounding hyperplane normals from Cmin and Cmax.

An interpolated split is computed using a spherical linear interpolation [105] between the bounds:

csplit = cmin
sin tθ

sin θ
+ cmax

sin(1− t)θ
sin θ

where θ = arccos |cmin · cmax| .

A split at the midpoint (t = 0.5) simplifies to cmid = (cmin + cmax)/(2 cos θ2).
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Algorithm 10 DynamicKDSearch (qsearch, n, depth,Cmin,Cmax,qnearest, s,a)

1: if n = ∅ then
2: return qnearest

3: if DIST (qsearch,qn) < DIST (qsearch,qnearest) then
4: qnearest ← qn // qn is the configuration associated with n

5: (axis, split)← KD_SPLIT (Cmin,Cmax, depth)
6: (C′min,C

′
max)← (Cmin,Cmax)

7: C′min[axis]← C′max[axis]← split

8: if qsearch[axis] < split then
9: qnearest ← DynamicKDSearch (qsearch, nleft, depth + 1,Cmin,C

′
max,qnearest, s,a)

10: else
11: qnearest ← DynamicKDSearch (qsearch, nright, depth + 1,C′min,Cmax,qnearest, s,a)
12: s[axis]← split

13: a[axis]← 1
14: if BOX_DIST (qsearch, s,a) ≤ DIST (qsearch,qnearest) then
15: if q[axis] < split then
16: qnearest ← DynamicKDSearch (qsearch, nright, depth + 1,C′min,Cmax,qnearest, s,a)
17: else
18: qnearest ← DynamicKDSearch (qsearch, nleft, depth + 1,Cmin,C

′
max,qnearest, s,a)

19: return qnearest

If instead we wish to split at the hyperplane that intersects the point being inserted, we use

the axisnorm to define the hyperplane’s normal. Furthermore, we may combine variations by

interpolating between several options.

3.3.4 Kd-Tree Search

In Alg. 10, we present an algorithm of searching for a nearest neighbor configuration qsearch in

the dynamic kd-tree defined in Sec. 3.3.3. This algorithm queries a minimal portion of the kd-tree

required to ensure a correct result.

The search algorithm begins with n as the root of the kd-tree, a depth of 0, Cmin and Cmax as

the root partition bounds, an empty qnearest, and the split vectors s = a = 0. The search proceeds

recursively, following the child node on the side of the splitting hyperplane on which qsearch resides

(lines 8–11).

Upon return from recursion, it is possible that the tree will contain a point in the other child

that is closer than any point found so far. Thus the search algorithm must check if it is possible

that the other child could contain a configuration closer to q than the nearest one. This check is

performed by testing computing the distance from qsearch to the closest point within bounding box
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Figure 3.2: A kd-tree search for q determining if it should traverse the second node. The
search checks if it is possible for any configuration in the region contained within the node to have a
point closer than the one already found. In (a), the search computes the distance between q and
region A—this is a 1-dimensional L2 distance between q and the hyperplane that splits regions
A and C. In (b), the search computes the distance between q and region B—and it computes a
2-dimensional L2 distance. Our method extends this computation to the curved projection on a
3-sphere.

of the other child. If this distance is smaller than the distance to qnearest, then it is possible for the

other child to contain a closer node, and the algorithm recurses into the other child to search it.

Checking the distance to the bounding box does not require a full bounding box check—instead

the search algorithm can be sped up by only computing the distance from the qsearch to the nearest

point within the bounding box. In the algorithm, the bounding box of a child is defined by C′min

and C′max, and the BOX_DIST function computes this bounding-box distance. The computation

required for BOX_DIST is depicted in Fig. 3.2.

In the search algorithm, BOX_DIST (q, s,a) on line 14, computes the distance between a configu-

ration q and the corner of a partition defined by s and a, and thus tests to see if it possible for a

point in the other child to be closer than the nearest one found so far. The components of s are the

split axis values between the current region and the region in which q resides. The components of

a are 1.0 for each axis which is defined in s and 0.0 otherwise. With these values for a and s, the

BOX_DIST definition for the L2 distance metric: BOX_DISTL2 (q, s,a) =
(∑d

i=1(qi − si)
2ai

)1/2
.

For the search algorithm to produce a correct result, the box distance function can be relaxed—it

is sufficient that it returns a distance less than or equal to the closest possible configuration in the

node’s region. This for example, BOX_DIST(· · · ) = 0, is sufficient to produce a correct result but

inefficient in that it would result in a searching the entire kd-tree. In general, a poorly bounded box

distance is valid, but results in reduced search performance. Thus a tightly bounded BOX_DIST is

critical to performance.

In order to extend the BOX_DIST function to our projected partition mapping of SO(3), we must

compute the distance between a configuration q and a partition defined by hyperplanes partitioning
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a unit 3-sphere. For this function to be tightly bounded, it must take into account that the partition

defined by the bounds on our projected manifold are curved (see Fig. 3.1). When only 1 hyperplane

is defined (i.e. the first split in SO(3)), the distance is the angle between a configuration and a great

circle defined by a splitting hyperplane’s normal nsplit and its intersection with the unit 3-sphere.

This distance is:

BOX_DISTP 3|nsplit
= arcsin(q · nsplit)

When 2 of the 3 axes are split, the distance is the angle between the configuration and an ellipse.

The ellipse results from projecting the line defined by the two splitting hyperplanes onto a unit

3-sphere. If the split axis values are the normals nb and nc in the projected a partition, and thus

the d-axis is not yet split, the partial distance is:

BOX_DISTP 3|nb,nc
= min

ω
arccos |q · ell(nb,nc, ω)|

where ell is an ellipsoid parameterized by the normals nb and nc, and varied over ω:

ell(nb,nc, ω) =

ω,−ωnb[a]

nb[b]
,−ωnc[a]

nc[c]
,±

√
1− ω2 −

(
ω
nb[a]

nb[b]

)2

−
(
ω
nc[a]

nc[c]

)2


The distance is minimized at ω = γ/
√
η(γ2 − ηq[a]) where

γ = q[a]− q[b]
nb[a]

b[b]
− q[c]

nc[a]

nc[c]
, η = 1 +

(
nb[a]

nb[b]

)2

+

(
nb[a]

nc[c]

)2

.

When all three axes are split (e.g., the b, c, and d axes in the a projected partition), the distance is

the angle between the configuration and the corner of the hyperplane bounded partition defined by

the three axes. If the split axis values are the normals nb, nc, and nd (in the projected a partition),

the partial distance is:

BOX_DISTP 3|nb,nc,nd
= arccos |q · qcorner|

where: qcorner = normalize

(
1,−nb[a]

nb[b]
,−nc[a]

nc[c]
,−nd[a]

nd[d]

)
Each of these BOX_DIST functions for P 3 successively provide a tighter bound, and thus prunes

recursion better.
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Each query in the SO(3) subspace must search up to four kd-trees created from the top-level

projected partitions on the 3-sphere. The projected partition in which the query configuration lies

we call the primary partition, and the remaining three partitions are the secondary partitions. The

search begins by finding the nearest configuration in the kd-tree in the primary partition. The search

continues in each of the remaining secondary partitions only if it is possible for a point within its

associated partition to be closer than the nearest point found so far. For this check, the box distance

is computed between the query configuration and the two hyperplanes that separate the primary

and each of the secondary partitions. There are two hyperplanes due to the curved nature of the

manifold and the double-coverage property of quaternions. Since a closer point could lie near either

boundary between the partitions, we must compare to the minimum of the two partial distances,

thus:

min
(
BOX_DISTP 3|nab

(q), BOX_DISTP 3|nba
(q)
)

where nab and nba are the normals of the two hyperplanes separating the top-level partitions a and

b.

3.3.5 Nearest, k-Nearest, and Nearest in Radius r Searches

With minor modification, the nearest-neighbor searching algorithm in Alg. 10 extends to support

k-nearest and radius-based nearest neighbor searches.

We extend it to k-nearest neighbor search by replacing qnearest with a priority queue. The priority

queue contains up to k configurations and is ordered based upon distance from qsearch, with the top

being the farthest of the contained configurations from qsearch. The queue starts empty, and until

the queue contains k configurations, the algorithm adds all visited configurations to the queue. From

then on, DIST(qsearch,qnearest) (lines 3 and 14) is the distance between qsearch and the top of the

priority queue. When the search finds a configuration closer than the top of the queue, it removes

the top and adds the closer configuration to the queue (line 4). Thus the priority queue always

contains the k nearest configuration visited.

To search for all nearest neighbors within radius r of qsearch, we modify qnearest in Alg. 10 to be

a set. Distance comparisons on lines 3 and 14 treat DIST(qsearch,qnearest) = r. When the algorithm

finds a configuration closer than r, it adds it to the result set in line 4.
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3.4 Results

We evaluate our method for nearest neighbor searches in four scenarios: (1) uniform random

rotations in SO(3), (2) uniform random rotations and translations in SE(3), (3) configurations

generated by RRT [74] solving the “Twistycool” motion planning scenario in OMPL [113], and (4)

configurations generated by RRT* [60] solving the “Home” motion planning scenario in OMPL [113].

We compare four methods for nearest neighbor searching: (1) “dynamic” is a dynamic kd-tree using

our method and midpoint splits, (2) “static” is a static-to-dynamic conversion [14] of a median-split

kd-tree using our method, (3) “rectilinear” is a static-to-dynamic conversion of a median-split kd-tree

using rectangular splits [123] on SO(3), and (4) “GNAT” is a Geometric Near-neighbor Access

Tree [17]. All runs are computed on a computer with two Intel X5670 2.93 GHz 6-core Westmere

processors, though multi-core capabilities are not used.

3.4.1 Random SO(3) Scenario

To show our method’s ability to speed up searching on 3D rotations, we generated uniformly

distributed random configurations in SO(3) and compute nearest neighbors for random configurations.

We compute the average search time and the average number of distance computations performed to

search a nearest neighbor data structure of size n. We vary n from 100 to 1 000 000 configurations,

and plot the result in Fig. 3.3. The average nearest neighbor search time in Fig. 3.3(a) shows an order

of magnitude performance benefit when using our method. The number of distance computations in

Fig. 3.3(b) is a rough metric for how much of the data structure each method is able to prune from

the search. The performance gain in Fig. 3.3(b) gives insight into the reasons for the performance

gains shown in Fig. 3.3(a).

3.4.2 Random SE(3) Scenario

To show our method’s ability to speed up searching of 3D rigid body transforms, we build

nearest neighbor search structures with random configurations generated in SE(3). Using DISTRmP 3 ,

we evaluate performance for α = 1 and 10 in Fig. 3.4. For small α, the SO(3) component of a

configuration is given more weight, and thus provides for greater differentiation of our method. In

Fig. 3.4 (a), we observe a 2 to 5× improvement in performance between our method and the rectilinear

method, and an order of magnitude performance improvement over GNAT. As α increases, more

weight is given to the translation component, so our SO(3) splits have less impact on performance.

Hence, our improvement drops, but is still 2 to 3× faster than rectilinear, and 8× faster than GNAT.
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Figure 3.3: Comparison of nearest neighbor search time and distance checks plotted
with increasing configuration count in the searched dataset. In (a) we plot the average time
to compute a single nearest neighbor for a random point. In (b) we track the average number of
distance computations performed by a search.

3.4.3 RRT on the Twistycool Scenario

To show the impact of our method on the performance of sampling-based motion planning, we

evaluate embed our method into an RRT planner and have it solve the “Twistycool” motion planning

scenario from using OMPL . The Twistycool puzzle, shown in Fig. 3.5(a), is a motion planning

problem in which a rigid-body object (the robot) must move through a narrow passage in a wall that

separates the start and goal configurations. At each iteration, the RRT motion planner computes a

nearest neighbor for a random sample against all samples it has already added to its motion planning

tree. We have adjusted the relative weighting α for translation and rotation from its default, such

that each component has approximately the same impact on the weighted distance metric.

As we see in Fig. 3.5(b), the performance of our method with the dynamic kd-tree is more than

5× faster than GNAT and rectilinear split kd-trees. This matches our expectations formed by the

uniform random scenario results, and shows little degradation with the non-uniform dataset created

by this motion planning problem.

3.4.4 RRT* on the Home Scenario

To show our methods impact on an asymptotically optimal sampling-based motion planner, we

embed our nearest neighbor method into RRT* and have it solve the “Home” scenario included

in OMPL. As shown in Fig. 3.6(a), the motion planner computes a plan that moves a table from

one room to another while avoiding obstacles. The RRT* planner incrementally expands a motion
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Figure 3.4: Comparison of nearest neighbor search time for random configurations in
SE(3). In (a) and (b) the translation space is bounded to a unit cube, and the translation distance
is weighted 1.0 and 10.0 respectively. In (a) the SO(3) component of a configuration is given more
weigh, and thus has more impact on each search.

planning tree, while “rewiring” it towards optimality as it goes. In each iteration RRT* finds an

extension point using a nearest neighbor search, and then rewires a small neighborhood after a

k-nearest neighbor search. Unlike RRT, we can allow RRT* to continue for as many iterations as

desired, and get incrementally better results. As with the RRT scenario, we proportionally scale α

so that the SO(3) and translation components have approximately equivalent impact on the distance

metric. As shown in Fig. 3.6 (b), our method in both variants outperforms GNAT and rectilinear

splits by roughly a factor of 3. In these results we observe also that the median split of “static” and

the midpoint split of “dynamic” perform equally well, and the main differentiating factor between

the kd-tree methods is thus the SO(3) partitioning.

3.5 Conclusion

In this chapter we presented a novel approach to partitioning SO(3) and by extension, SE(3), and

used that approach to create a fast nearest-neighbor searching data structure. This data structure,

based upon a kd-tree, offers two key benefits: (1) it reduces the dimensionality of the rotation

representation from 4-dimensional quaternion vector to match its 3 degrees of freedom, and (2)

creates an efficient partitioning of the curved manifold of the rotational group. We integrated our

approach into RRT and RRT* and demonstrated that the fast nearest-neighbor searching performance

improved the solution time and convergence rate in rigid-body motion planning problems when

compared to prior work.
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Figure 3.5: Twistycool scenario and RRT nearest neighbor search times. The scenario in
(a) requires the red robot to move from its starting configuration on the left, through a narrow
passage in the wall, to its goal configuration on the right. The average time per nearest neighbor
search is plotted in (b).

In the chapter 4, we further speed up nearest neighbor searching and enable concurrent nearest

neighbor data structure searching and inserting. The methods from this chapter enable the concur-

rency advances to apply to SO(3) and SE(3) metric spaces, and thus enable highly-scalable and fast

motion planning on rigid-body and related motion planning problems.
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Figure 3.6: Home scenario and RRT* nearest neighbor search times. In the scenario in (a),
the motion planner must find a path that moves the red table “robot” from its starting configuration
in the lower right room to the goal configuration in the upper right. The average time for nearest
neighbor search is plotted in (b).
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CHAPTER 4

Concurrent Nearest Neighbor Searching

Nearest neighbor searching data structures are a fundamental building block for many algorithms

in robotics. Algorithms such as sampling-based robot motion planners [20], typically need to

repeatedly search and insert data into a nearest neighbor data structure, and thus their performance

benefits from nearest neighbor operations that are fast. However, with the trend of modern CPUs

towards increasing computational parallelism in the form of multiple processor cores, it is no longer

sufficient for a data structure to just enable operations to be fast. To harness the full computational

power of a multi-core processor, algorithms must also allow for concurrent operations across multiple

cores without slowdown. Slowdown is unfortunately worsened by increasing parallelism when the

data structure requires concurrent operations to wait for mutually exclusive access to data to ensure

correct operation. A concurrent data structure, on the other hand, avoids this source of slowdown,

by minimizing or eliminating the requirement for mutual exclusion and the associated wait time.

In this chapter we present a concurrent data structure, and associated algorithms, for fast exact

nearest neighbor searching that is geared towards robotics applications.

In this chapter we improve upon the performance of the concurrent nearest neighbor data

structure that we introduced in chapter 2. In that chapter, a simple binary lock-free kd-tree provided

wait-free queries and lock-free inserts. The fast lock-free inserts of that approach reduced the

likelihood of insert waiting, but come at the expense of increased search times due to imbalances in

the resulting tree. In this chapter, insert operations produce a more balanced tree resulting in faster

queries, and we provide proofs of correct operation and the low probability of waits.

The data structure in this chapter is based on a kd-tree [13], and thus as presented in chap-

ter 3, provides for fast insert and search operations on metric spaces important to many robotics

applications—including Minkowski spaces (a common example being Euclidean), SO(3) [46], and

Cartesian products thereof [123]. This data structure, like kd-trees, partitions space into spatially

separated sub-trees using branching nodes. Fast insertion of a new point (e.g., a robot configuration
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for a sampling-based motion planner) into the data structure comes from the ability to quickly

traverse the partitions to an insertion point. Fast searches for a set of nearest neighbors to a query

point come from the ability to use the partitions to confine traversal to a spatially relevant portion

of the tree. With minor modifications to the searching algorithm, searches can also produce nearest

neighbor sets that are bounded in cardinality or bounded to be within a radius from the query point.

The data structure presented in this chapter supports provably correct concurrent operations.

This is in contrast to the traditional approach to kd-trees, in which concurrent operation without

mutual exclusion leads to data structure corruption. Corruption occurs when concurrent operations

interleave mutations that invalidate the computations of each other. For example, two (or more)

threads inserting similar values into a kd-tree may decide to split the same node, causing one

overwriting the result of the other. The problem is only exacerbated by modern compilers and CPUs

as they often automatically and unpredictably change the order of memory accesses to improve the

performance of non-concurrent operations. For example, if one operation writes to memory location

‘A’ and then to ‘B’, a concurrent operation may see the change to ‘B’ before it sees the change to

‘A’. While the reordered memory writes do not affect the correctness of the operation in which they

occur, they may become problematic for the correctness of an operation running concurrently. An

effective way to prevent corruption caused by interleaved mutations and reordering of memory writes

is to only allow one insert operation to happen at any moment in time by using a mutual exclusion

locking mechanism. But, by definition, locking prevents concurrent operations, and thus all but

one attempted concurrent insert operation will spend time waiting. When an thread spends time

waiting instead of computing, the algorithm effectively slows down. To avoid this slowdown, the

data structure supports concurrent wait-free queries, and it also supports inserts that wait with

asymptotic probability of zero.

We embed the proposed method in the parallelized sampling-based motion planning algorithm

from chapter 2 to demonstrate its performance and ability to operate under concurrency on a 32-core

computer. The improvements proposed in this chapter double nearest-neighbor search performance

when compared to our prior lock-free nearest neighbor search data structure, and lead to up to 30%

faster convergence rates of the motion planner. Sampling-based motion planners parallelize well [4],

but as the results show, contention over exclusive access to a non-concurrent nearest neighbor data

structures can slow them down significantly. The concurrent data structure we propose allows the
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parallelized motion planner to find solutions and converge faster by generating orders of magnitude

more samples than a parallelized motion planner that must lock its data structures.

4.1 Related Work

Our proposed nearest neighbor searching approach loosely follows that of a kd-tree [13, 36,

109]. A kd-tree is a space-partitioning binary tree that splits branching nodes along axis-aligned

hyperplanes in Rn. When splitting hyperplanes occur at the median of values in the subtrees, it

creates perfectly balanced trees. However, as originally proposed, kd-trees are limited to Rn with a

Minkowski metric.

Yershova et.al. [123] extended the metric spaces supported by kd-trees to include SO(2), SO(3),

and cartesian products thereof and with Rn. The SO(3) partitions of this approach are along

axis-aligned hyperplanes in Rn. In chapter 3, we propose a method for partitioning SO(3) using

hyperplanes that wrap around the 3-sphere manifold obtained from a quaternion representation

of SO(3) rotations. While the data structure we propose in this chapter works with either SO(3)

partitioning scheme, we expand upon the latter to address special handling required when inserting

values under concurrency.

Generalized nearest-neighbor approaches, such as the Geometric Near-neighbor Access Tree

(GNAT) [17] only require a well-behaved metric and thus support a broader set of topologies than

kd-trees. The generalized nature of such structures does not take advantage of knowlege of the

underlying topology as kd-trees do, and thus may not be as efficient as kd-trees. Additional work is

also required to make such structures support concurrent and wait-free operations.

Approximate nearest neighbor searching approaches gain search efficiency by sacrificing accuracy.

Methods include locality sensitive hashing (LSH) [7] and randomized kd-trees [106]. Our focus is on

exact nearest neighbor searching as the proofs of many sampling-based motion planners’ asymptotic

feasibility (e.g., RRT [74]) and asymptotic optimality (e.g., RRT* [60]) implicitly rely on the nearest

neighbor structure being exact. However, if the trade-off of accuracy for speed is appropriate,

methods such as those proposed by Arya et al. [10] and Beis et al. [11] shorten the kd-tree search

process producing approximate results faster. We believe similar methods could be readily applied

to our proposed method to allow for approximate nearest neighbor searching under concurrency.
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Concurrent data structures, such as the binary tree proposed by Kung and Lehman [71], allow

correct operation while avoiding contention by having threads lock only the node that they are

manipulating. In chapter 2, we proposed a kd-tree that allows concurrent modification and searching

while avoiding contention through the use of a lock-free atomic update. When inserting into this

kd-tree, the algorithm makes partitioning choices at the leaf of the kd-tree based upon the bounds of

the region and/or the value in the leaf. Empirically this approach works well for the random insertion

order of the associated sampling-based planner. However, better search performance is possible

with a balanced kd-tree as would be created by median splits. To better approximate median splits

in this work, we incorporate the approach described by Sherlock et al. [104] that accumulates a

predetermined number of values into leaves before performing a median split on the values within

the leaf.

4.2 Problem Definition

The problem definition is stated in two key parts: (1) correct concurrent operation, and (2) nearest

neighbor searching.

Correct Concurrent Operation requires that memory writes of one operation must not adversely

affect the memory reads or writes of a concurrent operation, while minimizing the time concurrent

operations wait on each other. Once an operation running on a CPU core inserts a point into the

data structure, the inserted point will eventually be reachable to all other cores. Once an operation

running on a CPU core reaches a point in the data structure, all subsequent operations on that core

must continue to reach the point.

Nearest Neighbor Searching finds all the nearest neighbors of a query point. Let C be a topological

space which is composed of the Cartesian product of one or more sub-topologies in Rn and SO(3).

Let q ∈ C be a single configuration in the topological space with components from each sub-topology,

e.g., q = {pi, . . . , rj , . . .} , with pi ∈ Rni and rj ∈ S3 for each i and j. Each SO(3) component is

specified using the coefficients of a unit quaternion representing a rotation in 3D space [70].

Let d(q1,q2) be the distance between two configurations, such that it is the weighted sum of the

distances of each sub-topology’s component:

d(qa,qb) =
∑
i

αid
p
Rn(pai ,pbi) +

∑
j

αjdSO(3)(raj , rbj ),

69



y z

x

Figure 4.1: Lower-dimensional analog of SO(3) partitioning scheme [46]. In SO(3), quater-
nions are partitioned into four non-overlapping bounded regions of a 3-sphere, with the negative axis
mapped onto the positive axis due to the double-coverage property. The 2-sphere analog shown here
is partitioned into three bounded regions, with the x-centered bounded region highlighted in red.
Within the bounded region, evenly separated partitioning hyperplanes are shown in green for one
axis and in blue for the other.

where αi and αj are positive real weight values, dpRn(·, ·) is an Lp distance metric on Rn, and

dSO(3)(·, ·) is the length of the shorter of the two angles subtended along the great arc. Thus:

dpRn(pa,pb) =
( n∑

i

|pa,i − pb,i|p
)1/p

dSO(3)(ra, rb) = cos−1|ra · rb|.

If appropriate to the application, a similar effect to weighting the distance metric can also be obtained

by scaling the Rn coefficients instead.

Given a set Q = {q1,q2, . . . ,qn} where qi ∈ C, and a query point qsearch ∈ C for some

topological space C, the objective of k-nearest neighbors search, is to find the set N ⊆ Q, such that

|N| = min (k, |Q|), and:

max
qi∈N

d (qi,qsearch) ≤ min
qj∈Q\N

d (qj ,qsearch) ,

where k is a positive integer. With k = 1 it thus finds the nearest neighbor.

The objective of r-nearest neighbors search, where r is a non-negative real value, is to find N ⊆ Q,

such that:

N = {qi | d (qi ∈ Q,qsearch) ≤ r} .
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Node

region : Region

Branch

axis : int
prev : Leaf

Leaf

size : int
values : T[N]

SO3Root

child : Node[4]
RnBranch

split : real
child : Node[2]

SO3Branch

split : vec2d
child : Node[2]

Figure 4.2: Diagram of a possible node design needed to implement the proposed data
structure. Each box represents a type of node that can be in the tree, with its name (top) and its
data members (below the separating line). Data members are listed as name : type. Array types
have their capacity listed in square brackets. Nodes inherit all members from their ancestors (shown
with open arrows), thus all node types have a region data member. The three node types that inherit
from Branch include a split axis and prev pointer to the Leaf node that the branch replaced. The
root of an SO(3) subtree has four children, while the other branch types have a split plane definition
and two children. The Leaf node has a current size, and fixed capacity (N ) array of values of the
type (T ) stored in the data structure.

4.3 Method

The proposed method is based upon a kd-tree. A kd-tree is a binary tree data structure in which

each branch successively partitions space by an axis-aligned hyperplane, and the leaf nodes contain

the points to search. Searching a kd-tree for a query point begins at the root of the tree. When

the search encounters a branch, it recurses to the child on the same side of the branch’s splitting

hyperplane as the query point. When the search encounters a leaf, it checks the distance between the

leaf’s point and the query point, and adds the point to the result set if the distance is small enough.

When returning from recursion, the search then checks the distance between the query point and

the closest point on the splitting hyperplane. If the distance between the points is small enough to

be added to the result set, then the algorithm recurses to search the other child of the branch.

The partitioning approach for SO(3) [46], requires special handling for the top-level SO(3) branch

(see lower dimensional analog in Fig. 4.1). Unlike other branches, this branch partitions space into

four top-level volumes, one for each of the four components of a quaternion. (See SO3Root in Fig. 4.2).

Once the algorithm has partitioned a value to a top-level SO(3) volume, the branches in the subtree

are binary splits—similar to branches in Rn, but with a hyperplane through the origin and defined

by a constrained normal (see [46])
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Algorithm 11 INSERT(T,u)

Require: T is the kd-tree, u is the value to insert
1: p← root of T
2: loop
3: n← load(p)
4: if n is a branch then
5: update n’s region to contain u
6: p← FOLLOW(n,u)
7: else if not try_lock(n) then {n is a leaf}
8: yield/pause CPU
9: else {acquired lock on n}

10: m← load(n.size)
11: if m < leaf capacity then
12: update n’s region to contain u
13: append u to leaf n
14: store(n.size,m+ 1)
15: unlock(n)
16: return
17: c← SPLIT(n,u)
18: store(p, c)

4.3.1 Data Storage

In chapter 3, we proposed a lock-free kd-tree that created a new branch every time a leaf was

inserted. That approach has the benefit of making insertions quick and lock-free, but introduces an

expense to search performance from two factors: (1) there is little information from which to choose

a splitting hyperplane, leading to suboptimal tree-balancing, and (2) traversing a branch is more

time consuming than a simple point-to-point distance check of a leaf. This performance issue is

further exacerbated in algorithms that search more frequently than they insert (e.g., sampling-based

motion planning algorithms such as [74, 60] that reject samples after checking the validity of paths

to nearest neighbors). In the approach proposed herein, we address these two factors to improve

search performance, by batching many points into leaves before splitting them into branches [104].

In our implementation, the leaf node’s batch size is a fixed tunable number of the data structure.

4.3.2 Inserting Data

Inserting a value into a concurrent batched kd-tree (Alg. 11) starts at the kd-tree’s root node

(line 1) and traverses down the tree until it finds a leaf into which it will insert the new point. At

each level of the tree, the current node is checked to see if it is a branch or a leaf. Empty trees and

children are stored as leaf nodes with 0 size, and thus do not require special handling. When the
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Algorithm 12 FOLLOW(n,u)

Require: n is branch
1: if n is SO(3) root then
2: i← so3_volume_index(u)
3: return n.child[i]
4: else if n is SO(3) branch then
5: return n.child[H(u[axis] · n.split)]
6: else if n is Rn branch then
7: return n.child[H(u[axis]− n.split)]

algorithm encounters a branch node (line 4), it updates the branch node’s region and traverses to

the child under which the new value will be inserted. When the algorithm encounters a leaf it first

attempts to lock the leaf (line 7) using a fast spin locking mechanism such as compare-and-swap

(CAS) on a boolean flag. If the algorithm fails to lock the node, it issues an optional CPU-specific

instruction (line 8) for efficient spin locking1, and then it loops to try again. Once the algorithm

successfully acquires the lock, it appends the value to the leaf if there is room (line 11), or splits

the leaf (line 17) otherwise. When appending to a leaf, the algorithm ensures the new value is

fully initialized before updating the leaf’s size (line 14). The size update is a linearization point for

making the inserted value reachable to other cores. When splitting the leaf, the algorithm replaces

the leaf with the new branch (line 18), and then loops to insert the value into one of the branch’s

children.

Traversing to Insertion Point FOLLOW (Alg. 12) implements the branch traversal required

by the INSERT algorithm. When it encounters an SO(3) root node, it traverses to the child whose

partition contains the sample. When it encounters an SO(3) branch or an Rn branch, it computes

the signed distance between the point to insert and the splitting hyperplane. The sign of the distance

selects the child using a Heaviside step function H(·) defined as:

H(x) =


0, x < 0

1, x ≥ 0.

1Issuing the appropriate yield/pause instruction here can allow some CPU architectures to give more resources
to concurrently running threads and/or reduce power consumption—for example, the pause instruction on Intel
architectures [92] and the yield instruction on ARM-based CPUs.
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Figure 4.3: Steps of splitting a leaf while operating under concurrency. In (a) the INSERT
algorithm traversed to the leaf to add the ‘x’, finds the leaf is full, and thus calls SPLIT to create a
branch. SPLIT partitions the branch along leaf’s horizontal dimension resulting in the branch shown
in (b). After SPLIT returns, INSERT then traverses to the right side, adds to the leaf, and updates
the leafs region (c). During the SPLIT process, concurrent nearest neighbor searches traverse the old
leaf. Once the INSERT replaces the leaf with the branch, searches will traverse the branch instead.

Algorithm 13 SPLIT(n,u)

Require: n is a Leaf, u is the value to insert
1: axis← best_axis(n’s region)
2: if axis is first SO(3) then
3: c← new SO3Root

4: for all v ∈ n.values do
5: i← so3_volume_index(v)
6: append v to c.child[i]
7: return r
8: else
9: b0, b1 ← median_split(p, axis)

10: split← 1
2(max(b0.values) + min(b1.values))

11: return new branch with axis, split, b0, b1

Splitting Leaf Nodes When inserting into a full leaf, the INSERT algorithm uses SPLIT (Alg. 13)

to create a branch from the values in the full leaf. For an efficient kd-tree the splitting process

will choose a partition that: (1) minimizes the maximum distance between points in the resulting

subdivision and (2) divides the values into equal leaf nodes with the same number of elements

(median split). To that end, the SPLIT algorithm first selects the best axis for partitioning as the

one with the greatest extent between region bounds of the leaf. The region bounds are maintained

by INSERT. For Rn axes, the extent is the difference between the minimum and maximum along

each dimension of the bounds. For SO(3) root nodes, the extent is π/2. For SO(3) branch nodes,

the extent is the arccosine of the dot product of the minimum and maximum normalized bounds for

the axis [46].
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Algorithm 14 NEAREST(N,n,q, k, r)

Require: N is the set of nearest neighbor result so far, n is a pointer to the current node, q is the
query, k is the maximum |N | to return, r is the maximum radius

1: if |N | < k or dist(n.region,q) ≤ min(r,maxN) then
2: if n is leaf then
3: for all i ∈ {0, . . . load(n.size)} do
4: if |N | < k or dist(n.values[i],q) < min(r,maxN) then
5: if |N | = k then
6: N ← N \ (maxN)
7: N ← N ∪ n.values[i]
8: else if n is SO(3) root then
9: i← so3_volume_index(q)

10: N ← NEAREST(N, load(n.child[i]),q, k, r)
11: for all v ∈ {0, 1, 2, 3} \ i do
12: N ← NEAREST(N, load(n.child[v]),q, k, r)
13: else
14: if n is SO(3) branch then
15: c← H(q · n.split)
16: else {n is Rn branch}
17: c← H(q[axis]− n.split)
18: N ← NEAREST(N, load(n.child[c]),q, k, r)
19: N ← NEAREST(N, load(n.child[1− c]),q, k, r)
20: return N

If the selected axis is the SO(3) root, the SPLIT algorithm creates a new SO3Root branch node,

and copies the old leaf’s values into the appropriate child of the SO3Root (lines 3 to 6). Otherwise,

for the remaining axis types, median_split (line 9) partitions the values of the old leaf evenly into

two new leaf nodes (see Fig. 4.3 (a) and (b)) using an efficient selection algorithm. The SPLIT

algorithm returns with a new branch that is split halfway between the maximum of one child and

the minimum of the other (line 11).

In the presence of concurrency, concurrent nearest neighbor searches will continue to traverse

the old leaf until INSERT atomically replaces the old leaf with the new branch. This means that

INSERT does not know if the old leaf is being concurrently accessed, and thus cannot release the

memory associated with the leaf without risking a program error. The SPLIT algorithm presented

here stores a reference to the old leaf to allow the memory associated with the leaf to be safely

deallocated later.

4.3.3 Searching Operations
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NEAREST (Alg. 14) implements k-nearest neighbor (with k as appropriate and r = ∞) and

r-nearest neighbor (with k =∞ and r as appropriate) searches. Traversal for searching for a nearest

neighbor is similar to that of FOLLOW. The primary difference is that after searching one child of

the branch, NEAREST may need to search the other children of a branch. The algorithms starts

with a pointer n to the root node of the kd-tree, and an empty set N of nearest neighbors. It

terminates recursion if the node’s region (as maintained by INSERT) is too far away from the query

point to be added to the nearest neighbor set. If the node is a leaf (lines 3 to 7), it iterates through

each value in the leaf, updating the N as appropriate. Here it first loads the node’s size, ensuring

that it will only visit consistent values in the leaf based upon the linearization point in INSERT.

When traversing an SO3Root node, NEAREST navigates the search key’s SO(3) axis-major

volume first (lines 9 and 10). It then searches the remaining volumes in an arbitrary order (lines 11

to 12).

When traversing an SO3Branch node or RnBranch node (lines 15 to 19), the algorithm first

traverses a child in the same order as FOLLOW does. After returning from recursion on that child,

it then traverses the other child. By recursing on the closer child first, updates to N will cause the

traversal on the farther child to terminate quickly on line 1.

4.4 Correctness and Analysis

In this section we prove that NEAREST is wait-free and correct with concurrent INSERTS

(Lemma 2), and provide analysis on the probability that INSERT waits (Lemma 4). Correct operation

relies upon linearizable operations which appear to occur instantaneously at a linearization point

from the perspective of concurrent operations. Thus, before the linearization point, the linearizable

operation has not occurred, and after the linearization point, the operation has occurred—there is

no intermediate point in which the operation partially occurs. We prove that INSERT is linearizable

(Lemma 1) and that once a value is reachable it remains reachable (Lemma 3). The following proofs

depend upon release and acquire ordering semantics where noted in the algorithms. These semantics

ensure that all memory writes that happen before the release-ordered store (via store(a, ·)) become

visible side-effects of an acquire-ordered load (via load(a)). Implementations must explicitly ensure

this ordering.

Lemma 1. The INSERT operation is linearizable.
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Proof. INSERT can modify a leaf in one of two ways: (1) by appending a value to a leaf, or (2)

splitting the leaf into a branch. As such, there are two linearization point cases to make INSERT

linearizable.

Case (1): INSERTs do not store new values until they have exclusive write access to a leaf,

and thus no two INSERT operations will concurrently store a value into the same leaf. INSERT

stores the new value one past the leaf’s size limit before incrementing the size with a release-order

store. Concurrent operations do not read values in a leaf past the leaf’s size limit, thus storing the

incremented size is the linearization point for this case.

Case (2): INSERT splits a leaf by replacing it with a new branch node with children populated

from the values from the leaf. As INSERT locks the leaf before populating the branch’s children, the

same values will be present in both leaf and branch. INSERT replaces the pointer to the leaf with

the pointer to the branch using a release-order store. Since concurrent operations will either load a

pointer to the leaf before the store, or to the branch after the store, the store is the linearization

point for this case.

Both cases have linearization points, and thus INSERT is linearizable.

In case (2), unlike case (1), the leaf is not (necessarily) unlocked, as concurrent INSERT operations

waiting for the leaf will load the new branch after the linearization point, and recurse to operate on

a child of the new branch.

Lemma 2. The NEAREST operation is wait-free, and concurrent INSERT operations do not cause

incorrect operation.

Proof. The NEAREST operation contains no blocking waits or retry loops, and thus will not wait

on other operations. Correct operation under concurrency results from the two linearization points

of NEAREST.

In case (1), when NEAREST visits a leaf, it first performs an acquire-order load of the leaf’s size

before iterating through the values in the leaf. As incrementing the size is the linearization point,

NEAREST will only iterate through values in the leaf stored before the linearization point, and thus

it will only traverse consistent data.

In case (2), when NEAREST recurses to search a child of a branch, it performs an acquire-order

load of a pointer to the child. NEAREST will either load the pointer before or after the corresponding
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linearization point of INSERT. If NEAREST loads the child before the linearization point, it will

recurse to visit the leaf. If NEAREST loads the child after the linearization point, it will recurse to

visit the branch. All nodes remain valid once reached, including leaf nodes that have been replaced

by branch nodes, thus NEAREST will operate correctly under concurrency.

Lemma 3. Once a value is reachable by NEAREST, the value will remain reachable to all subsequent

NEAREST operations.

Proof. A value is first reachable after linearization point case (1) of INSERT. The leaf in which the

value resides remains reachable until linearization point case (2) of INSERT. After the linearization

point case (2), all values from the original leaf reside in the child nodes of the branch that replaced the

original leaf. The originally reachable value thus remains reachable before and after linearization point

case (2), and the value will thus always remain reachable to subsequent NEAREST operations.

Lemma 4. With uniform random insertion, an INSERT operation waits, or causes a wait, with

probability (1− ((n− 1)/n)p−1), where p is the number of concurrent INSERT operations and n is

the number of leaf nodes in the tree. INSERT asymptotically almost surely does not wait.

Proof. An INSERT will loop, and thus effectively wait on line 7, if a concurrent INSERT had a

successful try_lock on the same leaf. Leaf nodes represent a bounded subregion of the space with

uniform distribution. We cast this as the generalized birthday problem, and follow its derivation.

Let P (An) be the probability that an INSERT concurrently updates a leaf of the same bounded

subregion as any of the other (p− 1) concurrent INSERTs. This is equivalent to 1− P (A′n), where

P (A′n) is the probability that no other INSERT concurrently updates the same bounded region.

We compute P (A′n) as the joint probability that (p− 1) INSERT operations are updating different

regions. Thus,

P (An) = 1− P (A′n) = 1−
(
n− 1

n

)p−1

.

It follows that limn→∞ P (A′n) = 1, and thus INSERT asymptotically almost surely does not wait.

4.5 Results

We evaluate the data structure by embedding it in PRRT* [49], the lock-free parallelized

asymptotically optimal sampling-based motion planner introduced in chapter 2. The data structure
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Figure 4.4: The proposed data structure speeds up parallelized motion planning in the
“Home” SE(3) scenario from OMPL. In this scenario, the motion planner finds a path for the
red table to move from the lower right to the upper right configuration. The graph in (a) shows the
time in microseconds spent performing nearest neighbor operations (insert, nearest, and k-nearest)
relative to the size of the nearest neighbor structure. To illustrate relative impact on overall planner
performance, the graph also shows the time spent in collision detection, which is typically the
other dominant time consumer in sampling-based motion planners. For the locked versions of the
nearest-neighbor structures, the time spent waiting for the lock is shown in the shaded area—the
lower boundary of the region is the time spent performing a nearest neigbor operation, and the
height of the region is the time the planner must wait for the nearest neighbor operation including
the lock. Locked structures (dotted lines) become prohibitively expensive to benchmark past a graph
size of 105. The graph in (b) shows the average path cost relative to the estimated optimal path
cost as it converges over wall-clock time. The graph in (c) shows the time relative to the proposed
method to compute the same solution cost—the proposed method finds the same solution 10% to
30% faster than previous lock-free methods.
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Figure 4.5: Speeding up planning on OMPL’s “Cubicles” scenario. See description in Fig. 4.4.

and planner implementations use the standard C++ atomic library [55] for memory operations that

require release and acquire semantics. PRRT* uses the proposed data structure for concurrent insert,

nearest, and k-nearest operations. We have PRRT* compute motion plans in two SE(3) rigid-body

scenarios from OMPL [113] on a computer with four Intel x7550 2.0-GHz 8-core Nehalem-EX

processors, using all 32 cores.

The experiments compare both concurrent and locked nearest neighbor data structures to show

the benefit of using data structures designed for concurrency. Locking on the data structure makes

use of an efficient reader/writer lock, under the observation that insertions are relatively fast and

infrequent compared to time spent nearest neighbor searching. Thus the locked version of the data

structure is exclusively write-locked when inserting, and shared read-locked when searching. This

prevents searches from traversing an inconsistent data structure that would result from partial

mutations and reordered memory writes of a concurrent insert. It also allows multiple concurrent

searches that only block when there is a concurrent insert.

We compare our proposed method to the linear (brute-force) implementation included in OMPL,

the GNAT implementation included in OMPL, the dynamically rebalanced median-split kd-tree

from prior work [46], and the original lock-free kd-trees in PRRT*. The OMPL methods and the
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median-split kd-tree method are read/write locked. The concurrent methods are also evaluated

in locked form. The implementations of the locked versions of the kd-trees do not make use of

memory-ordering operations, and thus run slightly faster in the absence of concurrency. In all

experiments, the leaf nodes of the proposed method are configured to have a capacity of 8.

Figures 4.4 and 4.5 show two evaluated scenarios involving motion planning for a robot in SE(3).

In both scenarios the motion planner must find, and asymptotically optimize, a path for a rigid

body robot through a 3D environment. The topological space for nearest neighbor searching is

thus R3 × SO(3). We set the SO(3) distance scale factor to αSO(3) = 100, and leave the αR3 = 1

(the default). The R3 space extends for hundreds of units, so this makes the two sub-topologies

approximately evenly weighted. This weighting has two effects: (1) it makes rotations more expensive,

thus as the motion planner converges, the robot rotates less freely than otherwise, and (2) it ensures

that the kd-tree splits both R3 and SO(3) axes.

The figures 4.4 (a) and 4.5 (a) show the time spent in nearest neighbor operations (both inserts

and searches) per sampling iteration based upon the size of the PRRT* graph (which is equivalent to

the number of points in the nearest neighbor data structure). These graphs show both the time spent

searching (bottom line of shaded regions) and the time spent waiting on a lock (shaded regions). We

generate a data structure sizes up to 105 with the locked versions, stopping then because it becomes

too time consuming to continue to the next order of magnitude. The concurrent versions of the

kd-tree continue to 1 million. In both graphs we observe that our proposed method performs better

than alternatives, even under high concurrency, with roughly half the time (the graph is log scaled)

spent compared to the best alternatives.

To demonstrate the relative impact on the motion planner, the graph includes the time spent

in collision detection—which typically is the other most time consuming part of a sampling-based

motion planner. From the graphs, we observe the time spent in collision detection shrinks as its

computation time is a function of shrinking expected distance between random samples. We observe

that nearest neighbor operations eventually dominate the per-iteration time.

The figures 4.4 (b) and 4.5 (b) show the overall effect on convergence rate of the asymptotically

optimal sampling-based planner. Due to the acceleration of each iteration, the motion planner is

able to find lower-cost paths faster. The alternate presentation of the same data in 4.4 (c) and
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4.5 (c), shows that the proposed method results in approximately 20% to 30% faster convergence of

PRRT*.

4.6 Conclusion

This chapter presents and evaluates an exact nearest neighbor data structure that handles

concurrent inserts and queries. Based on a kd-tree, the data structure supports searching nearest

neighbors on topologies relevant to robotics. Building on the advancements in chapter 3, this chapter

described how the concurrent data structure supports Cartesian products of an arbitrary number

of Euclidean and SO(3) spaces with a distance metric that is the weighted sum of sub-topology

components within the concurrent data structure.

In evaluation, the parallelized asymptotically optimal sampling-based motion planner from

chapter 2 uses the proposed data structure from this chapter to further accelerate motion planning.

Furthermore, the faster performance relative to the lock-based alternatives demonstrates the impor-

tance of having a concurrent data structure in parallel processing algorithms such as sampling-based

motion planners that depend heavily on nearest-neighbor searching.

The fast and concurrent nearest neighbor data structure from this chapter embedded in a

parallel sampling-based motion planner from chapter 2 introduces a challenge not typically present

in sampling-based planners. The large number of samples the motion planner is able to rapidly

generate causes the data structures to exceed the size of CPU’s fast memory caches sooner. When

the cache size is exceeded, the motion planner generates samples at a slower pace. This problem will

be addressed in chapter 5.
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CHAPTER 5

Cache-Aware Sampling-Based Motion Planning

In previous chapters we sped up incremental sampling-based motion planning through lock-free

operation, faster and concurrent nearest neighbor data-structures, and scalable multi-core parallel

processing. With this faster motion planning, incremental sampling-based algorithms are able to

rapidly generate data structures that exceed the size of the CPU’s cache—and when that happens

their computation rate begins to slow down. In this chapter, we introduce CARRT*, “Cache-Aware

Rapidly-exploring Random Tree (Star),” an asymptotically optimal sampling-based motion planner

that significantly reduces motion planning computation time by effectively utilizing the cache memory

hierarchy of modern central processing units (CPUs).

Modern CPUs can perform hundreds of computation instructions in the time that it takes to

access a single value in memory (RAM) [78]. To reduce this disparity, CPUs have multiple levels of

small and fast cache memories for storing frequently accessed data and avoiding they costly access

time of RAM. When the CPU finds data in the cache (a cache hit), it uses the value from the cache

and saves time by not accessing RAM. When the CPU does not find data in the cache (a cache

miss), it stalls while waiting for the value in RAM and then populates the cache with the value

for future use. Fig. 5.1 shows a typical modern CPU with three levels of cache: its L1 cache is the

smallest and fastest (30–50× faster than RAM), L2 is bigger and not as fast (12–20× faster than

RAM), and L3 is largest but slowest cache (though still 2–5× faster than RAM).

CARRT* is an asymptotically optimal sampling-based motion planner that is cache-aware—it

takes into account the size of the cache to organize its computations in a manner that significantly

increases the number of cache hits. We focus on two portions of the algorithm that have increasing

memory complexity as the algorithm iterates: nearest neighbor searching and graph rewiring.

Nearest neighbor searching is a critical component of sampling-based motion planning, and the

computational complexity grows with the number of sampled configurations in the motion planning

graph. As the number of sampled configurations rises, the nearest neighbor search data structure
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Figure 5.1: Example cache hierarchy a typical modern CPU—the same as used in Section 5.4 results.
(a) Cache hit latency timings for different levels of the CPU cache hierarchy. (b) The cache levels
are depicted graphically.

exceeds the capacity of the CPU’s cache levels. The result is cache misses where the cache does

not contain a requested value. As shown in Fig. 5.2, the impact of cache misses is significant;

nearest-neighbor search times diverge from the trend seen when the data structure fits completely in

L2 cache.

Rather than exploring anywhere in configuration space in every iteration as in RRT*, CARRT*

focuses on exploring in distinct smaller regions of the configuration space for short periods of time. As

CARRT* adds more configurations, it progressively subdivides regions to keep the working dataset

under a preconfigured limit. By tuning the region size limit to match the characteristics of the

problem and the CPU cache size, CARRT* works with a dataset that fits in the cache. Computation

times thus become closer to what would be possible if RAM operated as fast as the cache, enabling

significant improvements in motion planning performance.

RRT* and CARRT* incrementally converge towards optimality by rewiring the planning tree

around configurations as they add them. Because CARRT* samples in regions, it would take longer

for rewiring to have a global impact were it to follow the same rewiring approach of RRT*. We thus

develop a rewiring strategy compatible with cache-aware region-based sampling and that accelerates

computation of high quality motion plans.

We evaluate CARRT* in scenarios involving a point robot as well as the Rethink Robotics Baxter

robot [99]. Our results show that the cache-aware approach of CARRT* outperforms non-cache-aware

RRT*.
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Figure 5.2: Nearest neighbor searching is a critical component of sampling-based motion planning.
Proper use of the CPU’s cache can lead to significantly faster nearest neighbor searches. As the
number of configurations in the space rises, the memory required to store the nearest neighbor search
data structure (e.g., a kd-tree) exceeds the capacity of the CPU’s L2 cache. This results in L2 cache
misses, and the associated latency causes the observed nearest neighbor search times to diverge from
the trend seen when the data fits in L2 cache. In this chapter, we present a motion planner that is
cache-aware—with a simple tunable parameter, it keeps its working dataset in the CPU cache. This
results in computation times closer to the L2 cache trend line (in green) than the observed red line,
enabling significant improvements in motion planning performance.

5.1 Related Work

CARRT* uses a cache-aware region-based sampling strategy. Non-uniform sampling in a sampling-

based planner has been a subject of considerable research. Hsu et al. provide an overview of many

sampling strategies in their approach that adaptively chooses among several samplers [42].

Sampling within a bounded region of the configuration space has been used to varying effects.

RESAMPL [101] uses sampling to classify regions and then refine sampling within the regions based

upon their classification to help solve difficult planning problems such as narrow passages. PRRT*

[48] from chapter 2 uses a simple partitioning scheme to split computation across multiple cores

and achieve superlinear speedup of RRT*. The fixed sampling region size from chapter 2 makes use

of the fact that each core has some amount of independent low-level cache—by splitting sampling

across cores, the net effect is that PRRT* multiplies the effective size of low-level cache by the

number of cores in use. However, this effect only delays the cache-effects until that multiple runs out.

This chapter shows how to keep the cache-based effect indefinitely—even in single-core operation.

Jacobs et al. radially partition the space into regions to construct portions of the planning tree in

parallel and increase the locality of the computation [58]. C-FOREST [93] samples from a bounded

region defined by the length of the best known path and cost metric for which the triangle inequality
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holds. This effective heuristic allows C-FOREST to only generate samples that have the possibility

of improving the solution. KPIECE [114] prioritizes cells in a discretized grid for sampling based

upon a notion of a cell’s importance to solving a difficult portion of the planning problem. The

planner of Burns et al. [18] biases samples towards regions of complexity, as defined by a locally

weighted regression and active learning, to improve its ability to navigate narrow passages and other

complex regions. Akgun et al. [3] use biased sampling to improve convergence towards optimality.

Varadhan et al. [118] eschew random sampling in favor of a deterministic recursive subdivision

of free space into star-shaped partitions, which are then used to generate the roadmap. They use a

recursive subdivision of space similar to that of a kd-tree [13], which is used in our method.

Sampling-based planners search nearest-neighbor data structures to find connection points for

new samples. Cache-efficient data structures have been an area of active research for many years.

Both [2] and [9] discuss the construction of a cache-efficient kd-tree for nearest-neighbor searches.

They perform a one-time (i.e., “static”) construction of the tree using a van Emde Boas layout [29]

which preserves locality in hierarchical traversals (e.g., searches) of the tree. Our method requires

the tree to be constructed and queried on-the-fly (i.e., “dynamic”), and methods like [14] can be

used to convert static trees to dynamic. Yoon et al. [125] apply cache-efficient construction to

bounding volume hierarchies (BVH) and describe how the BVH approach can be extended to kd-trees.

They, too, use static construction of van Emde Boas layout and exploit access pattern localities

typical of BVH applications (e.g., collision detection and ray tracing) and achieve from good to

exceptional (26%–2600%) performance boost based upon the cache-efficient layout. Such methods

create cache-efficient layouts for generalized searches whereas CARRT* gains cache-efficiency by

constraining searches to a region of a kd-tree.

5.2 Problem Formulation

Let C be the bounded d-dimensional configuration space of a robot, and let Cfree ⊆ C be the

subspace of C that is not in collision with any obstacle in the environment. Let q ∈ C denote

a configuration of the robot. The inputs qinit ∈ Cfree and Qgoal ⊆ Cfree are the robot’s starting

configuration and set of goal configurations, respectively.

The objective of the motion planner in this chapter is to compute a collision-free path through

the configuration space that reaches the goal region while minimizing a user-specified cost function.

We define the path as Π : (qinit,q1,q2, . . . ,qend) through Cfree where qend ∈ Qgoal.
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The computing platform is a CPU with a cache of limited size that provides low latency access

to recently used values from RAM. When the CPU finds a value in the cache, it is a cache hit.

Conversely, when the CPU does not find the value in the cache, it is a cache miss. The difference

in latency between a cache hit and a cache miss is called the cache miss penalty. A performance

objective of the planner is to minimize cache miss penalties by maintaining a working dataset that

fits in the cache. Fig. 5.1 shows the sizes and latencies of the cache levels on a typical modern CPU.

As with other sampling-based motion planners, we require several functions as an input to

define the planning problem. The function STEER(q1,q2) returns a new configuration that would be

reached when moving from q1 toward q2 up to some specified maximum distance. The function

FEASIBLE(q1,q2) returns false if the local path from q1 to q2 collides with an obstacle or violates

a motion constraint and true otherwise. The function COST(q1,q2) defines the cost associated with

moving from q1 to q2 and can represent control effort, Euclidean distance, or any problem-specific

cost function that can be used with RRT* [60].

5.3 The CARRT* Algorithm

At a high level, CARRT* is an iterative algorithm that builds a motion planning tree with

a similar strategy to RRT* [60]. The key difference is that, rather than exploring anywhere in

configuration space in every iteration, CARRT* focuses on exploring in distinct smaller regions of

the configuration space for short periods of time so as to keep the working dataset small enough to

fit in the CPU caches. We call the region being sampled the active sampling region.

The planner starts by queuing up a sampling region equal to the problem’s configuration space

bounds. It then dequeues the active sampling region and samples within the region. Once the region

reaches a threshold number of configurations, the planner splits the region in half, queues up the

two smaller regions, and repeats the process. The region threshold is tuned to keep the working

dataset for a region within the CPU’s cache.

CARRT*’s approach to repeatedly splitting configuration space regions in half to create smaller

regions naturally synergizes with the kd-tree nearest neighbor search data structure. As such, the

planner uses a kd-tree that is explicitly integrated with the region-based sampling. Each active and

queued sampling region represents the root of a subtree in the kd-tree—the same subtree that will

be explored and expanded during sampling.
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CARRT* builds a motion planning tree G = (V,E) with a similar strategy to RRT*. The

tree is rooted at the robot’s initial configuration. The set of vertices V corresponds to feasible

configurations. The directed edge list E defines a tree with the best known feasible paths from the

initial configuration to the configurations in V . Each iteration of CARRT* randomly samples a

configuration from the active sampling region, and if FEASIBLE, adds the sample to V and an edge

to E. Then, within a radius around the new sample, the planner rewires edges in E, replacing longer

edges with shorter ones while maintaining the above invariants.

Our planner maintains a second graph G′ = (V,E′) which shares V from the tree in G and has

an undirected edge list E′ of nearest neighbors of each configuration. This graph is used in the

rewiring step discussed in Section 5.3.4.

5.3.1 Sampling Region Queue

CARRT*’s outer loop is shown in Algorithm 15. It starts by initializing the data structures

and setting the root of the tree to the robot’s initial configuration qinit (line 1). We initialize the

sampling region queue Q in line 3 to have a single region with the bounds of the configuration space

[Cmin,Cmax].

The priority queue Q ensures even sampling coverage by defining the highest priority region as

the region with the lowest sample density :

Density(r) =
(samples considered in region r)

(volume of region r)
.

In the outer loop, the planner removes the highest priority region from the queue to make it

the active sampling region r (line 5). Using the function PlanRegion(r) (Sec. 5.3.3), the algorithm

samples and extends the active sampling region for a short period of time. CARRT* then determines

if r exceeds the threshold tied to the CPU cache size (line 7). If PlanRegion(r) terminated before

exceeding the threshold, the planner re-queues the region with its increased sample count and thus

lower priority (line 8). Otherwise, r grew to exceed the region limit, and the planner splits it along

an axis shared by the kd-tree (Sec. 5.3.2) and adds each new region to the queue (lines 10–13). Since

CARRT* uniformly samples within a region, we assign half the sample count in r to each of the new

regions. With half the samples, and half the volume, the new regions have the same sample density

as r. If, after splitting a region, the resulting child regions still have the highest priority, the planner
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Algorithm 15 CARRT*
1: V ← {qinit}, E ← ∅, E′ ← ∅
2: Q← empty priority queue

/* “Q top” is the region with highest priority in Q */
3: add initial region [Cmin,Cmax] to Q

4: while not done do
5: r← remove Q top
6: PlanRegion(r)
7: if ConfigCount(r) < (region config limit) then
8: add r back to Q

9: else
10: (rleft, rright)← split r region in half along raxis

11: rleft
sample_count ←

1
2rsample_count

12: rright
sample_count ←

1
2rsample_count

13: add rleft and rright to Q

immediately dequeues one of the new regions and avoids the cache miss penalties that would result

from moving to a different region.

Each iteration of the outer loop removes one region from the queue and adds one or two new

regions back. Hence, the queue will never be empty at the beginning of each iteration.

We note that priority queues are not well known for being cache efficient. Their use in CARRT*

however, coincides with when the motion planner has filled the cache and thus would be expected to

experience a few cache misses. Their use is also a small portion of the overall compute time, and is

thus bounded at each top-level iteration to a few O(log n) operations. This property suggests that

the motion planning algorithm should be tuned operate within a region for as long as possible before

moving to another sampling region, in order to maximize the cache-based performance benefit while

avoiding the periodic cache misses induced by moving to another region.

5.3.2 Integrated KD-Tree

For efficient nearest neighbor searches, CARRT* uses a kd-tree that is integrated with the

region-based sampling. A kd-tree is a hierarchical space-partitioning data structure in which branch

nodes successively subdivide regions of space by hyperplanes [13, 81]. The subdivisions on the path

from the root to any node in the kd-tree define an implicit bounding box for a node. In CARRT*,

a kd-tree node’s bounding box also represents a sampling region of C-space—it may be the active

sampling region, a queued sampling region, a previously split region, or a region that may be queued

in the future.
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Algorithm 16 adds a configuration q to the kd-tree. The kd-tree nearest neighbor search

(Nearest(q)) and fixed-radius nearest neighbor search (Near(q, r)) follow a similar traversal strategy.

The bounds of each node are implicitly defined by the bounds of C and the node’s position in

the tree. Line 1 copies bounds of C into [cmin, cmax] defining the bounds of the root node. The loop

(line 3) traverses one level deeper in the kd-tree at every iteration, each time dividing the bounding

box in c in half by a hyperplane defined along an implicit axis (lines 5, 6). After determining which

side of the split to follow (line 7), the algorithm updates the bounding box (lines 11, 13) to reflect

the split.

The axis and the split point are defined to be consistent with the splitting done in Algorithm 15.

In our approach the axis is (depth of the node) modulo (dimensions of C-space), and the split is at

the midpoint of the node/region’s bounding box (line 6).

The traversal loop stops once it has found a node in the tree without a configuration (line 3).

The algorithm then adds the configuration q to the tree (line 14) before returning. The terminal

node can be generated in one of two places: (1) the KD_Insert algorithm when the left or right

child node to traverse is nil (lines 8, 13), or (2) in Algorithm 15, when a sampling region is split

and a region is empty.

The kd-tree tracks the number of configurations in each subtree (line 4) as configurations are

added to it. Algorithm 15 uses the subtree’s size (and thus the sampling region’s size) to determine

when a sampling region needs to be split.

5.3.3 Planning Within a Region

CARRT* samples the active region using the inner loop of RRT* modified to run in a cache-aware

manner, as shown in Algorithm 17. The notable changes from RRT* are: (1) it has additional

loop termination conditions necessary to keep the working dataset small enough to fit in the CPU’s

cache (line 1); (2) it generates samples from a region of the sampling space (line 2); (3) the nearest

neighbor ball radius computation uses a region-based approximation of the sample count (lines 7–8);

(4) it tracks the sample count (line 3) to compute the sample-density metric used in the priority

queue; and (5) the rewiring strategy accounts for samples being added in regions.

The stopping conditions are specified in line 1. The first criterion (“done”) represents typical

planning termination checks, e.g., a computation time limit or desired plan cost achieved. The

second termination criterion of “ConfigCount(r) < (region config limit)” checks that the number
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Algorithm 16 KD_Insert(q)

1: [cmin, cmax]← [Cmin,Cmax]
2: n← kd_root
3: while nconfig is not nil do
4: nsize ← nsize + 1
5: axis← next axis
6: split← 1

2(cmin[axis] + cmax[axis])
7: if q[axis] < split then
8: if nleft is nil then
9: nleft ← new node with config = nil

10: n← nleft

11: cmax[axis]← split

12: else
13: follow nright similar to nleft above,

updating cmin instead
14: nconfig ← q

of configurations in the subgraph contained within the region is smaller than the cache-based

limit. The third criterion, “not out of time”, sets up a time limit to ensure that CARRT* does not

work indefinitely in obstructed or disconnected regions as such regions might otherwise never meet

the second stopping condition. In the results section, “out of time” limits the number of samples

considered in a region to 1024 (8× the region configuration limit), although other criteria, such as

elapsed time, may be used.

In line 2, CARRT* generates a sample in the active sampling region—localizing the computation

to the region. The planner finds the random sample’s nearest neighbor, and computes qnew as the

result of STEERing towards the random sample (line 5). If the path between qnew and the nearest

neighbor is feasible, CARRT* searches for samples in a ball-radius of qnew. The ball-radius from

[60] is computed using the dimensionality of the space d, two tunable parameters γ and η, and the

number of configurations in the motion planning graph |V |. As CARRT* updates different regions

of the space at different times, |V | may be inconsistent with the portion of the graph in the active

sampling region. In line 7, the algorithm computes an approximation of |V | in the current region

based upon the full motion graph size scaled by the volume ratio of the region to the volume of C.

The resulting approximation is fed into the ball radius computation (line 8) in place of the full RRT*

graph size.
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Algorithm 17 PlanRegion(r)

1: while not done
and ConfigCount(r) < (region config limit)
and not out of time do

2: qrand ← random sample from r
3: rsample_count ← rsample_count + 1
4: qnearest ← Nearest(qrand)
5: qnew ← STEER(qnearest,qrand)
6: if FEASIBLE(qnearest,qnew) then
7: napprox ← ConfigCount(r)× Volume(root)

Volume(r)

8: N ← Near(qnew,min {γ
(

log napprox
napprox

)1/d
, η})

9: Nfeasible ← {q |q ∈ N ∧ FEASIBLE(q,qnew)}
10: qmin ← argmin

q∈Nfeasible

PathCost(q) + COST(q,qnew)

11: E ← E ∪ (qnew,qmin)
12: for all qnear ∈ Nfeasible \ qmin do
13: c′near ← PathCost(qnew) + COST(qnew,qnear)
14: if c′near < PathCost(qnear) then
15: E ← E \ (qnear, Parent(qnear))
16: E ← E ∪ (qnear,qnew)
17: CARRT∗Update(qnear)
18: E′ ← E′ ∪ {{qnew,qnear} |qnear ∈ Nfeasible}
19: V ← V ∪ qnew

20: KD_Insert(qnew)

CARRT*, like RRT*, adds the new configuration to G by linking it to the configuration in the ball

radius that produces the shortest path (line 10). The planner then rewires the other configurations in

the ball-radius through the new configuration if the rewired path is shorter and feasible (lines 11–17).

5.3.4 Rewire Update Strategy

Rewiring in RRT* only considers neighboring configurations in the ball-radius of the new sample

qnew. When a neighbor qnear is rewired through qnew, it can create an opportunity for a neighbor

of qnear to be rewired as well (and of the neighbors’ neighbors and so on). RRT* will efficiently

propagate such a cascade with future random samples generated from C. If CARRT* followed the

same update strategy, the cascade would only be percolated after sampling from a sequence of

regions, and thus produce a slower convergence to optimality.

CARRT* takes a different rewiring approach than RRT* to account for this cascade behavior,

shown in Algorithm 18. This algorithm is invoked from the main sampling loop of CARRT* (see

Algorithm 17) every time it rewires an existing node in the RRT* tree to a better path. It performs
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Algorithm 18 CARRT∗Update(q)

1: children← queue with q
2: while not children is empty do
3: q← remove first from children

4: for all qnear | {qnear,q} ∈ E′ do
5: c′ ← PathCost(q) + COST(q,qnear)
6: if c′ < PathCost(qnear) then
7: E ← E \ (q, Parent(q))
8: E ← E ∪ (q,qnear)
9: append qnear to children

a breadth-first traversal of the subtree rooted in the rewired node, rewiring as it goes. The traversal

is managed by a FIFO queue, initialized to contain only the root of the rewired subtree (line 1). It

then repeatedly dequeues the first node until the queue is empty (line 2, 3). For every configuration

q visited by the traversal, the algorithm visits all of q’s previously computed nearest neighbors as

stored in E′ (line 4). If the neighboring child’s path through q is shorter than its existing path (line 5,

6), it is rewired (line 7, 8) and added to the queue (line 9) to continue the process of percolating the

updates through the subtree.

5.4 Results

We first evaluate the performance impact on nearest neighbor searches using CARRT*’s region-

based sampling in an obstacle-free environment. We then compare CARRT* to RRT* in scenarios

involving a point robot and the Rethink Robotics Baxter robot performing a task using 7 degrees of

freedom (DOF). Plans are computed on an Intel X5670 2.93GHz 6-core Westmere processor. Each

processing core has a 32KiB L1 data cache, 256KiB private L2 cache, and 12MiB shared L3 cache.

The cache-line size is 64 bytes. CARRT* as presented in this chapter is not multi-threaded in order

to demonstrate the cache-based benefits can apply to on single-core systems as well, and thus only

utilizes 1 core of the processor.

5.4.1 KD-Tree Cache Impact

We first evaluate the performance impact of the planner’s cache-aware sampling strategy on

nearest neighbor searches. We create obstacle-free environments for a point robot in 3, 7, and 14

dimensional space. We compute the average time for a nearest neighbor search with n = 103 to 106

configurations in the kd-tree and plot the results in Fig. 5.3.
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Figure 5.3: Average time for a single nearest neighbor search with increasing kd-tree size (n). We
search kd-trees using CARRT*’s cache-aware region-based sampling and using standard uniform
random sampling. The kd-tree is 3, 7, and 14 DOF in (a), (b), and (c) respectively, showing the
effect of dimensionality on performance. The divergence between n = 10, 000 and 20, 000 occurs as
the tree exceeds the size of the L2 cache.

With a log scale x-axis and the theoretic O(log n) performance of searches, we expect to see a

straight-line trend on the graph. In the three plots we observe the non-cache-aware approach has an

approximately straight-line trend up to nt=10,000–20,000, and then a steeper straight-line trend

after. In our implementation, the kd-tree node occupies 32 bytes, and with a 256KiB L2 cache, the

cache can hold 8192 kd-tree nodes. As the height of the tree also grows logarithmically with n, we

expect to see a change in the performance trend at twice the L2 cache capacity. The observed nt

matches this expectation.

At lower dimensions (Fig. 5.3 (a)), the cache-aware approach of CARRT* roughly follows the

trend line established before the capacity of L2 cache is exceeded—a nearly ideal result. This enables

a 3× performance improvement at n = 106. The cache-aware approach retains an improvement,

though diminishing, for higher dimensions (Fig. 5.3 (b)-(c)).

5.4.2 7 DOF Ball Obstacle

We consider a scenario in which a point robot must move from one corner of a 7 dimensional

cube to the opposite corner while avoiding a spherical obstacle placed at the center of the cube.

We run both CARRT* and standard RRT* for comparison. The spherical obstacle implies that an

optimal plan can only be found in the limit.

In Fig. 5.4 (a), we show the average time to run a single nearest neighbor search for a given

number of samples in CARRT*’s roadmap. We observe that at approximately 8,000 samples, the
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Figure 5.4: CARRT* and RRT* compute plans for the 7 DOF ball obstacle scenario.
The average time to complete a single nearest neighbor search is shown in (a). The average plan
cost computed with a given wall-clock runtime is shown in (b).

performances of RRT* and CARRT* diverge. CARRT*’s nearest neighbor search time always

remains below the non-cache-aware RRT* approach.

In Fig. 5.4 (b), we show the average path cost obtained after running the algorithm a given

amount of wall-clock time. On average, CARRT* finds a lower cost plan than RRT* at all times.

When viewing Fig. 5.4 (b) from the perspective of time to reach the same path cost, CARRT* finds

a plan at 2.3 s of comparable cost to the plan RRT* finds at 60 s—approximately 26 times faster.

5.4.3 Baxter Robot 7 DOF Task

We give a Rethink Robotics Baxter robot the task of moving a book from behind a plant on a

shelf to its proper spot on the shelf above, as shown in Fig. 5.5. The scenario requires the Baxter to

move its 7 DOF arm through narrow passages both at the beginning of the task and at the end.

We ran CARRT* and RRT* on the Baxter robot 7 DOF scenario. Fig. 5.6(a) plots the average

nearest neighbor search time as a function of number of states in the graph, with the x-axis on a log

scale. Both CARRT* and RRT* initially start on the same trend line. Between 4,000 and 6,000

samples, RRT* diverges to a slower trend, whereas CARRT* more closely follows the original trend.

Fig. 5.6(b) shows that CARRT* produces lower cost plans faster. CARRT* produces the same plan

cost at approximately 90 s as RRT* produces in 180 s, a 2× improvement.

5.5 Conclusion

In this chapter, we presented CARRT* (Cache-Aware RRT*), a cache-aware sampling-based

asymptotically optimal motion planner. By progressively partitioning the sampled space into regions
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Figure 5.5: The Baxter robot moves a book located behind a plant to its proper place on the shelf
above while avoiding obstacles in the cluttered environment. This is a 1-arm, 7 DOF task with a
narrow passage to remove the book from behind the plant and another narrow passage to place the
book between two books on the shelf above.

that fit into the CPU’s cache, CARRT* is able to keep its working dataset for nearest neighbor

searches in the CPU cache and avoid delays associated with cache miss penalties. CARRT* also

rewires the motion planning graph in a manner that complements the cache-aware subdivision

strategy to more quickly refine the motion planning graph toward optimality. We demonstrated the

performance benefit of our cache-aware motion planning approach for scenarios with a point robot

and the Rethink Robotics Baxter robot.

While this chapter focused on making a RRT* sampling-based motion planner cache-aware, the

benefits can likely be extended to many other sampling-based motion planning algorithms. Since

the underlying sampling region data-structure is based on a kd-tree, CARRT* can be integrated

with the approaches from chapters 3 and 4 which would extend the benefits to rotational spaces and

multi-core concurrent motion planners such as that in chapter 2.

With the tools from these chapters, we are able to generate motion plans quickly, but are limited

by the amount of computing power on the robot or connected to the robot by a fast, low-latency

network. In the next chapter, we overcome this limitation by moving motion planning to the vast

computing power available in the cloud while overcoming the associated network bottlenecks.
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Figure 5.6: CARRT* and RRT* compute plans for the Baxter 1-arm 7 DOF scenario. The average
time to complete a single nearest neighbor search is shown in (a). The plan cost after a given
wall-clock runtime is shown in (b).
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CHAPTER 6

Cloud-based Motion Planning in Dynamic Environments

Robots operating in dynamically evolving environments with moving obstacles and changing

goals need to be able to compute motion plans rapidly in order to continually avoid obstacles

while moving toward their goal. In previous chapters, we sped up motion planning using lock-free

operations, fast and concurrent nearest neighbor data structures, cache-aware operation, and parallel

multi-core operations. Even with these advancements, the CPUs on board some robots, due to the

robot’s degrees of freedom, physical size, and/or power source, may not be capable of computing

motion plans fast enough to interact effectively and safely with a dynamically evolving environment.

When this is the case, we can look to offloading some or all of the motion planning computation to a

network-attached high-performance computer. One such source of computing, with many economic

benefits (as described in chapter 1), is the cloud. The cloud, however is accessed through a network

that introduces bottlenecks on communication in the form of round-trip latency and bandwidth limits.

These network bottlenecks must be taken into account when computing motion plans, especially

when operating in dynamic environments where reaction time is critical. In this chapter, we present

algorithms for a robot and a computer in the cloud that allow a robot to effectively utilize the cloud

in order to dramatically improve its capabilities when operating in a dynamic environment.

Cloud-based computing offers a vast amount of low-cost computation power on-demand. It offers

the ability to quickly scale up and down compute resources so that you can have more computing

when you need it, and not pay for it when you do not. To place in context the price of cloud

computation power, the July 2016 prices for one second of 360 cores of computation can be less than

$0.0047 [5]. This implies that with an embarrassingly parallel algorithm [4], a 5-minute computation

can be cut to less than 1 second. And because you pay for the resources that you use, the same

computation would require $0.0047 whether using one core for 360 seconds, or 360 cores for one

second. To access these immense computing resources, the only thing that is required is a connection

to the internet.
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Mobile robots are often designed and built to keep weight and power consumption as low as

possible to achieve an acceptable duration of autonomy before requiring recharging. This design

concern naturally dictates that the computation power on such a robot is limited—for example, to a

low-power single-core processor. Motion planning is a computationally intensive process [98], and as

such, if the mobile robot has more than a few degrees of freedom, its computational demands for

motion planning can quickly exceed its available onboard computational power.

In a static environment, the robot can compute its motion plan a priori and execute it. If the

robot has no demands on when it needs to compute the motion plan, it can sit motionless while

it computes the motion plan locally. On the other hand, if it needs a motion plan quickly, it can

use cloud computing resources to greatly decrease the time to compute a motion plan, and start

executing sooner.

In a dynamic environment, however, the robot must not only compute a complete motion plan,

but it must also sense changes in the task’s goal and the robot’s environment and update its motion

plan accordingly. As in a static environment, the robot can use a cloud-based computation to

rapidly produce an initial motion plan. However, the network complicates matters when it comes

to updating the plan due to changes in the environment since the network has limited bandwidth

and introduces a network latency-based delay. The delay due to network latency and bandwidth

may introduce enough of a lag that the mobile robot relying solely on cloud-based motion planning

would not be able to respond to changes in its environment quickly enough to avoid a collision.

In this chapter we propose a method for a mobile robot to compute and execute a motion plan by

offloading much of the computational cost of motion planning to the cloud, while remaining reactive

enough to respond to a dynamic environment and avoid obstacles.

6.1 Related Work

The NIST definition of cloud computing [84], provides a good high-level overview of the capabilities

of the cloud. Broadly, cloud computing encompasses a “ubiquitous, convenient, on-demand network

access to a shared pool of computing resources that can be rapidly provisioned and released...”. Cloud-

robotics and automation are a subset of cloud-based computing related to robotics—it encompasses a

broad range of topics, including access to big-data libraries, high-performance computing, collective
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Figure 6.1: Comparison of robot only and cloud computing for robot motion planning. The robot
has limited computing power in order to reduce weight and increase battery life, however it has low
latency access to its sensors and actuators. The cloud-computing has vast amounts of on-demand
computing power available, but has a higher latency access to the robot and the information it sends.

robot learning, and remote human interaction. Kehoe et al. provides an excellent survey of

cloud-robotics in [62].

In this chapter we focus on cloud-computing as an on-demand high-performance computing

platform to accelerate motion planning. Bekris et al. [12] use the cloud to precompute manipulation

roadmaps. The robot uses the roadmap to compute the shortest collision-free path, lazily determining

if edges on the roadmap are blocked as determined by the latest sensor data. They observe that a

dense precomputed roadmap, while covering more space and capable of producing shorter paths

between configurations, has the negative effect of increasing bandwidth requirements to transfer the

roadmap and taking more time to perform a search. They thus use techniques such as SPARS and

IRS (described below) to reduce the roadmap size and evaluate the tradeoffs. Our approach follows

from that observations, but instead computes and updates the roadmap at an interactive rate.

In [64], Kehoe et al. use a cloud-based data service to facilitate recognition of objects for grasping.

The approach uses a custom Google image recognition service that is trained to recognize objects and

estimate grasp points. In a subsequent related paper [63], Kehoe et al. use cloud-based computation

to massively accelerate through parallel computation, a Monte Carlo sampling-based grasp analysis

and planning. The paper demonstrates the cloud’s ability to scale to 500 compute nodes and achieve

a 445× speedup.

Parallel processing has been successfully used to accelerate motion planning computations. In [4],

Amato et al. demonstrate that probabilistic roadmap generation is embarrassingly parallel—meaning

that little effort is needed to separate the sample generation into multiple parallel processes. The
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method described in chapter 2 uses lock-free synchronization to parallelize multi-core shared-memory

sampling-based motion planning algorithms with minimal overhead and observe linear and super-

linear speedup. Carpin et al. describes an OR-parallel RRT method [19] that allows for distributed

generation of sampling-based motion plans among independent servers—the algorithm chooses the

best plan generated from the servers participating, and the result is a probabilistically better plan.

Otte et al.’s C-FOREST [93] algorithm improves upon OR-parallel RRT by exchanging information

between computers about the best path found, resulting in speedup in the motion planning on all

parallel threads.

Robots are increasingly integrated into networks of computers. With the advent of ROS [103]

and similar systems, network connected robots are becoming the norm. ROS’s network stack is

designed for a high-bandwidth, low-latency, local private/protected network to facilitate unified

access to the robot’s sensor, actuators, and embedded systems. Cloud-based computing, on the other

hand, has lower bandwidth, higher latency, and is generally publicly accessible (except, for example,

when using a VPN), and thus requires additional consideration above the network stack.

The probabilistic roadmap method (PRM) [61] generates a connected graph of robotic configu-

rations in a precomputing offline phase. The robot later uses the roadmap to find a path from an

initial configuration to a goal configuration by following along the edges of the graph. The k-PRM*

[60] method improves upon PRM by defining a connectivity level (k) needed to guarantee asymptotic

optimality.

Sparse roadmaps and roadmap spanners such as SPARS [25] are an effective technique in

reducing the complexity of motion planning roadmaps. They can produce asymptotically near-

optimal roadmaps, which maintain reachability of the non-sparse graph, while limiting the size of

the graph to thresholds needed for lower-end computing platforms. In our method we adopt and

parallelize the incremental roadmap spanner (IRS) of [82] to reduce the roadmap size for transmission

over the internet.

Once the robot has a roadmap, whether sparse or not, it needs a path finding algorithm to

navigate its structure. Shortest-path finding algorithms such as Dijkstra’s algorithm and A* search

find optimal paths, but can suffer from a slow compute time that makes them inappropriate for

reactive path planning. D* and D* Lite algorithms perform a search from goal to start and track

information in the graph that allows them to be incrementally updated when changes to the roadmap
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(e.g., from moving obstacles) occur—this provides a performance benefit in that only a partial graph

search is needed anytime there is a change in the roadmap. The Anytime Repairing A* [79] and

Anytime D* Lite [80] algorithms use an inadmissible heuristic in A* to find a path quickly, then

incrementally improve the plan in subsequent iterations.

6.2 Problem Definition

Let C be the configuration space for the robot—the k-dimensional space of all possible config-

urations the robot take. Let Cfree ⊆ C be the subset of configurations that are collision free. Let

q ∈ C be the k-dimensional complete specification of a single robotic configuration (e.g., the joint

angles of an articulated robot). Let Qgoal ⊆ Cfree be the set of goal configurations. Given a starting

configuration q0, the objective of motion planning in a static environment is to compute a path

τ = (q0,q1, . . . ,qn), such that the path between qi and qi+1 is in Cfree as traversed by a local

planner, and qn ∈ Qgoal

When the robot operates in a dynamic environment, Cfree changes over time. Let Cfree(t) ⊆ C

be the obstacle-free configuration space at time t, and let Qgoal(t) ⊆ Cfree(t) be the goal at time

t. Given the robot starting configuration q0 at time t0, the objective of motion planning in a

dynamic environment is to compute a path τ =
([

qT
0 t0

]T
,
[
qT

1 t1
]T
, . . . ,

[
qT
n tn

]T), such that the

path between qi and qi+1 is in Cfree(·) as traversed by a local planner from time ti to ti+1, and

qn ∈ Qgoal(tn).

In a dynamic environment Cfree(t) may only be known at time t, and within the sensing capabilities

of the robot. We consider obstacles in the environment that fall into the following categories: (1)

known static obstacles that do not change over the course of the task (e.g., a wall), (2) unknown static

obstacles that are static, but are not known until sensed by the robot, and (3) dynamic obstacles

that are moving through the environment and whose motion is unknown in advance.

The robot, being in its environment, has fast access to the input from its sensors, and is able to

incorporate them into its planning to avoid moving obstacles. The cloud computing service does not

have sensors relevant to the robot’s scenario and thus only has access to the sensed environment via

what the robot communicates to it.

Motion planning computation is split between two computing resources: (1) the robot’s embedded

local computer, and (2) the remote cloud computer(s). Without loss of generality, we assume the

102



robot’s computer is a low-power single-core processor with some percentage of compute time dedicated

to motion computations. The cloud-computing servers are fast multi-core computers.

The two computing resources communicate via a network with quantifiable bandwidth and

latency. Bandwidth (R) is measured in bits per second, and is much lower than the bandwidth

achievable between CPU and RAM. Latency (tL) is measured as the time between when a bit is

sent and when it is received. The bandwidth is low enough that sending a complete roadmap from

client to server would hamper the robot’s ability to adapt quickly to changing environment. The

latency is high enough that the planning process must compensate for it in it requests updates to

the motion plan.

6.3 Method

We introduce a new set of algorithms to effectively split motion plan computation between a

robot and a cloud-based compute service based upon the strengths of each system. The robot is

in the environment and has fast access to sensors, but it has a low-power processor—it is thus

responsible for sensing the environment (i.e., detecting obstacles and estimating current state),

reacting to dynamic obstacles, and executing collision-free motions. The cloud-based compute service

is connected to the robot by a possibly high-latency low-bandwidth network, but has fast on-demand

computing power—it is thus responsible for rapidly computing and sending to the robot a motion

planning roadmap that encodes feasible collision-free motions.

When the robot starts a new task, it initiates a cloud-planning session by sending a request with

the task and environment description to the cloud-based computing service. The cloud computer

receives the request, starts a new cloud-based motion planning session, and computes a motion plan.

Once the motion plan is of sufficient quality (as determined by the task), the cloud-based service

sends the motion plan to the robot so that the robot can begin execution of the task.

The cloud-based service operates as a request-response service; each request the client makes

results in a single response from the service. In the algorithms presented, the request-response

communication is asynchronous unless otherwise stated. Within a planning session, the service

retains state from one request-response cycle to the next so that it does not start from scratch at

each point in the process.
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Algorithm 19 Robot Computation
Require: the initial configuration qrobot, goal region Qgoal, known static obstacles W
1: G = (V,E)← (∅,∅) {roadmap is initially empty}
2: τ ← ∅ {path is initially empty}
3: send plan_req(t0,qrobot,W,Qgoal) ⇒ cloud
4: while qrobot 6∈ Qgoal do
5: (W,D)← (sensed static obstacles, tracked dynamic obstacles) {sense}
6: if recv roadmap_update ⇐ cloud then
7: Incorporate update into robot’s roadmap G
8: treq ← (current time) + tstep

9: qreq ← compute where robot will be at treq

10: send plan_req(treq,qreq,W,Qgoal) ⇒ cloud
11: if changes in (G, W, D) or (Anytime D*’s ε) > 1 then
12: τ ← compute/improve path using Anytime D*
13: qrobot ← follow edges of shortest path τ {move}

6.3.1 Roadmap-Based Robot Computation

The robot’s algorithm is shown in Alg. 19. It initializes the process and starts the cloud-planning

session in lines 1 to 3. As part of initialization it creates an empty graph for the roadmap and sends

an initial planning request. It then starts a sense-plan-move loop (line 4) in which it will remain

until it reaches a goal.

The sensing process at the start of each loop iteration is responsible for processing sensor input

to construct a model of the static obstacles in the environment (W), and to track the movement of

dynamic obstacles (D). Since the static environment changes infrequently (e.g., as the robot rounds

a corner to discover construction blocking its path), an implementation can save bandwidth by only

sending changes to the static environment as it discovers them.

In the planning part of the loop, the robot incorporates new data from the cloud service, computes

a local path around dynamic obstacles, and requests plan updates as it needs them. The robot

internally represents its estimate of Cfree using a roadmap encoded as a graph G = (V,E), where V

are configurations (the vertices) of the graph, and E are the collision-free motions (edges) between

configurations in V. On line 6, the robot checks if the cloud service has responded to the robot’s

most recent request with an update to the roadmap. When the robot receives the cloud’s roadmap,

it incorporates the new data into the robot’s roadmap, and initiates a new cloud planning request

with the latest information from the environment.

104



Alg. 19 requests updates as frequently as possible, however if excessive network utilization

shortens battery life in an implementation, requests can be made less frequently, for example, only

when the robot has moved sufficiently out of its available roadmap. To send a request, the robot

computes where it will be at time tstep in the future following its current plan. The value of tstep is

a parameter of the system, and accounts for the network round-trip and cloud processing time to

compute the update.

If the robot has encountered a change to the graph, or any of the static or dynamic obstacles, or

its current path (τ) can be refined further, it computes or improves the path using an Anytime D*

planner [80], with a time component as described in [117]. Anytime D* defines and uses a runtime

value in ε (line 11) to incrementally refine the robot’s path. It starts by setting the value of ε > 1

which it uses to modify the A* heuristic to find a sub-optimal solution quickly. As the algorithm

iterates, it decreases ε and correspondingly refines the path with the new heuristic, resulting in an

improved plan. When ε = 1, the solution is optimal. As the last part of the loop, Alg. 19 moves the

robot along the shortest path it computed.

When the robot computes its local path it saves computation time by only considering collisions

between paths on the roadmap and the dynamic obstacles. The robot does not need to recompute self-

collision avoidance, collisions with static obstacles, or other motion constraints, as this information

is incorporated into the roadmap that the cloud service computes.

6.3.2 Roadmap-Based Cloud Computation

Cloud-based computation in out algorithm computes a roadmap for a robot to use when navigating

through an environment and around obstacles. Because this algorithm runs on the cloud-based

compute service, it has access to immense computational resources, enabling computation of a large,

detailed roadmap. When building a roadmap, the cloud-based computation only considers the

obstacles in the environment that are sent to the cloud from the robot—since the robot only sends

static obstacles, the roadmap does not include avoidance of dynamic obstacles.

The robot starts a cloud planning session with an initial request for a roadmap. A session

corresponds to a single robotic task and cloud-computing process that spans multiple requests from

the robot. At the start, both the cloud and the robot have an empty graph as a roadmap. The

cloud computes an initial roadmap and sends the relevant portion of the roadmap to the robot to

begin execution of the task. As the robot needs additional areas of the roadmap, it sends additional
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Algorithm 20 Cloud Planning Session
1: G = (V,Es ⊆ E)← (∅,∅)
2: Grobot = (Vrobot,Erobot)← (∅,∅)
3: W ← ∅ {static obstacles}
4: loop
5: recv plan_req(treq,qreq,W,Qgoal) ⇐ robot {blocking wait for next request}
6: V← {q ∈ V ∪ {qreq} | ∀w ∈ W : clear(q | w)}
7: E← {(qa,qb) ∈ E | ∀w ∈ W : link(qa,qb | w)}
8: while tnow < treq − tres and not satisfactory solution do
9: update G and qgoal using k-PRM*+IRS on W and Qgoal

10: (V′robot,E
′
robot)← serialize_graph(G,qreq,Qgoal,Grobot)

11: send plan_res(V′robot \Vrobot,E
′
robot \Erobot) ⇒ robot

12: (Vrobot,Erobot)← (V′robot,E
′
robot)

requests to the server, and the server responds with updates to the roadmap. Optionally, in parallel,

cloud process optimizes and extends the roadmap between request/response cycles.

Alg. 20 shows the cloud computing process for a single cloud-based motion planning session. The

session starts with an empty graph G = (V,E) = (∅,∅). The algorithm builds the graph (Sec. 6.3.3)

by generating vertices (V) and dense edges (E); and selects and maintains a sparse subset of edges

Es ∈ E. The sparse edges retain graph connectivity and are used to reduce the transfer size, while

the dense edges give the robot more options to react to dynamic obstacles. Alg. 20 also maintains a

subgraph Grobot = (Vrobot ⊆ V,Erobot ⊆ E) that tracks the portion of the G sent to the robot.

The cloud planning session starts when it receives a plan_req (plan request) from the robot

(line 5). This request corresponds to the plan_req sent by the robot in Alg. 19 line 3. The cloud

computer adds the requested configuration qreq to the graph and updates the existing graph for any

new static obstacles that are addedW (lines 6 and 7). This step makes use of two application-specific

functions to produce a valid roadmap: clear(q) computes whether or not q ∈ Cfree (e.g., via collision

detection algorithms); and link(qa,qb) checks if the path between qa and qb is in Cfree as traversed

by the robot’s local planner. It then builds the roadmap until it runs out of time or it has a solution

of satisfactory quality (lines 8 and 9). The compute time limit is the target completion time treq

minus the amount of time for the robot to receive the response tres. Thus tres is computed as the

sum of graph serialization time and total network transfer time. The graph is then serialized using

the method described in section 6.3.4, and the new vertices and edges selected for serialization are

sent back to the robot as a plan_res (plan response) in line 11. Optionally, at the end of the loop
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Algorithm 21 Lock-free Parallel k-PRM* IRS Thread
Require: G = (V,E) is an initialized graph shared between threads, ∃v ∈ V : is_goal(v)
1: while not done do
2: vrand ← new vertex with random sample and connected component Crand

3: Crand.goal← is_goal(vrand)
4: if clear(vrand) then
5: for all vnear ∈ k_nearest(V, vrand, {k =}dlog (|V |+ 1) ∗ kRRGe) do
6: if link(vrand, vnear) then
7: sparse← shortest_path_dist(vrand, vnear) < wstretch ∗ dist(vrand, vnear)
8: add_edge(vrand, vnear, sparse)
9: add_edge(vnear, vrand, sparse)

10: solved← solved or merge_components(vrand.cc, vnear.cc)
11: V ← V ∪ vrand

the cloud computer may continue to update the roadmap in the background until it receives another

plan_req from the robot.

6.3.3 Lock-free Parallel k-PRM* with a Roadmap Spanner

The cloud-based service computes a roadmap using k-PRM* [60] with the Incremental Roadmap

Spanner (IRS) [82], sped up by a lock-free parallelization construction we introduce in this section,

and based on the concepts in chapters 2 and 4. k-PRM* is an asymptotically optimal sampling-based

method that generates a roadmap. IRS selects an asymptotically near-optimal sparse subset of the

edges generated by k-PRM* and results in a graph with significantly fewer edges as compared to

k-PRM*. The edges from k-PRM* are the dense graph edges (E). The edges selected by IRS are

the sparse graph edges (Es ⊆ E).

The server computes k-PRM*+IRS using a parallel lock-free algorithm in which all provisioned

cores run Alg. 21 simultaneously to generate and add random samples to a graph in shared memory.

The main portion of the algorithm proceeds similarly to the non-parallel version, with the key

differences being that: (1) nearest neighbor searching is fast and non-blocking due to the use the

lock-free kd-tree described in [49], (2) graph edges are stored in lock-free linked lists (Alg. 22), and

(3) progress towards a solution is tracked via connected components that are stored in lock-free

linked trees (Alg. 23). As with k-PRM*, in each iteration this algorithm generates a random robot

configuration and searches for its k-nearest neighbors using k from [60]. The algorithm checks if

the path to each neighbor is obstacle-free (line 6), and if so, adds edges to the PRM graph (lines 8

and 9). As the algorithm builds the graph, it adds dense edges consistent with k-PRM*. When the
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shortest path distance between two vertices in the graph is shorter than a stretch weighted (wstretch)

straight-line distance, it adds sparse edges consistent with IRS.

Algorithm 22 add_edge(vfrom, vto, sparse)

1: edense ← new edge to vto with edense.next = vfrom.dense_list_head
2: while not CAS(vfrom.dense_list_head, edense.next, edense) do
3: edense.next← vfrom.dense_list_head
4: if sparse then
5: add edge to vto to sparse list of edges with CAS loop similar to one for dense list
6: while vfrom.cc.parent 6= nil do
7: vfrom.cc← vfrom.cc.parent {Lazy update of vertex’s connected component}

The algorithm adds edges to the graph using Alg. 22. Each vertex in the graph has a reference

to the head of two linked lists: one for E, and one for Es. Updating the list makes use of a“compare-

and-swap” (CAS) operation available on modern multi-core CPU architectures. CAS(mem, old ,new),

in one atomic action, compares the value in mem to an expected old value, and if they match,

updates mem to the new value. CAS, combined with the loop in line 2, updates the lists correctly

even in the presence of competing concurrent updates.

Algorithm 23 merge_components(Ca, Cb)

1: repeat
2: while Ca.parent 6= nil do Ca ← Ca.parent
3: while Cb.parent 6= nil do Cb ← Cb.parent
4: until CAS(Ca.parent, nil, Cb)
5: repeat
6: while Cb.parent 6= nil do Cb ← Cb.parent
7: Cmerged ← new component
8: (Cmerged.start, Cmerged.goal)← (Ca.start or Cb.start, Ca.goal or Cb.goal)
9: until CAS(Cb.parent, nil, Cmerged)

10: return Cmerged.start and Cmerged.goal

The algorithm tracks progress towards a solution by maintaining information on each connected

component (“cc” in Alg. 22) in the roadmap. When it adds an edge between two vertices, it also

merges the connected components associated with the vertices (Alg. 23). This is done by maintaining

a “parent” link from the pre-merged component to the post-merged component. The most recently

merged component is thus found by repeatedly following parent links to the root of the connected

components. Each connected component also maintains booleans tracking whether or not the
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Algorithm 24 serialize_graph(G,qreq,Qgoal,Grobot)

Require: G = (V,Es ⊆ E), Grobot = (Vrobot,Erobot), s.t. Vrobot ⊆ V, Erobot ⊆ E
1: (V′robot,E

′
robot)← (Vrobot,Erobot)

2: Vfrontier = forward_frontier(qreq,E)
3: p(·)← path_to_frontier(Qgoal,Vfrontier,E)
4: V′robot ← V′robot ∪Vfrontier

5: Q← {q ∈ Vfrontier} {populate FIFO queue}
6: while |Q| > 0 do
7: qi ← remove head from Q
8: for all (qi,qs) ∈ Es : qs 6∈ V′robot do
9: (V′robot,E

′
robot)← (V′robot ∪ {qs},E′robot ∪ {(qi,qs)})

10: append qs to Q
11: if p(qi) 6= nil and (qi, p(qi)) 6∈ E′robot then
12: if p(qi) 6∈ Vrobot then
13: append p(q) to Q
14: V′robot ← V′robot ∪ p(qi)
15: E′robot ← E′robot ∪ (qi, p(qi))
16: return (V′robot,E

′
robot)

component contains a vertex at the goal and/or start. Once a connected component is found that

includes both a start and goal vertex, the graph contains a path between the two.

6.3.4 Roadmap Subset for Serialization

The roadmap serialization process selects a compact, relevant subset of a roadmap and converts

it into a serial (linear) structure suitable for transmission over a network. Alg. 24 selects which

vertices and edges of the graph to serialize. The process of converting the selected vertices and edges

to sequence of bytes is left an implementation detail. Since bandwidth is limited, the process selects

a small subset of the configurations in the roadmap to send to the robot. To allow the robot to

navigate around dynamic obstacles in its immediate vicinity, as well as find the best route to goal,

the cloud selects a subset of configurations that includes ones reachable from qreq within a time

bound tmax, as well as the path to goal for each such vertex.

Serialization selection begins by finding the frontier between the vertices reachable from qreq

within the time bound tmax, and vertices not reachable (line 2). The forward_frontier algorithm is a

modified Dijkstra’s algorithm that terminates once it finds paths longer than tmax. Since Dijkstra’s

expands paths in increasing path length, this will terminate once it has found all paths reachable

within tmax. It returns all vertices Vfrontier reachable within the frontier. The selection process then

computes the shortest path from all goals to the vertices in Vfrontier (line 3). This process, shown in
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Algorithm 25 path_to_frontier(qgoal,Vfrontier,E)

1: g(qgoal)← 0 {cost to goal}
2: p(qgoal)← nil {forward pointers}
3: U← {qgoal} {priority queued ordered by g(·)}
4: while |Vfrontier| > 0 do
5: qmin ← remove (minU) from U
6: Vfrontier ← Vfrontier \ {qmin}
7: for all (qfrom,qmin) ∈ E do
8: d← g(qmin) + cost(qfrom,qmin)
9: if qfrom 6∈ U or d < g(qfrom) then

10: g(qfrom)← d
11: insert/update qfrom in U
12: p(qfrom)← qmin

13: return p(·)

Alg. 25, is a modified Dijkstra’s algorithm that terminates once it has found a path to all vertices in

Vfrontier.

In the last step in Alg. 24, the vertices from the frontier set are appended to V′robot along with all

configurations along their shortest paths to goal and reachable by the sparse edges. Line 5 populates

the queue from Vfrontier. The loop starting on line 6 iterates through each configuration in the queue,

adding sparse neighbors and steps along the shortest path to goal as it encounters them. By checking

the graph before appending to the queue, the algorithm ensures that vertices are queued at most

once. When the loop completes, the new graph subset is ready for sending to the robot. Then the

cloud service sends only the changes in the graph from one response to the next (Alg. 24 line 11).

6.4 Results

We evaluate our algorithm on a Fetch robot [31] by giving it an 8 degree-of-freedom task in an

environment with a dynamic moving obstacle. Our cloud-compute server runs on a system with

four Intel x7550 2.0-GHz 8-core Nehalem-EX processors for a total 32-cores. The cloud-computing

process makes use of all 32-cores. The cloud-compute server is physically located approximately

6 km away from the robot, and the network connection between the server and robot supported a

bandwidth in excess of 100 Mbps with a latency less than 20 ms. To model the impact of slower

network connections, in our experiments we deliberately slowed packet transmission to model a

fixed maximum bandwidth of Rsim and a fixed minimum round-trip latency of tLsim subject to noise

sampled from a Gaussian distribution with standard deviation of 0.16 tLsim .
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: The Fetch robot using our cloud-based motion planning for the task of grasping the
bottle resting on the table while avoiding both the static obstacles (e.g., table) and the dynamic
obstacle (a tube sensed via an RGBD camera). In frame (a) after the Fetch approaches the table with
its arm in its standard rest configuration and it initiates the cloud-computation process. The Fetch’s
embedded CPU is tasked with sensing and avoiding dynamic obstacles, while a cloud-computer
simultaneously generates and refines its roadmap. In frame (b), the Fetch begins its motion, only to
be blocked in frame (c) by a new placement of the obstacle. The Fetch is again blocked in frame (d),
moves again around the obstacle in frame (e), and reaches the goal in frame (f).

We implemented our algorithm as a web-service accessible via HTTP [32]. The robot initiates a

request by sending an HTTP POST to the server, and the server responds with an HTTP response

code appropriate to the situation (e.g., “200 OK” for a successful plan, “503 Service Unavailable”

when the server cannot acquire sufficient computing resources). Requests and responses are sent in a

serialized binary form. To minimize overhead associated with establishing connections, both the

cloud server and the robot use HTTP keep-alive to reuse TCP/IP connections between updates, and

are configured to have a connection timeout that far exceeds expected plan computation time.

The Fetch robot has a 7 degree of freedom arm, a prismatic torso lift joint, and a mobile base. In

our scenarios, prior to the cloud-based computation task, the Fetch robot navigates to the workspace

using its mobile base without using the cloud service. This process introduces noise to the robot’s

base position and orientation. Once at the workspace, we give the Fetch robot the task of moving

from a standard rest configuration (Fig. 6.2(a)) to a pre-grasp configuration over a table (Fig. 6.2(f)),

requiring it to plan a motion using 8 degrees of freedom (i.e., the arm and prismatic torso lift joint).

In this setting, the static obstacles are the table, floor, and surrounding office space. We also include

a dynamic obstacle: a cylindrical tube that moves through the environment.
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(a) Time to complete task
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(b) Edges in graph

Figure 6.3: Effect of different values for Rsim and tLsim . Graph (a) shows the wall-clock time for the
Fetch robot to complete its pre-grasp motion task, where the orange line is the time for the robot to
complete the task without the cloud service. Graph (b) compares the number of edges generated by
the cloud computer (dashed lines) and the number of edges sent to the robot (solid lines) for the
varying network conditions. The simulated network latency affects the amount of compute time that
the cloud has for each update. Longer latencies lead to less time for available for computation, and
thus leads to slower task completion time and fewer edges on the roadmap.

The sequence in Fig. 6.2 shows the full integrated system running, with the Fetch robot successfully

moving its arm around the obstacles. At the beginning of a task, the Fetch communicates its position

and orientation in the workspace to the cloud service and requests a roadmap for its task. The

software uses custom tracking software and the Fetch’s built in RGBD camera to determine the

location of dynamic obstacles. When it computes a change in trajectory (e.g., to avoid a dynamic

obstacle, or in response to a refined roadmap from the cloud), it sends the trajectory to the controller

via a ROS/moveit interface.

We also ran our method in simulation to evaluate performance under varying networking

conditions. We simulated the tube dynamic obstacle sweeping periodically over the table at a rate

of 0.25 Hz (approximately 1 m/s). While the dynamic obstacle has a predictable motion consistent

through all runs, the simulated sensors only sense the tube’s position and orientation and do not

predict its motion. As the tube obstacle is considered dynamic, the robot does not send information

about it to the cloud computer, and it must avoid the tube by computing a path along the roadmap

using its local graph. The robot and cloud are not given any pre-computation time; once given the

task, the robot must begin and complete its motion as soon as it is able. We measure this as the

“wall clock time to complete task.”
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The Fetch robot has a 2.9 GHz Intel i5-4570S processor with four cores. For our scenario, we

limit our client-side planner to fully utilize a single core, under the assumption that in a typical

scenario the remaining cores would leave sufficient compute power to run other necessary tasks, such

as sensor processing.

As a baseline for comparison, we have the robot’s computer generate a k-PRM* using a separate

thread. This thread updates the graph used by the reactive planner at a period of 250 ms. The

k-PRM* planner considers only the static environment and self-collision avoidance as the constraints

on the roadmap generation, and generates a fully dense roadmap (no sparse edges). The reactive

planner uses the roadmap to search for a path to the goal. While searching the roadmap, the robot

lazily checks for collisions with the dynamic obstacle. In 50 runs, the robot completes the task with

an average of 32.3 seconds.

We run the scenario using our method and simulate and vary the latency and bandwidth of

the network between the robot and the 32-core cloud-computer. To maintain reactivity, the robot

requests an update as soon as it receives the response to the previous request. Since the requested

solve time (treq) is set to 250 ms, an update is requested and received every 250 ms. The latency

means that only a portion of the 250 ms can be used to compute a roadmap. The results in Fig. 6.3(a),

averaging over 100 runs, show that the robot assisted by the cloud computation outperforms robot-

only computation in almost all simulated cases. As we might expect, the slowest bandwidth and

highest latency cause the performance benefit of using the cloud-based service to disappear. At the

lowest latencies, the cloud-based solution outperforms the robot-only computation by 1.7×, reducing

the task completion time to 19.0 seconds.

In Fig. 6.3(b), we show the savings that result from using the roadmap spanner and our

serialization method. When latency is low, the cloud computer can spend more time computing,

producing a roadmap that has on average 232649 edges. IRS and serialization reduce it to an average

of 24236, a savings of close to 90%.

Fig. 6.4 shows the effect of roadmap serialization parameter tmax on our cloud-based motion

planning. A smaller tmax implies less of the roadmap is sent to the robot, which results in reduced

bandwidth usage but at a cost to the quality of the roadmap. As the robot executes its task, a

proportionately higher portion of the server’s dense roadmap is sent to the robot (see Fig. 6.4 (a)).

From Fig. 6.4 (b), we see that if tmax is too small, the robot is slower to find a collision-free path past
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(b)

Figure 6.4: The serialization parameter tmax affects the size of the graph on the robot and the
robot’s task completion wall time. In these graphs the simulated network is fixed at Rsim = 1 Mbps
and TLsim = 200 ms and the server solve time is 250 ms. Graph (a) shows that larger values of tmax
result in more of the dense edges of the graph being serialized and sent to the robot. In (b), we see
that having tmax be too small results in a high failure rate (where failure means not reaching goal
after two minutes), while having it too large increases the variance of the execution time.

the dynamic obstacle. Conversely, there is little gain for increasing tmax beyond a certain threshold

since unnecessary portions of the graph are sent to the robot, essentially wasting network bandwidth,

leading to diminished performance.

6.5 Conclusion

Cloud computing offers access to vast amounts of computing power on demand. We introduce a

method for power-constrained robots to accelerate their motion planning by splitting the motion

planning computation between the robot and a high-performance cloud computing service. Our

method rapidly computes an initial roadmap and then sends a mixed sparse/dense subgraph to the

robot. The sparse portions of the graph retain connectivity and reduced transfer size, while the

dense portions give the robot the ability to react to obstacles in its immediate vicinity. As the robot

executes the plan, it periodically gets updates from the cloud to retain its reactive ability.

In our experiments, we applied our method to a Fetch robot, giving it an 8 degree of freedom

task with a simulated dynamic obstacle. With our method, the split cloud/robot computation allows

the robot to react to dynamic obstacles in the environment while attaining a more dense roadmap

than possible with computation on the robot’s embedded processor alone. The scenario requires a

minimal amount of pre-computation time (less than a second) before the robot starts to execute its
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task. As a result, the task time-to-completion is significantly improved over the alternative without

cloud computing.
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CHAPTER 7

Efficient Motion Planners via Templates

Planning motions for battery-powered robots with many degrees of freedom using their on-board

computers often presents a difficult problem. The problem is difficult due to the computationally

demanding nature of motion planning [98], which involves computing a sequence of robot actions

that take the robot to a goal state while avoiding obstacles and satisfying task-specific constraints.

The difficulty is then compounded when the robot’s size is measured in the tens of centimeters,

as its form factor and battery-life constraints only allow for low-power CPUs. While a wealth

of planning algorithms aim to address the problem of motion planning [20], it is typically left to

developers to implement these algorithms for low-power CPUs with fast robot-specific code. To

address this requirement for a broad class of robots with low-power CPUs, we introduce Motion

Planning Templates (MPT)1, a system that generates robot-specific code from a set of motion

planning algorithms.

MPT is a C++ software library that reduces the algorithm and data structure advances from

previous chapters to practice. It is designed to be reusable for a wide variety of robots and tasks,

while not sacrificing performance one might get with a custom-coded motion planning algorithm.

With the design behind MPT, the performance gains over other paradigms for reusable motion

planning libraries can be significant. When we add in the gains based upon implementations of

the algorithms and data structures from previous chapters, MPT is able to compute motion plans

in a fraction of the time of competing paradigms. These performance gains are initially targeted

towards application on low-power single- and multi-core CPUs that one might find onboard a small

robot—with the idea that these robots will be able to leverage, or be augmented by, the cloud-based

computation from chapter 6 as needed.

1MPT is available at https://robotics.cs.unc.edu/mpt
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Figure 7.1: The process flow of Motion Planning Templates (MPT) starts with a developer supplying
a robot’s motion planning problem scenario and selecting an algorithm setup. At compile time, the
template system of MPT generates code for a robot-specific implementation of a motion planning
algorithm. This system trades off runtime flexibility (algorithms and their data structures cannot be
changed without recompiling) in favor of improved performance and reduced memory utilization,
both of which are critical to battery-powered small robots that use their on-board low-power CPU
to perform motion planning.

The key philosophy behind MPT is that it generates robot-specific motion planning code. This

means that a software developer writes code specific to the robot and the scenario, and then, through

the compile-time constructs of MPT, a C++ compiler generates the code and data structures for a

custom implementation of a motion planning algorithm. The resulting implementation will have

performance competitive with hand-written implementations of the same motion-planning algorithm

that use robot-specific data structures. The system behind MPT’s code generation is C++ templates,

which is a Turing-complete [119] compile-time polymorphic system—which is a fancy way of saying

that C++ templates are programs that write code.

In order to eke out as much performance as possible from low-power embedded processors, MPT

is also multi-core ready—which allows MPT to take advantage of multi-core parallel processing

increasingly available on low-power CPUs. This parallelism can be exploited in a complete robot

system to allow robots to take on multiple computational tasks simultaneously (e.g., sensor processing,

actuation, etc.) or to tackle computationally demanding tasks such as motion planning. As available

parallelism and demands on computation can vary from robot to robot, MPT can be set to use as

little or as much parallelism as desired. When parallelism is enabled, MPT’s parallelized motion

planning algorithms make use of concurrent data structures for nearest neighbors searching [45]
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and motion planning graphs. But concurrent data structures do not come for free—in order to

ensure correct operation, they must use locks and ordered memory operations [41] that can result

in decreased per-thread performance and increased memory usage. When parallelism is disabled,

MPT generates code without locks or ordered memory operations, to maximize single-threaded

performance.

This chapter presents MPT, the design principles behind it, background on its compile-time

polymorphic system, how to use it, and examples from applications in our own lab using low-powered

processors that one finds, or might find, in small battery-powered robots.

7.1 Design Principles

The design principles behind MPT help differentiate it from related and complementary libraries.

This section describes those principles.

7.1.1 Performance over runtime flexibility

MPT started with the design decision that performance of robot-specific motion planners in

small battery-powered robots is more important than runtime flexibility. For example, an articulated

robot does not need the flexibility to compute motion plans for a wheeled robot or aerial drone.

Thus MPT uses compile-time algorithms to generate robot-specific motion planners instead of using

a flexible runtime system.

7.1.2 Floating-point precision selection

Robots with low-power CPUs may have performance and memory requirements that benefit

from using single-precision (32-bit) floating-point arithmetic. Conversely, some robots must plan

motions with accuracy and thus require double-precision (64-bit) arithmetic or better. MPT allows

the selection of floating point precision at compile time.

7.1.3 Custom state and trajectory data types

Motion planners must inter-operate with other robot software components, and thus MPT

should generate and operate on graph structures with robot-specific data types that do not require

runtime translation. For example, a robot with a ROS [103] interface to its actuators could compute

trajectories in the native ROS message type and then store the trajectories directly in the motion

graph. This would add efficiency by removing a translation between data types (e.g., when the

robot sends the trajectory to the actuators). In an example from a robot with complex forward
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kinematics, it may be helpful or necessary to carry additional information within states to help speed

up kinematic computations in the local planner; with a custom state data type stored directly in

the motion graph, the extra information would be made available to the local planner method, thus

allowing for faster computation.

7.1.4 (De-)Composable Metric Spaces

Some motion planners (e.g., KPIECE [112]) and nearest neighbor data structures (e.g., kd-

trees [123, 46]) benefit from the ability to decompose the state space into its constituent components.

Complex metric state spaces in MPT can be composed from simpler metric spaces and decomposed

at compile-time to select and construct state-space specific implementations of motion planners and

data structures.

7.1.5 Multi-core Ready

CPUs are trending towards increased multi-core parallelism. However, many low-power CPUs

are still single-core, and robots with multi-core CPUs may wish to use only a single-core for motion

planning. Since multi-core parallelism requires additional overhead and is not always necessary,

MPT can switch between generating multi-core parallel and single-core planners.

7.1.6 C++ 17 Header-only Library

The latest C++ standard [55] provides a wealth of capabilities that eases development of

template-based programs while remaining compatible with existing C and C++ software libraries.

A header-only library means that none of the code is compiled until an application makes use of it,

which can ease deployment.

7.2 Related Work

The Open Motion Planning Library (OMPL) [113] is an actively developed, well-maintained, and

popular motion planning library. It implements a wide variety of motion planning algorithms using

an architecture that allows for maximum flexibility at runtime. The architecture is based upon virtual

classes and methods which are popular and well-studied, thus OMPL provides many with a familiar

development environment and a relatively gentle learning curve. MPT does not use virtual classes

and methods and is thus less flexible at runtime and instead uses templates to generate robot-specific

motion planners. Since templates are resolved at compile-time, MPT gains the ability to detect

detect return types and alter data structures accordingly. For example, when MPT detects that the

collision detection routine returns a type that is not a boolean, MPT will generate a graph data
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structure in which the return value is stored in the graph’s edges. Similar behavior is not possible in

a runtime-polymorphic system such as used by OMPL, since the collision detection routine’s return

type is fixed by the virtual class hierarchy. MPT’s reliance on templates likely introduces a steeper

learning curve since template-based programming is less thoroughly covered in many university

courses. OMPL provides mostly single-core motion planners, with some notable multi-core ready

exceptions (e.g., C-FOREST [93]). In contrast, all of MPT planners support multi-core parallel

processing as well as the ability to turn off parallel processing when a single-core planner is desired;

additionally, MPT provides data structures and frameworks for parallel multi-core motion planning.

OMPL will likely be the first choice of anyone learning motion planning or exploring a specific

motion problem, whereas MPT aims to replace hand-writing custom motion planners once the

planning problem is understood and needs to eke out as much performance as possible on small

battery-powered robots.

OpenRAVE [24] integrates motion planning, perception, and control algorithms into a runtime-

configurable system. The architecture allows developers to add functionality using plugins and uses

virtual classes for maximum runtime flexibility, but as a result may not perform motion planning

as fast as a robot-specific planner. MPT could generate motion planners that run as OpenRAVE

plugins, allowing robots to benefit from the best of both systems.

Robotics Library (RL) [100] provides a large collection of robot planning and control software in

one coherent whole. This library includes a collection of sampling-based planners, including RRT [76]

and PRM [61]. RL makes some use of templates but largely depends on virtual classes and methods

to adapt different robot systems.

MoveIt! [111, 22] is an open-source tool for mobile manipulation built on top of ROS and OMPL.

It aims to automate the setup of motion planning integrated with perception and control. MPT

automates less of the motion planning setup process, but instead aims to provide greater efficiency

for battery-powered small robots.

Robot Operating System (ROS) [103] is a popular software framework that aims to provide a

complete system to operate a robot. It includes modules (e.g., OMPL and MoveIt!) for motion

planning. MPT could similarly integrate with ROS, providing motion planners specific to the robot

on which it runs and operating directly on ROS data types.
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Murray et al. show that another route for low-power and fast motion plan computation is through

the use of programmable circuitry [90]. But these methods require specialized hardware that is not

always available on robot systems. The software-based approach of MPT aims to be compatible

with readily available low-power CPUs.

7.3 Background

This section formally defines the motion planning problem, and provides background on tools

MPT uses: compile-time polymorphism and C++ template metaprogramming.

7.3.1 Motion Planning Problem

Robot motion planning algorithms compute a sequence of states that takes a robot from an

initial state to a goal state while avoiding obstacles and staying within task-specific constraints. The

set of robot states is the state-space X . Within the subset Xfree ⊆ X , the robot does not collide with

any obstacle and does not violate any constraint. Thus the input to the motion planning problem

is: the initial state x0 ∈ Xfree, the set of goal states Xgoal ⊆ Xfree, and Xfree. The output is a path

τ = (x0,x1, . . . ,xn), where ∀i : xi ∈ Xfree, and xn ∈ Xgoal. When X is continuous, the output path

τ must also satisfy the condition

∀i ∈ {1, 2, . . . , n}, t ∈ [0, 1] : L(t;xi−1,xi) ∈ Xfree,

where L(t;xa,xb) : [0, 1]→ X is a problem-specific local planner that continuously interpolates the

robot’s state as parameterized by two states, with L(0;xa,xb) = xa and L(1;xa,xb) = xb.

The various sampling-based motion planners of MPT require problem-specific definitions of

functions in order to explore Xfree and build a graph of valid motion. Many sampling-based motion

planners, when a bounded region of X is not implied by its topology, require a sampling region or

function. For many sampling-based motion planners, the full definition of a problem-specific L is

not required; instead, it is often sufficient to define a problem-specific function Lfree(xa,xb) = ∀t ∈

[0, 1] : L(t;xa,xb) ∈ Xfree, that checks if there exists valid motion between two states. Additionally,

some motion planners require a distance function d : X × X → R in order to operate efficiently

and/or to minimize the resulting path length
∑n

i=1 d(xi−1,xi).

In summary, MPT requires the following definitions in order to generate a problem-specific motion

planner: the topology of X (which corresponds to the data type of a state), a sampling region or
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while (!cond ->done ()) {
Sample* s = sampler ->uniform ();
...

TimeLimit

endTime
vtable
done()

...

RnSampler

dim
min
max

vtable
uniform()
norm(µ, σ2)

...

[0]
[1]
...

[0]
[1]
...

(a) Runtime polymorphism and virtual tables

while (! DONE() ) {
Sample* s = SAMPLE() ;
...

compile-time substitution
DONE() → (timeNow() > endTime)
SAMPLE() → uniformRn(dim, min, max)

while (! (timeNow() > endTime) ) {
Sample* s = uniformRn(dim, min, max) ;
...

(b) Compile-time polymorphic calls

Figure 7.2: Comparison of runtime polymorphic calls to compile-time polymorphi calls.
In runtime polymorphism (a), calls to virtual method require a lookup into a virtual table (vtable).
The vtable introduces a level of indirection that provides the flexibility to swap in different object
types to get different behaviors. With template-based compile-time polymorphism (b), the compiler
substitutes placeholders with direct function calls. In contrast to runtime polymorphism, flexibility
to change the termination condition at runtime is lost, but execution time is sped up. In this example,
the time-limit termination condition and sampler in (a) can be changed by passing in objects of
different types. While in (b), the termination condition and sampler can only be changed at compile
time with a different substitution. In practice, these rarely change. Thus, the vtable lookup in (a)
provides flexibility, but also introduces a repeated delay. In (b) speedup comes from saving a level of
indirection, and giving the compiler the ability to perform additional optimizations since it knows
which code will be called. Refer to Sec. 7.3.2 for additional details.

function, a definition of Lfree, and a distance function. At runtime, the motion planner generated by

MPT takes the inputs x0 ∈ Xfree and Xgoal, and computes either a valid path, or a graph G = (V,E),

in which vertices V ⊆ Xfree, and for each edge’s vertex pair (xi,xj) ∈ E, Lfree(xi,xj) is true.

7.3.2 Compile-time Polymorphism

Polymorphism, from the Greek meaning “many forms”, refers to the ability of a single code

interface to provide many different implementations [110]. In practice this means that the data and

code behind a name can be changed without changing the code that refers to that name. When the

executed code can be changed while the program is running, it uses runtime polymorphism, a concept

that is likely familiar to people with experience with class-based object oriented programming in

languages such as Java, Python, and C++. In runtime polymorphism, when code invokes a virtual

method, it finds the the concrete implementation through a virtual table (vtable) lookup. Fig. 7.2 (a)

shows an example of a sampling-based motion planner’s outer loop using runtime polymorphism to

change its behavior. The loop continues until the done() method returns true—the exact meaning of
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done() is dependent on the cond object’s concrete type. Similarly, the loop can work in any state

space using sampler object of the appropriate concrete type.

Compile-time polymorphism, also called static polymorphism, operates on a similar principle,

but instead resolves implementations when the code is compiled, so it does not need a virtual table.

Fig. 7.2 (b) shows a compile-type polymorphic equivalent of Fig. 7.2 (a). In this case, the behavior

cannot be changed at runtime, and as a result, can run faster than the vtable-based approach.

Virtual calls are an important enough performance consideration that researchers have put effort

into devirtualizing calls at runtime [54]. The loss of runtime flexibility in this example is likely to be

acceptable for the performance gained by the robot-specific motion planner.

7.3.3 C++ Template Metaprogramming

MPT uses compile-time polymorphism based on C++ templates. Templates are like functions

that run in the compiler that take data types and constants as parameters and generate code that

will be executed. Template data type parameters can be arbitrarily complex structures, which allows

seemingly simple template substitutions to transitively lead to complex results—e.g. robot-specific

motion planners.

C++ templates can also be specialized to allow for specific substitutions based upon a template

parameter matching a condition. As an example, specialization can select an appropriate nearest

neighbor data structure depending on whether or not the distance function is symmetric.

Templates are defined using a template keyword, followed by parameter declaration within <

angle > brackets, followed by the class or method template. Template substitution occurs when the

compiler encounters the template name followed by parameters within angle brackets.

7.4 Approach

This section describes MPT’s design from the users’ perspective. All motion planners in MPT

are available through a single mpt::Planner template, which takes two type parameters: the Scenario

and the Algorithm. The user provides the Scenario and selects the algorithm, and MPT provides the

algorithm’s implementations and the building blocks to make a scenario.

7.4.1 Scenario Specification

In MPT, a Scenario is a user-provided C++ class whose member types and methods define a

robot-specific motion planning problem (i.e., X , Xfree, Lfree, etc.). To give a high-level overview of

how this is done and to show some of the capabilities of MPT, we will walk through the example
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1 template <typename Scalar = double >
2 struct ExampleScenario {
3 using Space = mpt::SE3Space <Scalar >;
4 using State = typename Space ::State;
5 using Goal = mpt::GoalState <State >;
6 using Bounds = mpt::BoxBounds <Scalar , 3>;
7
8 Space space ();
9 Bounds bounds ();

10 Goal goal ();
11
12 bool validState(State q);
13 bool validMotion(State a, State b);
14 };

Listing 7.1: Minimal definition of a scenario

scenario shown in listing 7.1. For brevity, the listing does not include const and reference modifiers,

nor does it include implementation code.

A scenario definition starts with the declaration of a (template) class, as shown in lines 1 and 2.

There is no base class from which to inherit members, instead Scenario classes must conform to a few

requirements. The scenario defines the state space (X ) as a type alias called Space (line 3). In the

example, it will plan for a robot that can translate and rotate in 3D space, and thus it uses the SE(3)

state space. The Scalar type parameter allows the scenario to switch between single-precision and

double-precision (the latter being the default). The Space defines both the metric and the C++ data

type (more details in Sec. 7.4.2). For SE(3), the state type is a class with a quaternion for rotation

and a 3-element vector for translation (see Fig. 7.3 (b)). Line 4 creates an alias for the state data

type used later. Since some spaces carry data members to implement their metric (e.g., a weighting

components in a Cartesian space), MPT requires a space() method (line 8) to return a Space object.

Sampling-based motion planners require a mechanism to generate random states from X . Were

this class to define a sample() method, MPT would use it to generate samples. This scenario instead

has MPT use uniform sampling by defining the sampling bounds (lines 6 and 9).

The scenario defines the problem’s goal set (Xgoal) as a type (line 5) and method (line 10) pair.

The goal type provides an indicator function that checks if a state is in Xgoal. Motion planners and

goal types that support goal-biased sampling make use of template specialization to obtain biased

samples from Xgoal.

The scenario defines Xfree and Lfree using the indicator functions validState() (line 12) and

validMotion() (line 13) respectively. For some robots, testing Lfree(xa,xb) may require complex and
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Figure 7.3: An SE(3) state is constructed by combining and reusing state definitions for SO(3)
and Rn. Using run-time polymorphism (a) requires the composite state to carry an array of sub-
states, each of which is dynamically allocated and addressed through pointers—this allows for
maximum flexibility as composite states can vary in number of sub-states, and Rn state can vary
in number of components. In contrast, compile-time polymorphism (b) defines a single composite
state type at compile-time, reducing the amount of memory and objects required at runtime. In this
example system, the runtime polymorphic system requires 2× the memory and 5× the objects of
the compile-time polymorphic system.

time-consuming forward-kinematics computation of L(·;xa,xb). As such, it may be desirable to

save the result of the computation to avoid regenerating it later. MPT detects when validMotion()

returns something other than a boolean, and changes the motion graph definition to store the result

for later retrieval. For example, given the method declaration

std::optional <Trajectory > validMotion (...);

MPT stores a Trajectory value in each graph edge. Similarly, changing the return type of validState

allows additional information to be stored in each vertex of the graph.

7.4.2 (De-)Composable Metric Spaces

While MPT supports arbitrary data-types and metric combinations, it provides special handling

for metric spaces commonly found in motion planning, including Lp (with p ≥ 1), SO(2), SO(3), and

weighted Cartesian products thereof. A mathematical metric space is an ordered combination of a

set X and metric d. In MPT a metric space is expressed as an ordered pair of state data types (e.g.,

a vector of floats), and a metric tag type (e.g. L2). Using specialization, MPT provides support for

a variety of common C++ data types available in the standard library and in the popular Eigen [56]

linear algebra library. Using the built-in spaces allows MPT to inspect the space in order to make

an informed selection of data structures and planning algorithm behaviors.

MPT allows easy setup of supported metric space to match the data types in the rest of the

robot’s system. For example, to use a Euclidean metric on R3 using a custom vector type Vec3d, the
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Figure 7.4: Using a compile-time algorithm, MPT automatically selects and generates the planner’s
nearest neighbor data structure based upon the requirements of the scenario and planning algorithm.

syntax is: MetricSpace<Vec3d, LP<2>>. It is also possible to create weighted Cartesian metric spaces.

For example, to create an SE(3) space that combines translations in R3 with rotations in SO(3), the

syntax is:

using R = MetricSpace <Quaternion , SO3 >;

using T = MetricSpace <Vec3d , LP <2>>;

using SE3 = CartesianSpace <R, T>;

Assuming Quaternion and Vec3d are appropriately defined, the above code is equivalent to:

using SE3 = MetricSpace <

std::tuple <Quaternion , Vec3d >,

Cartesian <SO3 , L2 >>;

The result of this construction is that the Cartesian state space is flexibly defined at compile-time

and its state data type is compact at runtime. Fig. 7.3 (b) shows the resulting state type as it will

be stored in memory. A similar flexibility is possible in a runtime-polymorphic system and is shown

in Fig. 7.3 (a), but requires significantly more overhead since the states must be assembled as object

graphs at runtime. While it is possible to avoid this overhead with a custom implementation, such

an approach would lose the benefit of code reuse.

7.4.3 Nearest Neighbors

Nearest neighbor searching is a fundamental building block for many motion planning algorithms.

The performance of nearest neighbor searching can dramatically affect the performance of a planning

algorithm [123, 67]. MPT thus uses a compile-time algorithm to select and define a nearest neighbor
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Figure 7.5: The Nao robot uses a low-power Intel Atom CPU to solve a 10 DOF motion planning
problem (from [49]) that avoids obstacles in order to drop an effervescent tablet into a glass while
not spilling in the process.

data structure that best matches the needs of the scenario and planner. This algorithm is shown in

Fig. 7.4.

The nearest neighbor searching data structures in MPT are: kd-tree that supports concurrent

inserts and queries [45] (ideal for parallelized motion planners) and a non-concurrent variant of

it, a (non-concurrent) kd-tree that maintains near optimal balance [14] at the expense of periodic

rebalancing (ideal for non-parallel, long running motion planners), GNAT [17], and linear searching

for custom metric and non-metric spaces. When the scenario uses an MPT-supported metric space,

MPT can decompose it at compile-time to generate a custom implementation of a kd-tree.

7.4.4 Planner Algorithm Selection

In a compile-time algorithm that is similar to, though more involved than Fig. 7.4, MPT uses

a template argument to determine the motion planner implementation to generate. The process

starts with the creation of a mpt::Planner<Scenario, Algorithm> object, where the Scenario is defined

in a similar manner to Listing 7.1, and Algorithm is an MPT-provided algorithm selection tag, such

as mpt::RRT<>. Under the hood, MPT uses a cascade of template specializations to resolve a final

algorithm implementation. The planning algorithms included in MPT’s initial release are parallel

lock-free [49] versions of RRT [76], RRT* [60], PRM [61], PRM* [60], and IRS [82].

7.5 Applications

In this section we demonstrate MPT’s performance on an articulated robot and in OMPL’s

SE(3) rigid-body planning benchmarks. We compare to OMPL as it is an example of a well-designed

flexible motion planning library that uses runtime polymorphism. To the extent possible, we

set up corresponding motion planners from MPT and OMPL to run identical algorithms. The
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Figure 7.7: Nao computes a 5 000 vertex RRT* graph for a 10 DOF task using MPT and
OMPL running on an Intel Atom processor.

performance benefit of MPT over OMPL thus comes from the MPT’s compile-time data-structure

and algorithm selections, compact state representation, non-virtual methods, and affordances that

allow the compiler to inline and vectorize code. This does however come at the cost of losing runtime

flexibility and a potentially steeper learning curve. We run MPT with both single (“float”) and

double precision arithmetic. OMPL only supports double precision arithmetic. OMPL uses GNAT

for nearest neighbor searching so we compare to MPT using GNAT. We also compare against MPT’s

automatic selection of kd-trees for nearest neighbor searching.

7.5.1 Small Humanoid Motion Planning using an Intel Atom

We use MPT to solve a 10 degree of freedom (DOF) task on a SoftBank Nao small humanoid

robot shown in Fig. 7.5. This robot has a low-power (2 to 2.5 W) Intel Atom Z530 @ 1.6 GHz CPU.
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To avoid taxing our robot, we run hundreds of simulations on a more recent Atom N270 @ 1.6 GHz,

noting that the CPUs perform similarly in benchmarks [107].

The Nao simulation uses an RRT [76] motion planner that terminates as soon as it finds a feasible

plan. We plot the observed solution probability given the wall-clock time spent computing. As the

graph in Fig. 7.6 shows, MPT’s custom generated motion planner solves the planning problem in

less than half the time of a runtime polymorphic system.

We also run the asymptotically optimal RRT* [60] motion planner until it creates a 5 000

vertex motion graph. Over 50 runs all implementations of the planner require approximately the

same number of iterations and generate paths of similar cost distribution, confirming the planners

implement nearly identical algorithms. Fig. 7.7 shows the wall-clock time to compute the graph,

showing the performance impact of having a custom generated planner, using single-precision floats,

and using kd-trees for nearest neighbor.

7.5.2 Rigid Body Motion Planning using a Raspberry Pi

We use a Raspberry Pi 3 Model B v 1.2 (Fig 7.8 (a)) to compute RRT* solutions to SE(3)

rigid-body planning problems from OMPL (Fig. 7.8 (b)–(g)). The Pi is a low-power (2 to 3 W)

4-core ARM-architecture processor which would make a suitable processor for a battery-powered

small robot due to its low power consumption and small form factor. Fig. 7.8 shows the wall-clock

time elapsed when computing a 10 000 vertex graph. In this setup, we also show the benefit of the
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for the Nao and SE(3) problems on 32-bit CPUs.

parallelism included in MPT by running PRRT* [49], a parallelized version of RRT*, running on all

4-cores.

7.5.3 Reduced Memory Usage

We measure and compare the mean memory usage of RRT* runs from the Nao and SE(3)

scenarios. The results in Fig. 7.9 show the impact of the compact memory representation and

the choice of nearest neighbor structures. The difference between MPT’s GNAT and kd-tree data

structures shows that GNAT is more memory efficient. This implies some MPT users will have to

choose between the speed of a kd-tree vs. the lower memory usage of GNAT. The comparison between

MPT’s GNAT using double-precision and OMPL shows the impact of the compact data-structures

that MPT is able to generate. The difference in improvements between the Nao and SE(3) highlights

the impact of compile-time state composition since the complex object graph for SE(3) states

(Fig. 7.3) incurs more overhead than the Nao scenario’s relatively simple R10 state. Finally, the

figure shows the significant impact of changing floating-point precision—when the loss of precision is

acceptable, MPT may enable planners to run on systems where memory usage comes at a premium.

7.6 Conclusions and Future Work

We presented Motion Planning Templates, a framework based upon the compile-time polymorphic

system of C++ templates for building motion planners for robots with low-power CPUs. MPT’s

template system generates custom planning code specific to the robot and a set of tasks encompassed

by a concept of a scenario.

In benchmarks on a small humanoid robot and synthetic benchmarks on rigid body motions, the

template-based architecture behind MPT allows it to generate planners that demonstrate better

performance and lower memory usage than planners based upon runtime polymorphism. While
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this approach loses the flexibility of runtime polymorphism and introduces a potential learning

curve to developers more familiar with runtime polymorphic systems, the trade-off may be worth

the cost, especially in small low-powered robots where every CPU cycle counts. Additionally, the

implementation of the lock-free parallel motion planners from chapter 2, SO(3)/SE(3) nearest-

neighbor partitioning from chapter 3, and concurrent nearest-neighbor data structure from chapter 4,

allow for additional performance gains over generalized and single-threaded approaches found in

other runtime-polymorphic motion planning libraries.

MPT is an evolving project under active development. While the initial release is focused on

creating robot-specific planners, with additional work it will be extended to support the infrastructure

needed for cloud-based motion planning from chapter 6.
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CHAPTER 8

Conclusion and Future Work

The computational demands of robot motion planning for a future in which robots are increasingly

a part of everyday life will require planning algorithms that can effectively utilize available computing

power. In the past, single-threaded computing power grew exponentially as new processors were

released over time, but this trend no longer continues. Instead, computing power is now exponentially

growing through increasing multi-core parallelism. Making use of this parallelism has been our

focus—whether through the robot’s onboard CPU, or through a tandem computation with the vast

computing power in the cloud.

In this dissertation, we addressed the following thesis statement:

Robot motion planning algorithms using multi-core parallelism, concurrent data structures, and

cache-awareness can demonstrate superlinear speedup. With this speedup, robots can solve complex

motion planning problems sooner and converge towards optimal motion plans faster. The resulting

faster motion planning can enable robots to effectively operate in dynamically evolving scenarios,

including cases in which a robot with a low-power CPU gains access to faster motion planning through

computers deployed in the cloud.

To support this thesis, we introduced lock-free sampling-based motion planning, a partitioning

approach to SO(3) for fast nearest neighbor searching, a concurrent nearest neighbor searching

data structure with provable guarantees, cache-aware motion planning, and cloud-based motion

planning for dynamic environments. With the lock-free sampling-based motion planning we sped up

motion planning to scale linearly with additional multi-core parallelism, and sometimes observed

superlinear speedup. With SO(3) nearest neighbor partitioning, we further sped up motion planning

for robots that must plan for rotations in 3D. With the concurrent nearest neighbor searching data

structure, we provide fast nearest neighbor searching with provably correct and asymptotically

wait-free operation. With the cache-aware sampling-based motion planning, motion planning is able

avoid the slowdown due to cache misses, and to run faster for longer. With the cloud-based motion
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planning, robots can react to changing environments, even when their on-board computing abilities

would be insufficient to do it alone. Finally, to facilitate the use of this dissertation’s contributions

in practice, we developed an open-source library for fast motion planning using scalable multi-core

parallelism.

8.1 Future Work

The contributions presented in this dissertation open up several avenues for continuing research.

Some of the immediate avenues relate to distributed parallel algorithms, metric spaces for nearest

neighbor searching, approximate algorithms to increase motion planning convergence rate, cloud-based

generation of roadmaps constrained to hard real-time limits, and integration with the optimization-

based motion planning paradigm.

Distributed memory parallelism The algorithms and data structures presented in this disser-

tation focus on shared-memory parallelism, in which multiple computing cores share common data

structures, such as the motion planning graph and nearest neighbor data structure. While computing

trends indicate that future multi-core CPUs will continue to gain increasing core counts, it is not

guaranteed. Additionally, some motion planning problems may require more computing power than

even the fastest cloud-based computers can provide. As such, it may be desirable to gain additional

computing power through multiple networked multi-core computers. In this case, the memory is

distributed (no longer shared), which introduces additional computational bottlenecks. While a

wealth of research has explored different avenues for distributed motion planning, to the best of our

knowledge, none have integrated the shared memory approach presented in the dissertation with

distributed memory computations.

Additional metric spaces for concurrent nearest neighbor searching The nearest neighbor

data structures we presented support searching on weighted Cartesian products of Minkowski, 2D

rotational, and 3D rotational spaces—and while this covers a broad class of robot motion planning

problems, it would be beneficial to support addition metric spaces or even general metric spaces.

GNAT, while slower than kd-trees, has the benefit of supporting arbitrary metric spaces. Thus one

avenue of research could be creating a concurrent data structure based upon GNAT.
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Approximate nearest neighbor search and near-optimal motion planning Recently there

has been a surge in exploring motion planners that are asymptotically “near” optimal. In these

planners, the optimality constraint is relaxed in favor of decreased computation time. When

planning for dynamic environments using robot-based or cloud-based multi-core parallelism, it may

be possible to gain additional speedup by using nearest-neighbor approximations that would result

in an asymptotically near-optimal planner.

Generating roadmaps which have timing guarantees In the cloud-based motion planning

contribution, the cloud generates a roadmap (graph) that the robot uses to avoid collisions with

dynamic obstacles. It is left as an engineering exercise to ensure that the robot can search the

roadmap rapidly enough to avoid collision—perhaps relying on a wealth of graph-based search

algorithm research to perform the task. A future avenue of research would be to look into how to

make cloud-based roadmap generation produce a graph which matches the robot’s computational

capabilities—thus, for exampling, guaranteeing that the robot’s worst-cased execution time on the

graph search would always meet a safety-critical deadline.

Integration with optimization-based motion planning The work of this dissertation focuses

on sampling-based motion planning as these types of motion planners can have the favorable

properties of providing probabilistic completeness and/or asymptotic optimality. Unfortunately, as

a consequence of the sampling-based approach, the produced motion plans often require a post-

processing step to produce a smooth motion. On the other hand, optimization-based motion planners

often produce smooth motions, but without the probabilistic completeness and asymptotic optimality

guarantees. To address the lack of probabilistic completeness, one approach is to repeatedly attempt

optimizations by varying the initial conditions. This suggests that future research could explore

using the parallel multi-core planners of this dissertation to rapidly seed the initial conditions of

multiple optimization-based planners run in parallel.
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