1,681 research outputs found

    Superintegrable Hamiltonian systems with noncompact invariant submanifolds. Kepler system

    Full text link
    The Mishchenko-Fomenko theorem on superintegrable Hamiltonian systems is generalized to superintegrable Hamiltonian systems with noncompact invariant submanifolds. It is formulated in the case of globally superintegrable Hamiltonian systems which admit global generalized action-angle coordinates. The well known Kepler system falls into two different globally superintegrable systems with compact and noncompact invariant submanifolds.Comment: 23 page

    Quadratic Poisson algebras for two dimensional classical superintegrable systems and quadratic associative algebras for quantum superintegrable systems

    Full text link
    The integrals of motion of the classical two dimensional superintegrable systems with quadratic integrals of motion close in a restrained quadratic Poisson algebra, whose the general form is investigated. Each classical superintegrable problem has a quantum counterpart, a quantum superintegrable system. The quadratic Poisson algebra is deformed to a quantum associative algebra, the finite dimensional representations of this algebra are calculated by using a deformed parafermion oscillator technique. It is shown that, the finite dimensional representations of the quadratic algebra are determined by the energy eigenvalues of the superintegrable system. The calculation of energy eigenvalues is reduced to the solution of algebraic equations, which are universal for all two dimensional superintegrable systems with quadratic integrals of motion.Comment: 28 pages, Late

    Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory

    Get PDF
    This article is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. In the first part of the article we study the Stäckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different three-dimensional spaces. We show first that all superintegrable systems with nondegenerate potentials are multiseparable and then that each such system on any conformally flat space is Stäckel equivalent to a system on a constant curvature space. In the second part of the article we classify all the superintegrable systems that admit separation in generic coordinates. We find that there are eight families of these systems

    Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform

    Get PDF
    This paper is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. Here we study the Stäckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different spaces. Through the use of this tool we derive and classify for the first time all two-dimensional (2D) superintegrable systems. The underlying spaces are exactly those derived by Koenigs in his remarkable paper giving all 2D manifolds (with zero potential) that admit at least three second order symmetries. Our derivation is very simple and quite distinct. We also show that every superintegrable system is the Stäckel transform of a superintegrable system on a constant curvature space

    Tools for Verifying Classical and Quantum Superintegrability

    Get PDF
    Recently many new classes of integrable systems in n dimensions occurring in classical and quantum mechanics have been shown to admit a functionally independent set of 2n-1 symmetries polynomial in the canonical momenta, so that they are in fact superintegrable. These newly discovered systems are all separable in some coordinate system and, typically, they depend on one or more parameters in such a way that the system is superintegrable exactly when some of the parameters are rational numbers. Most of the constructions to date are for n=2 but cases where n>2 are multiplying rapidly. In this article we organize a large class of such systems, many new, and emphasize the underlying mechanisms which enable this phenomena to occur and to prove superintegrability. In addition to proofs of classical superintegrability we show that the 2D caged anisotropic oscillator and a Stackel transformed version on the 2-sheet hyperboloid are quantum superintegrable for all rational relative frequencies, and that a deformed 2D Kepler-Coulomb system is quantum superintegrable for all rational values of a parameter k in the potential

    Deformed oscillator algebras for two dimensional quantum superintegrable systems

    Full text link
    Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.Comment: 22 pages, THES-TP 10/93, hep-the/yymmnn

    Superintegrability of the Fock-Darwin system

    Get PDF
    The Fock-Darwin system is analysed from the point of view of its symmetry properties in the quantum and classical frameworks. The quantum Fock-Darwin system is known to have two sets of ladder operators, a fact which guarantees its solvability. We show that for rational values of the quotient of two relevant frequencies, this system is superintegrable, the quantum symmetries being responsible for the degeneracy of the energy levels. These symmetries are of higher order and close a polynomial algebra. In the classical case, the ladder operators are replaced by ladder functions and the symmetries by constants of motion. We also prove that the rational classical system is superintegrable and its trajectories are closed. The constants of motion are also generators of symmetry transformations in the phase space that have been integrated for some special cases. These transformations connect different trajectories with the same energy. The coherent states of the quantum superintegrable system are found and they reproduce the closed trajectories of the classical one.Comment: 21 pages,16 figure
    corecore