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This article is one of a series that lays the groundwork for a structure and classifi-
cation theory of second order superintegrable systems, both classical and quantum,
in conformally flat spaces. In the first part of the article we study the Stickel
transform (or coupling constant metamorphosis) as an invertible mapping between
classical superintegrable systems on different three-dimensional spaces. We show
first that all superintegrable systems with nondegenerate potentials are multisepa-
rable and then that each such system on any conformally flat space is Stickel
equivalent to a system on a constant curvature space. In the second part of the
article we classify all the superintegrable systems that admit separation in generic
coordinates. We find that there are eight families of these systems. © 2006 Ameri-
can Institute of Physics. [DOI: 10.1063/1.2191789]

I. INTRODUCTION

This is a continuation of the series'~ whose purpose is to lay the groundwork for a structure
and classification theory of second order superintegrable systems, both classical and quantum, in
complex conformally flat spaces. Real spaces are considered as restrictions of these to the various
real forms. In Refs. 1 and 3 we have given examples in two and three dimensions, described the
background as well as the interest and importance of these systems in mathematical physics and
given many applications relevant to such systems on conformally flat spaces. Observed features of
the systems are multiseparability, closure of the quadratic algebra of second order symmetries at
order 6, use of representation theory of the quadratic algebra to derive spectral properties of the
quantum Schrodinger operator, and a close relationship with exactly solvable and quasiexactly
solvable problems. Our approach is, rather than focus on particular spaces and systems, to use a
general theoretical method based on integrability conditions to derive structure common to all
systems. In distinction to the two-dimensional (2D) case, there are relatively few papers consid-
ering superintegrability on spaces of dimension =3. A few exceptions are Refs. 4—13. Except for
our own work, no one appears to have studied the detailed structure and classification theory for
these higher dimensional systems.

In the first part of this article we study the Stickel transform, or coupling constant
metamorphosis,”’15 for three-dimensional (3D) classical superintegrable systems. Recall that for a
classical 3D system on a conformally flat space we can always choose local coordinates x, y, z,
not unique, such that the Hamiltonian takes the form H= (p%+ p%+p§)/ N(x,y,z)+V(x,y,z). This
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system is second order superintegrable with nondegenerate potential V=V(x,y,z,a,B,7,6) if it
admits five functionally independent quadratic constants of the motion (i.e., generalized symme-
tries) Sy=2;a(ypip;+ W (x,y,a, B, 7). As described in Ref. 3, the potential V is nondegenerate if
it satisfies a system of coupled partial differential equations of the form

Vi =V + A%V + B2V, + CPVs, Vi =V, + APV, + B¥V,+ CVV;,
Vip=A2V, + B2V, + C'?v;, Vi3=A%V, + BBV, + CBV;, (1)

Vy3 =A%V, + BBV, + CBV;,

whose integrability conditions are satisfied identically. The analytic functions AY,BY,C% are de-
termined uniquely from the Bertrand-Darboux equations for the five constants of the motion and
are analytic except for a finite number of poles. At any regular point xo=(xy,yg,20), i.€., a point
where the AY, B, and C” are defined and analytic and the constants of the motion are functionally
independent, we can prescribe the values of V(x),V,(xq), V,(Xy), V3(xg), V}1(xo) arbitrarily and
obtain a unique solution of (1). Here, V,=dV/dx, V,=0dV/dy, etc. The four parameters for a
nondegenerate potential (in addition to the usual additive constant) are the maximum number of
parameters that can appear in a superintegrable system. If the number of parameters is fewer than
four, we say that the superintegrable potential is degenerate.

The 3D Stickel transform is a conformal transformation of a superintegrable system on one
conformally flat 3D space to a superintegrable system on another such space. We discuss some of
the properties of this transform for a classical system and then prove two fundamental results: (1)
We show that every superintegrable system with nondegenerate potential is multiseparable. This
result uses the structure theory for such systems that we worked out in Ref. 3. (2) We prove that
all nondegenerate 3D superintegrable systems are Stiickel transforms of constant curvature sys-
tems. Thus, to obtain all nondegenerate conformally flat superintegrable systems, it is sufficient to
classify those of constant curvature. The proofs of these fundamental results rest on results ob-
tained in Ref. 3, and the careful reader of this article will need to keep Ref. 3 at hand.

In the second part of the article we use the results of the first part and our explicit knowledge
of all separable coordinate systems on 3D constant curvature spaces to make a major advance in
the classification of all separable systems with nondegenerate potential on a conformally flat
space. Among the separable systems for 3D complex Euclidean space there are seven that are
“generic.” We give a precise definition later, but, essentially this means that the coordinates belong
to a multiparameter family. The ultimate generic coordinates are the Jacobi elliptic coordinates
from which all others can be obtained by limiting processes.lﬁ’17 We show that each of the generic
separable systems uniquely determines a nondegenerate superintegrable system that contains it.
We obtain a similar result for the five generic separable systems on the complex three-sphere.
However, four of these turn out to be Stickel transforms of Euclidean generic systems. Thus we
find eight Stickel inequivalent generic systems on constant curvature spaces and all generic
systems on 3D conformally flat spaces must be Stickel equivalent to one of these. (In addition
there are two nondegenerate superintegrable systems in Euclidean space that are only weakly
functionally independent and these give rise to similar systems on a variety of conformally flat
spaces.) Thus we exhibit ten families of superintegrable systems in conformally flat spaces. This
does not solve the classification problem completely, but it is a major advance. Any remaining
nondegenerate superintegrable systems must be multiseparable but separate only in degenerate
separable coordinates. This remaining problem is still complicated, but much less so than the
original problem. This is a technically detailed proof, but the results are quite explicit and easy to
grasp. We derive and give a simple characterization of eight families of separable systems whose
Stickel transforms yield nondegenerate superintegrable systems on a variety of conformally flat
spaces.

The next article in this series will extend all of our classical 2D and 3D results to the quantum
case. This is very easy in the 2D case but requires some machinery in 3D.
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Second order conformal Killing tensors: There is a close relationship between the second-
order Killing tensors of a conformally flat space in 3D and the second order conformal Killing
tensors of flat space. A second order conformal Killing tensor for a space M5 with metric ds>
=N\(x;,%;,%3)(dx]+dx3+dx3) and free Hamiltonian H=(pj+p3+p3)/\ is a quadratic form S
=Za"(x;,x,,X3)p;p; such that {H,S}=f(x;,x,,x3)H, for some function f. Since f is arbitrary, it is
easy to see that S is a conformal Killing tensor for M5 if and only if it is a conformal Killing
tensor for flat space dxj +dx2+d)c2 The conformal Killing tensors for flat space are Very well
known, e.g., Ref. 18. The space of conformal Killing tensors is infinite dimensional.” Tt is
spanned by products of the conformal Killing vectors

Pi1» P2 P33 X3pr—XpD3, X|P3— X3Py,  XoPyp—X1P2,  X1P1F XoPo +X3p3,
) )
(] = X3 = X3)p1 + 2x103p3 + 201 X0p0, (X5 = X] = X3)py + 2X0X3p5 + 255Xy,

)
(x5 = X7 = X3)p3 + 23X, py + 2X3%,D,

and terms g(x;,x,,%3)(p?+p3+p3), where g is an arbitrary function. Since every Killing tensor is
also a conformal Killing tensor, we see that every second-order Killing tensor for M; can be
expressed as a linear combination of these second-order generating elements though, of course, the
space of Killing tensors is only finite dimensional. This shows in particular that every a” and every
a''—a// with i # j is a polynomial of order at most four in x,, x,, x3, no matter what is the choice

of \.
A straightforward, though tedious, computation from the above-mentioned results yields the
expressions
12 12 _ 2_ 2 4 (8
ay) == ay;= a3(x7 = x3) + (8 + Y2)x1Xy — a1 X X3 — apXpX3 + hax + E3xy + paxy + v,
13_ 13 _ 22 2
ay) == a3y = a(X] = X3) — XX + Yo X3 — @3Xpxz + oxy + Ex0 + foX3 + 1y, ()

23 23 2 2
a5y =—ay=a(x; —x3) — X Xy + a3X X3+ O XoX3 + yxy + 1y + pyxs + vy,

where «a;, 5 Yjs ¢, §j, Mjs and v; are constants. Further (a""—ajj)i=2ajj for i #j, and a§2+a53

+a%3—0.
It is useful to pass to new variables all, &, a3, a'?, a3, a® for the Killing tensor, where

a*=a?*-a"! ¢**=a?-a''. Then we see that a®*, a3, a'?, a3, a® are polynomials of order <4.

The remaining conditions can be expressed in the form

(all)\)l == )\25112 - )\3013’ (aH)\)z == 7\15112 - (024)\)2 - )\36123,

3)
(@'™)3==Na® = Na® - (PN,

Theorem 1: Necessary and sufficient conditions that the quadrattc form S=3; a ipp i+ W be
a second order constant of the motion for the space with metric ds> =N(dx; +d)c2 dxz) and poten-
tial V are

(1) E,-jaijpipj is a conformal Killing tensor on the flat space with metric dxf+dx%+dx§.
(2)  The integrability conditions for (3) hold:

(\aa"?+ 230"y = (\ja'? + (@®N)y + Na™)
(N2 +X3a7)3= (N a® + Ma® + (a*N)3),, 4)
(7\1(1]2 + (a24)\)2 + )\3023)3 = ()\1&13 + )\26123 + ((134)\)3)2.

(3) The Bertrand-Darboux conditions for the potential hold:
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3
2 [V Aa = Viha + V(Aa*); - (a*) )] = 0. (5)
s=1

These are just the conditions z?x(széxiW( for j# L.

Il. THE STACKEL TRANSFORM FOR 3D SYSTEMS

The Stickel transform' or coupling constant rnetamorphosis15 plays a fundamental role in
relating superintegrable systems on different manifolds. Suppose we have a superintegrable sys-
tem

_Pi+D3 D
A(x,y,2)

in local orthogonal coordinates, with nondegenerate potential V(x,y,z):

+ V(x,y,2) (6)

V33 = Vll +A33V1 + 333‘/2 + C33V3, V22 = Vll +A22V1 + BZZV2 + C22V3,
V23=A23V1 +BZSV2+ C23V3, V13 =A13V1 +BISV2+ C13V3, (7)

V]z =A12V1 + B]2V2 + C12V3

and suppose U(x,y,z) is a particular solution of Egs. (7), nonzero in an open set. Then the
transformed system H=(p?+p3+p3)/\+V with nondegenerate potential V(x,y,z):

‘733 = ‘711 +A~33‘71 + §33‘72 + 633‘73, ‘722 = ‘711 +AVZZ‘71 + §22‘72 + 622‘73,
‘723=g23‘71 +EZ3‘72+623‘73, ‘713 =A~13‘71 +EIS‘72+513‘73, (8)

‘712 =ng‘71 + 512‘72 + 5]2‘73,
is also superintegrable, where
Us

_ V- U< -
N=\U, V=—, AB=A¥422L B=cP-23

s

A2 A2 ZZ, B2 -_p2_ 2ﬂ’ BB _p®B_ % CB_ B ﬂ’
U U U U

A‘13=A13_% 513=C13_ﬂ A‘12=A12_ﬂ Elzan_ﬂ
U’ U’ U’ U’

and AB=A2, B¥=p3, BB3=B13 C2=C?%4, C2=C". Let S=3a'pp;+W=S,+W be a second
order symmetry of H and Sy=2a"p;p;+Wy=S,+ W, be the special case that is in involution with
(p3+p3+p3)/\+U. Then S=Sy—(Wy/U)H+(1/U)H is the corresponding symmetry of H. Since
one can always add a constant to a nondegenerate potential, it follows that 1/U defines an inverse
Stiickel transform of H to H. See Ref. 14 for many examples of this transform.

ll. MULTISEPARABILITY AND STACKEL EQUIVALENCE

From the general theory of variable separation for Hamilton-Jacobi equations, e.g., Refs. 20
and 21 we know that second order symmetries L;,L, define a separable system for the equation
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2, 2. 2
+p%+
Px¥ Py TP +V(x,y,z) =E
Ax,y,2)

if and only if (1) the symmetries H, L, L, form a linearly independent set as quadratic forms, (2)
{L|,L,}=0, and, (3) the three quadratic forms have a common eigenbasis of differential forms.
This last requirement means that, expressed in coordinates x, y, and z, at least one of the matrices
A(;(x) (of the quadratic form associated with L;) can be diagonalized by conjugacy transforms in
a neighborhood of a regular point and that [A()(x),A(;y(x)]=0. However, for nondegenerate
superintegrable potentials in a conformally flat space we see that {L;,L,}=0<[A(«)(X)),A()
X(x)]=0, F(x0)=0 at a single regular point x,, see Sec. V of Ref. 3, so that the intrinsic
conditions for the existence of a separable coordinate system are simplified.

Let A=3,;a A, B=3,_ b AY, be the matrices of two symmetries at the point X,. Here,
Al =%(€U +&) where £7 is the 3 X3 matrix with matrix element 1 in row i, column j, and 0
everywhere else. From the table in Sec. V of Ref. 3 we see that the corresponding symmetries are
in involution if and only if the matrices 4,3 commute and the additional condition

(@' = b2 (CB = BP = AB) + (a22b"? - a'2?)(CP - 2B%)
+ (@B = a"1p1) (BB + 2412 = B2) + (0P = a3p)(2BP + 2412~ B?)
+ (@22 = 2% (- 2B'2 = AP + (PP = b¥a®) (- 2B2 + A2 - 24%)
+2(a"p?2 - a2" + a¥p" - a"'P + a2 - aPpD)AR + (aPb' - a'hP) (A2 - AD)

+ (a33bl2_a12b33)(323 _A13) + (a13b22_a22b13)B33=0 (9)

holds. Note that the metric G does not appear in these conditions.

Theorem 2: Let V be a superintegrable nondegenerate potential in a 3D conformally flat
space. Then V defines a multiseparable system.

Proof: From (9) we see that the second order symmetries with matrices A®% and A"V
+BA"? will be in involution if and only if 2aA?+B(B*-~A'%)=0 at the regular point x,. If
AP(x,)=0 we can set @=1, 8=0 and the symmetries A%, A'! will define a separable system. If
A%(xy) #0 we can set a=—(B?-A'3)/2A%, B=1. Then the symmetries with nonzero matrices
ABY and a. A"+ BA1?) will be in involution. The second case must occur for some regular point
X, unless A2(x)=0 for all x. In this last eventuality we can perform a suitable Euclidean rotation
(with arbitrarily small complex rotation angle) so that A>* does not vanish identically in the rotated
coordinate system. It is a straightforward exercise to show that this transformation is not possible
if and only if

B33 - C22= 0’ A]3 =B23, A12= C23, A22=A33. (10)

In this eventuality, we can set =0, B=1 and find a solution. Thus we can always find a linear
combination of these matrices, corresponding to S=1 and with three distinct eigenvalues, so they
will determine separable coordinates. We could have carried through this same construction for the
second order symmetries with matrices .A®? and yA'V+ 5413 and for the second order sym-
metries with matrices A" and uA®?+&A?) and shown that we could always find solutions
with 6=¢&=1. Thus the system is multiseparable (in at least three coordinate systems).  Q.E.D.

Corollary 1: Let V be a superintegrable nondegenerate potential in a 3D conformally flat
space. Then there is a continuous one-parameter (or multiparameter) family of separable systems
for V, spanning at least a five-dimensional subspace of symmetries.

Proof: We follow the method of proof of the theorem.

Case I: Suppose A?*(x,) # 0. From (9) we can verify that the symmetries with matrices
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0 0 0 g 12 12
A=|0 2 —-f|, B=[12 0 o0 |, (11)
0 —f 1 f2 0 0

are in involution provided

_ 4f2323 + 2f2c33 + 3fB33 + 4fA12_ 2f322+f323 _ 4f2gA23 _ 4ng22
+4fgAP +4gA% + 2B¥ - 24P - 2/°B¥ = 0.

As A?(x,) # 0 this equation can be solved for g as a function of f for f in some open set. The
resulting symmetries .A,B are in involution and have eigenvalues (0,0,f>+1) and (0, %[g
N\ +g2+1], %[g— Vf2+g*+1]), respectively. Thus they determine a one-parameter family of
separable coordinates. Moreover, as f varies in an open set, the space spanned by the symmetries
(including the Hamiltonian) has dimension six.

Case II: Tf A?*(x,)=0, we can assume that Eq. (10) holds. Then the problem breaks up into a
series of special cases. Suppose first that C33—2A'3=¢ # 0. Then we can verify that the symmetries

with matrices

0 2gk/IK 0 fogl2 12
A=|2¢gk/ik 1 -g/K|, B=|gl2 0 0 |, (12)
0 -glK g*K 12 0k

are in involution provided K=1-4fk+# 0 and g satisfies

- g(2A2 - B?) + 2k(A** +2B'?) = ¢.

If 2A12—B?2( then there is a nonzero solution expression g as a function of k. Since f,k are
essentially arbitrary, they determine a five-dimensional space spanned by the symmetries and a
two-parameter family of separable coordinates. If 24>~ B??=0, A>2+2B'?>+0 then k is a nonzero
constant and f,g are essentially arbitrary, so they again determine a five-dimensional space
spanned by the symmetries and a two-parameter family of separable coordinates. If 24'2—B??
=0, A¥+2B'?=0, then the symmetries with matrices

0 HK 0 fog 112
A=|HK 1 0 |, B=|g2 0 2|, (13)
0 0 LK 12 hi2 k

where K=1-4fk—h*-2hgf+0, and

H=—h+2gk+hg>, G=—g+2fh+gh’*, L=g?>—h>+2hg(k—-f),

are in involution provided f=(g/2h—h/2g). (This implies G=0 and L=Hh.) They determine a
six-dimensional space spanned by the symmetries and a three-parameter family of separable
coordinates. This covers all cases where € # 0.

Now suppose €=0, i.e., C*=2A'3. Then the symmetries with matrices (13) are in involution
provided

(A" — B??)(h* — g% + 2hgf — 2hkg) + (A** + 2B'?)(— h + 2kg + hg?) = 0.

If 2A'2—B?? 0 then we can solve this equation to express f as a nonzero function of g,/,k. This
yields at least a five-dimensional space spanned by the symmetries and a three-parameter family of
separable coordinates. Finally, suppose in addition that 24'>—B?>=0. Then we can verify that the
symmetries with matrices
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00 0 g 12 fn
A=l0 2 -f), B=|1/2 0 0 |, (14)
0 -f 1 f20 0

are in involution with no conditions on f,g. Again, as f,g vary in an open set, the space spanned
by the symmetries (including the Hamiltonian) has dimension six. Q.E.D.

In Ref. 17 the following result was obtained.

Theorem 3: Let uy,u,,us be an orthogonal separable coordinate system for a 3D conformally
flat space with metric d5>. Then there is a function f such that fds*=ds* where ds” is a constant
curvature space metric and ds*> is orthogonally separable in exactly these same coordinates
Uy, uy,us3. The function f is called a Stickel multiplier with respect to this coordinate system.

Thus the possible separable coordinate systems for a conformally flat space are all obtained,
modulo a Stdckel multiplier, from separable systems on 3D flat space or on the three sphere.

Theorem 4: Every superintegrable system with nondegenerate potential on a 3D conformally
flat space is Stickel equivalent to a superintegrable system on either 3D flat space or the three
sphere.

Proof: Suppose we have a superintegrable system with nondegenerate potential on a confor-
mally flat space. Then by Corollary 1 this system separates in a one- or multiparameter family of
coordinate systems spanning a five-dimensional subspace of symmetries. By Theorem 3 each of
these three systems is conformal to a separable system in flat space or on the three sphere. Thus
from Ref. 19, p. 85, the metric for the space in standard Cartesian-like coordinates x, y, z is
simultaneously conformal to three systems corresponding to the following possible choices for the
metric function \(x,y,z), namely

1, U(x+iy)% 1/ (flatspace); 1/x%, 1/(1+r*/4)> (three sphere); (15)

in the same coordinates, and each of the conformal factors is a Stickel multiplier with respect to
the corresponding separable coordinates. From the Corollary we see that we can find two sepa-
rable systems such that the factor (15) is the same, i.e., the metric must take the form ds?= fdsz,
where ds? is the metric on a single constant curvature space, either 3D flat space or the three
sphere, and the constant curvature space separates in these same two coordinate systems. Further
the space of symmetries spanned by the two sets is at least five dimensional.

Then we have (H+V)/f=H+V, where H+V is the original superintegrable system, 7 is the
Hamiltonian on a constant curvature space, and V is the induced multiparameter potential. Under
the transform f each of the commuting second order symmetries S of the original system that
defines a coordinate separation transforms to a symmetry of the form S+g¢H for gy a function.
There are at least five such functionally linearly independent symmetries arising from separation
in two coordinate systems, so the constant curvature space system admits five functionally linearly
independent symmetries. Thus the potential V must satisfy the Bertrand—Darboux equations for
these symmetries. It follows that V is nondegenerate and by Theorem 2 of Ref. 3 that the system
‘H+V is itself superintegrable with nondegenerate potential. The function f is simultaneously a
Stickel multiplier with respect to the two coordinate systems whose symmetries completely char-
acterize the superintegrable system 7{+ V. That is, f satisfies the Bertrand—Darboux equations for
five functionally linearly independent symmetries. Hence f itself satisfies the equations that de-

termine the nondegenerate potential V. This means that the system H+V is Stickel equivalent to
the constant curvature space superintegrable system. Q.E.D.

IV. CLASSIFICATION OF NONDEGENERATE SYSTEMS

A. Separable systems in complex Euclidean space
It is a difficult task to list all 3D conformally flat superintegrable systems with nondegenerate
potential and to show that the classification is complete. However, we now have tools to simplify

the problem. First, as every such system is Stickel equivalent to a system on Euclidean space or
the complex sphere, we can restrict ourselves to those two spaces. Second, since every such
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system is multiseparable, we can bring to bear our knowledge of all orthogonal separable coordi-
nates on these spaces. These results can be gleaned from the books**!'® and many papers of the
authors, e.g., Ref. 17. Thus in principle, we have enough information to accomplish our task,
though the details are formidably complicated.

We begin by summarizing the full list of orthogonal separable systems in complex Euclidean
space and the associated symmetry operators. Here, a “natural” basis for first order symmetries is
given by py=p,, pr=py, p3=p,, J1=YP,—2Py> J2=2p—xp;, J3=xp,—yp, in the classical case and
P1=0y, P2=0y, p3=0., J1=yd.~2d,, J,=2d,~xd,, J3=xd,~yd, in the quantum case. (In the operator
characterizations for the quantum case, the classical product of two constants of the motion is
replaced by the symmetrized product of the corresponding operator symmetries.) The Hamiltonian
is H =p%+ p§+ p%. In each case below we list the coordinates followed by the constants of the
motion that characterize them.

Note: The bracket notation used to describe generic coordinates in three-dimensional Euclid-
ean space is due to Bocher and is an adaptation of the notation used to describe the elementary
divisors of two quadratic forms one of which is the quadratic form associated with Euclidean
space and the second with the quadratic form of the coordinate curves describing the coordinate
system. In order to do this in three dimensions and also deal with separable solutions of Laplace’s
equation we use the symbol [py,p,,...,p,] where 27_p;=5 and p,=2. (See Ref. 16 for further
details). This determines a coordinate system whose infinitesimal distance is of the form

2_ 1 2 1 2 1 2
B 0w Pt e P e P
where P(\)=(A—¢)P1---(\—e,)Pr. The index p, is associated with oo,
(u—e)v—e)w-e) 2_ z(u—ez)(v—ez)(w—ez)

[2111] **=¢2

) b}

(e —ex)(e; —e3) (ex—ep)(ex—e3)

2 2(” —e3)(v—e3)(w—e3)

N (e3—ep)(e3—ey)

b}

2.2, P2 2 2 2

L1=J1+J2+J3+c2((el+e2)p3+(el+e3)p2+(e3+ez)p]),
2 2 2 2 2 2
Ly=eJi+exJ5+e3J5+ cz(elezp3 + eje3p; + ezepy).

B (u—e)(v—e)w-e)

[211] X*+y*=-c¢
(91—62)2

2

e —e) + U—e)w—e) + (v —e)w—e))],
el —62

2(u—el)(U—el)(W—€1) 2 2(u—€2)(0—62)(W—62)
c “=c

€)1 =€) ' (32—61)2

(x=iy)*=

Li=Ji+ 3+ T3+ cX(e) — e)(py +ipy)* +2e,p5 + (e + €) (0] + p2),

L,= ez(J% + J%) +(ey—e)(Jy +iJy)* + eng + cz((elez(p% +p§) +e(e;—e)(p; +ip))* + e%p%)).

1 (142+112+w2

) u?v? + utw? + viw?
[23] x-iy= 2¢ )

1
uvw 2 woinw?
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—+—+—), X+ 1y =cuvw.

u
Li= B+ B+ B+2cp +ip)ps,  Ly==2J5(J, +iJy) + c*(py +ipy)°.

1 1 1 3
[311] x=f—l<u2+v2+w2+;+?+y>+—c,

2
B E(uz—l)(vz—l)(w2—l) 3 .E(u2+1)(02+1)(w2+1)
T4 Uvw ’ _l4 Uvw '

1
Ly=c(Jspy=Jops) + (p1=p3).  Ly=- ZJ%— clops —c'p3.

1
[32] x+iy=uvw, x—iy:—(—+—+—), z:E(u2+vz+w2).

Ly==c(h+iJ))(py+ipy) = c(J—iJ,)(py = ipy) = Cz(pl + ip2)2’
Ly=J3-2c(J,—iJ,)(p) +ipy).

[41] x+iy=u2v2+u2w2+v2w2—%(u4+v4+w4), x—iy=cXu? +v>+w?), z=2icuvw.

The symmetries that describe this system are

Li==iJ3(p; = ipy) + ([ +iJ)ps + };C4(P1 +ipy)®,  Ly=—(Jy—iJy)* = 2ic*(Jy +iJy)ps.

[5] x+iy=clu+v+w), x—iy:i(u—v—w)(u+v—w)(u+w—v),

c
z=—Z(u2+vz+w2—2(uv+uw+vw)).

Ly =iJ5(py +ipy) + (J, = iJ)ps + cp3(py — ipa),

1 . . . . . . c .
L,= Z(Jz - 111)2— cQWUs+iyi(p +ipy) +i(py —ipy)(Jy +iJy)) + Z(Pl - 1P2)2~

We summarize the remaining degenerate separable coordinates:
Euclidean coordinates: All of these have one symmetry in common: L;= p%. The seven sys-
tems are, polar, Cartesian, light cone, elliptic, parabolic, hyperbolic, and semihyperbolic.
Complex sphere coordinates: These all have the symmetry L,=J2+J3+J3 in common. The
five systems are spherical, horospherical, elliptical, hyperbolic, and semicircular parabolic.
Rotational types of coordinates: There are three of these systems, each of which is character-
ized by the fact that one defining symmetry is a perfect square.
Nonorthogonal heat type coordinates: Each of these nonorthogonal systems corresponds to
one first order symmetry. Hence it cannot arise for systems with nondegenerate potentials.
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Note that the first seven separable systems are generic, i.e., they occur in one-, two- or
three-parameter families, whereas the remaining systems are special limiting cases of the generic
ones. We shall show that each of the generic separable systems uniquely determines a nondegen-
erate superintegrable system.

B. Generic 3D Euclidean superintegrable systems

Each of the seven generic Euclidean separable systems depends on a scaling parameter ¢ and
up to three parameters e;, e,, es. For each such set of coordinates we shall show that there is
exactly one nondegenerate superintegrable system that admits separation in these coordinates
simultaneously for all values of the parameters c, e;.

Consider the system in Ref. 23, for example. If a nondegenerate superintegrable system
separates in these coordinates for all values of the parameter ¢, then the space of second order
symmetries must contain the five symmetries

H=pi+py+pi+V, Si=Ji+L+J5+f1, Sy=J50;+il) +fr,

Sy=(po+ip)+f5, Sy=p.p.+ip,) +fs

It is straightforward to check that the 12 X 5 matrix of coefficients of the second derivative terms
in the twelve Bertrand-Darboux equations associated with symmetries Sy, ...,S, has rank five in
general. Thus, there is at most one nondegenerate superintegrable system admitting these symme-
tries. Solving the Bertrand-Darboux equations for the potential we find the unique solution

P S +y2=32%)
(x+iy)?  (x+iy)? (x+iy)*

V(x) = a(x* +y?+2%) +

Finally, we can use the symmetry conditions for this potential to obtain the full six-dimensional
space of second order symmetries. This is the superintegrable system III on the following table.
The other six cases yield corresponding results.

Theorem 5: Each of the seven generic Euclidean separable systems determines a unique
nondegenerate superintegrable system that permits separation simultaneously for all values of the
scaling parameter ¢ and any other defining parameters e;. For each of these systems there is a
basis of five (strongly) functionally independent and six linearly independent second order sym-
metries. The corresponding nondegenerate potentials and basis of symmetries are (the f; are
functions of x|, x5, x3):

1[2111] V=%+%2+%+5(x2+y2+12), (16)
a X ;
P;= ‘9;2@.'*‘ 5xi2 + —2’, Jij= ()cipxj—xjpxi)2 + aiz—é + ajz-—;, i=j.
X; X; X

x—1y N y L9
(x+iy)®  (x+iy)? 2

M[221] V=al+y*+2)+pB (17)

Si=J-J+fi. S=pitfn S;=h+fi

Su=(po+ip)?+fan Ls=(Lr—il))* + fs.
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Sx*+y*-32%)
M [23] V=al+y*+72)+ B +—= , 18
(23] a4y +7) (x+iy)?  (x+iy)’ (x+iy)* (18)

Si=J-J+f1, S=(Lh—il)+fr S3=L(J,—il) +f3,

S4=(px+ipy)2+f4? 85=pz(px+ipy) +f5'

5
IV [311] v=a(4x2+y2+z2)+ﬁx+12+—2, (19)
Yz

Si=pi+fi. S=pi+frn Sy=plr+fi,
Sy=pyJs+fa Ss=Ji+fs.

V[32] V=a@dP+y2+2)+Br+ ——+ at) _."Z) , (20)
(y+iz2)?  (y+iz)}

Si=pi+fi. So=di+fo Si=(p.—ip)(y+ils) + f3,

Sy=pJr—-pJi+fi, Ss=(p,—ip,)* +fs.

VI[41] V=a(?-2(x-iy)* + 4+ %) + BR(x +iy) = 3(x — iy)?) + Y(x — iy) + =
Z

(21)
Si=(p.—ip)*+f1, Sy=pitfo Si=pJr+il)+fi,
i
S4=J3(px_ipy)_Z(px+ipy)2+f4’ Ss=(Jy+iJ))* +4ip J, + f.
. 3 .\ 1 .\3 1 . 3 .
VI [5] V= a(x+zy)+,8(z(x+zy) +1z)+y((x+zy) +1—6(x—zy)+z(x+zy)z)
(22)

+ ﬁ(%(x +iy)t+ %(x2 +y2+20)+ %(x + iy)zz),
Sy =y +iJy)* +2il,(p, + ipy) = o(p + ipy) + JI(P_% —pl) —ilsp,+fi,

i

82=J2pz_‘]3py+ i("?)px_‘]lpz) - zpypz+f29 83 = (px+ ipy)2+f4’

: . i :
S4=J3pz+lley+l]2px+2J1px+ Zp?+f3’ 85:pz(px+lpy) +f5'

Note that in the complete list of orthogonal separable coordinate systems for complex 3D
Euclidean space there are some other systems besides the first seven that have parameter depen-
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dence, e.g., cylindrical elliptic coordinates L;= p%, L2=J§+c2p%. However, for all of these other
coordinates the corresponding Bertrand-Darboux equations have only rank four, hence they do not
uniquely determine a possible superintegrable system.

C. Interbasis expansions for Euclidean systems

To proceed with the classification of nondegenerate Euclidean superintegrable systems we
need to look more closely at the relationship between a standard basis of symmetries for such a
system and the natural basis written in terms of the linear and angular momentum generators
P> J k=1,...,3.

Let us denote our preferred Cartesian coordinate system by x=(u,v,w) and let xy=(x,y,z), be
a fixed regular point. We define the translated Cartesian coordinates (X,Y,Z) by u=x+X, v=y
+Y, w=z+Z. Then, near the regular point (x,y,z) we have a basis of “natural symmetries” p,
=px, Da=Py, P3=Pz, J1=Yp,—Zpy, J,=Zpx—Xp;, J3=Xpy—Ypx. Now suppose we have a Euclid-
ean superintegrable system with nondegenerate potential. Then there will exist fifteen rational
functions A”(x,y,z), BY(x,y,z), C¥(x,y,z), that completely characterize the superintegrable sys-
tem. In particular, only 10 of these are linearly independent [see relations (A2)],

AZZ, A33, 322’ BSS, C33, A12’ BIZ’ A13, A23, BZS, (23)

and they are subject to the five quadratic conditions (A3) with G=0. These functions are related
to the symmetries S= Ea’fp,p +W via the conditions (A1). Recall that the second order basis
symmetries at the regular point ng)(x) Ea tm)X)PiP;+f(em) take the form S (x 0)=PiP;
+f(em)(Xo) When evaluated at the pomt Thus we can expand each standard basis symmetry in
terms of the natural basis at the point via

Sif)m) =pPm+ agM)J2 + ay m)J2 (em J3 + agm)lel + agﬁm)szz + agm)pl.lz + agem)plh

+ a%’")pzll + a(em)p2J3 +a fm)p:J] + a(e'")pﬂz + a(em)] o+ aé’" JiJ5
+ " Iods + WO (x), (24)
where the a, (€m) are constants in X,Y,Z but rational functions of the parameters x, y, z of the

regular p01nt [This notation for the expansion coefficients «; is not completely logical, but since
all of our software programs use the same notation we continue to use it to avoid (our) confusion.]

We conclude that all of the expansion constants «, (m) can be expressed in terms of the ten
numbers (23). However, we shall not embark on this straightforward task but instead restrict
ourselves to expanding the two symmetries

2 2 2 2
S% )=P1P2+ a3+ ayds + asli+ agpidi + agpady + agpidy + agp s+ agepad |+ @ pads

+ appsy)i + appily + aJy + a5l I3+ agelyds + W(lz)(x)’ (25)

(13) _ r 2 ’ 2 ’ 2 ' ’ ' ' ’ ’
Sy, =Pip3+ azli+ agly + asli+ agpiJy + agpaly + agp iy + agpiJs + agepaly + ey pals

+ ai2p3J1 + a£3p3.]2 + a{4J1J2 + a{5J1J3 + a{6J2J3 + W(13)(X) (26)

(Here, a,= a(n), a=a 13) .) Indeed it is easy to verify that the six Bertrand-Darboux equations for

these two symmetries have rank five (an illustration of Lemma 1 of Ref. 3). Thus these two
symmetries completely determine the AY, BY, C”, hence the superintegrable system.
If a”(x) is the quadratic form associated with SU?(x) it is straightforward to verify that

11 11 11
al (Xo) = O, az (Xo) = - 019, a3 (Xo) = ag,

2 22 22
a (x0) = a3, ay (x9) =0, as (x0) =— ayp,
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33 33 33
ay’ (Xp) == a3, ay (Xp) = ap,  a3’(xp) =0,

(27)
12 12 1
(Xo) 019, a2 (Xo) 0111, as (%) = 5(017 - ap),
13 1
a;’(xo) = as, a2 (Xo) a’ﬁ’ 613 (Xo) 72013,
23
ay'(xo) = 017, a2 (Xo) a107 03 (Xo) a12’

where aff(xo)= ﬁkaif(x)|xo. There are identical relations for the other symmetries S (x). Using
(27) and the identities (A2) and (Al) we can express the expansion coefficients «g, ..., a3 in
terms of the ten numbers (23) at x:

a=324-BY), a;=3(A"-2B%), ay=-34%,
g = %AZZ’ dp= %AB, o= %322, (28)

ap=3(B2-A2+ A®), a;;=- (B +A?).

The corresponding results for the expansion coefficients a, ..., a5 of S are

! 1 12 33 ’ 1 12 23 ’ 1433
ag=—302A"+B”), a;=—3(A"+2B%), az=-3A",
r_ 1423 1 1pl2 1 _1p23
ag=3A7, a=-3B", a;;=3B7, (29)

ro_ 1423 ro_ 133
ap=—3A%, ap=-3C7.

The expansion coefficients of the terms of the form J,J,, i.e., az, ay, as, a4, @5, @ Can be

expressed in terms of second derivatives of the associated quadratic form, evaluated at the regular

point x. For example, a;4=2a}3(Xy)=-a}3(x)=—a13(X,). For a superintegrable system the inte-

grability conditions for the symmetry relations (A1) are satisfied identically, so these equations can
be differentiated to compute the second derivatives a};jé(xo) as a quadratic expression in the ten
basic constants [subject to the five quadratic identities (A3)]. Though straightforward, these com-
putations are tedious. The only relations that we will use here are those for the expansion coeffi-
cients al 4 ). We have

a(&l) — %(4A23(B33 _ B22) _ 4323(A23 _ A22) _ 2AI3BIZ + 2A12A23)’
o} = 5(4A1PA% + 2B + 2433 — 2A3B12 — 2BA + 2824 — 4B12B%)

aﬁ})= 5(2323(A22—A33+Bn) _4A13B12 4 2A23(A12— 2322_'_333))’
(30)
(12 _ ((2323 Al%)(BB Bzz) 2(B33+A12 322)323

—A23B12+(2323+A13)A12+2B33A13—A23A33),

4 (7(333)2_’_ A33)2 AZZBIZ (A23)2+4A12333_Al3c33_ 3(A12)2_5(312)2_4A33BIZ
_7B22833_7B23c33+2A13B23+7(BZ3)2_A22A33)’
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a(]?) — é(AB(_ B3+ C33) + (A23 —A22+Blz)(A12+322—333)).

Note that since the Hamiltonian is SV + 8@+ 853 and the coefficient of J,J, in the Hamiltonian
is 0, we must have a(lzl)+ aﬁz)+ aﬁff):o, which can be verified directly from the above-mentioned
expressions.

As a result of the previous discussion we have the result

Theorem 6: For a nondegenerate superintegrable system the expansion coefficients al(fm)
expressing the standard basis S in terms of the natural basis pypy, pply, Iy are explicit linear

and quadratic expressions in the ten terms (23).

D. The significance of generic Euclidean systems

Suppose we have a nondegenerate Euclidean superintegrable system with potential V that is
separable with respect to some orthogonal coordinates. (Since every superintegrable system is
multiseparable, we know that such coordinates exist.) By performing an Euclidean transformation,
if necessary, we can assume that the separable coordinates are in a standard form determined by
two constants of the motion in involution,

L,=> dlppi+fi, Ly= > bpip;+ f.

Clearly, L; and L, lie in the six-dimensional space of second order symmetries for the superinte-
grable system. Thus, the quadratic form a”, for example, satisfies the three Bertrand-Darboux
equations for potential V. Since V is nondegenerate we can express the second derivatives V/;
— Vi and V. with j#k in the Bertrand-Darboux equations as linear combinations of the first
derivatives V). Equating coefficients of V|, V,, V; separately in each of the three equations, we end
up with nine linear conditions for the ten constants A??, ... B> at each regular point. A typical
example of one of these conditions is

ABBa" = 3a®) + BB(0) + AB(= 3a"?) + A%2(0) + B2X(0) + B'2(0) + AP (= 34") + B¥(0)
+A%(=3aP) + CP0)=-a + a3

Here, B>3(0)=0, etc. For the second symmetry there will be nine more linear conditions with al
replaced by b”. Thus we will have eighteen linear equations (not linearly independent) for the ten
quantities A%2, ... ,B?*. Another source of conditions is obtained by writing the symmetry L, in
terms of the standard basis:

al(x)= 2 a""(x0) Aff (%),

{<m

where Aé’é’m) is the quadratic form associated with the standard basis symmetry S at x,,.
Expanding both sides of this equation in terms of the natural basis we obtain linear and quadratic
conditions on the ten basic quantities. For example if we equate coefficients of the natural basis
element J,J, we find the quadratic conditions for L; and L,:

2a53(xg) = > a(x0)a\™,  2b3(xp) = > b (x0)al™. (31)

{<m {<m

Though there are many other quadratic conditions for L;, L, to belong to the symmetry algebra,
we shall use only these two and the five fundamental quadratic identities (A3) that hold indepen-
dent of any choice of L;, L,. Note that by equating coefficients of natural basis elements of the
form p;J; we could obtain linear identities. However, these are equivalent to the linear conditions
for a”,b" already discussed previously.

We give an example to show how this works. Suppose we have a nondegenerate superinte-
grable system that admits separation for some special choice of ellipsoidal coordinates [2111].
(Here we do not assume that the system separates for all values of the parameters c, e, e,, es,
but only for one value.) By performing an Euclidean transformation and a change of scale we can
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assume that the coordinates are in the standard form [2111] in our table and that c=1, ¢,=0, ¢,
=1, and e3=a where a is any fixed complex number such that a(a—1) # 0. It follows that

a“:y2+zz+a+1, a?=x*>+72+a, a33=x2+y2+1,

a?=-xy, a®=-xz, a¥=-yz, b'=ay’+7+a,

b?=ax’, b¥=x* bP=-axy, bP=-xz, bP=0,

at any regular point with coordinates (x,y,z). Substituting these expressions into the 18 linear
conditions discussed previously, with the help of the computer algebra system MAPLE, we find that
there are exactly seven independent linear conditions. Thus the ten quantities A%2,...,B>* can be
expressed linearly in terms of three of these quantities. Substituting this result into the five
fundamental quadratic identities (A3) we find that these identities yield a single linear relation for
the remaining three unknowns. Finally we substitute our expressions in terms of the three un-
knowns and (30) into (50) and obtain (with the help of MAPLE) two more independent linear
conditions. Thus we end up with ten independent linear conditions for our ten unknowns, and we
obtain the unique solution

AR AB_BB_AB_BB_( AB-A2- C33=—§ Bzzz_é

=W

which corresponds to the nondegenerate potential [1],

a By
V==5+5+ 5+ 8% +y* + 7).
¥y oz

Note that it was obvious that our conditions would have solutions, since we already knew that
system [I] separated simultaneously for all choices of the parameters ¢, e;, e,, e;. What was far
from obvious is the fact that no other nondegenerate superintegrable system separates for any
special case of ellipsoidal coordinates.

Theorem 7: A 3D Euclidean nondegenerate superintegrable system admits separation in a
special case of the generic coordinates [2111], [221], [23], [311], [32], [41], or [5], respectively,
if and only if it is equivalent via a Euclidean transformation to system [I], [II], [III], [IV], [V],
[VI], or [VII], respectively.

The proof (complicated but straightforward) proceeds exactly as the case [2111] described
previously. For each case [221]-[5] we use the symmetries a”, b" listed. The eighteen linear
conditions discussed previously reduce to exactly seven independent linear conditions. Thus al-
ways the ten quantities A??, ..., B% can be expressed linearly in terms of three of these quantities.
Substituting into the five fundamental quadratic identities (A3) we find that these identities yield
a single linear relation for the remaining three unknowns. Substituting our expressions in terms of
the three unknowns and (30) into (50) we obtain two more independent linear conditions. Thus we
end up with ten independent linear conditions for our ten unknowns, and a unique solution, the
corresponding generic superintegrable system.

This does not settle the problem of classifying all 3D nondegenerate superintegrable systems
in complex Euclidean space, for we have not excluded the possibility of such systems that separate
only in degenerate separable coordinates. In fact we have already studied two such systems in:?®

[0] V(x,y,2)=ax+By+yz+ x> +y*+7%),

1 o
[00] V(x,y,2)= %Y(xz +y2+ Zzz) + Bx+yy+ 2_2 (32)
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However, both of these nondegenerate superintegrable systems are only weakly functionally in-
dependent, in contrast to systems [I]-[VII]. Thus we consider [O] and [OO] as associate members
of the superintegrable family, not regular members. An investigation of other possible Euclidean
systems is in progress.

E. Generic superintegrable systems on the three sphere

An important task remaining is to classify the possible systems on the three sphere (particu-
larly those three-sphere systems not Stickel equivalent to a flat space system). We choose a
standardized Cartesian-like coordinate system {x,y,z} on the three sphere such that the metric and
Hamiltonian are

1 r*\?

ds? = 75 (dx? + dy? + dz?), H=<1+—) (Pr+py+p))+V, (33)
(1+5) :

where r2=x?+y?+z%. These coordinates can be related to the standard realization of the sphere via

complex coordinates s=(s,5,,53,54) such that 2?:1512:1 and ds’=3 jds]z via

2

4x 4y 4z 472
= N Sy = N S, = N S =
4+ 2T 442 3T 4442 YT 442

51 (34)
with inverse x=2s,/(1+s4), y=2s,/(1+s4), z=2s3/(1+s,). Here x,y,z are local coordinates in a
neighborhood of the pole P=(0,0,0, 1) on the three sphere. A basis of Killing vectors for the zero
potential system is J,, K, h=1,2,3 where

Ji=yp.—zpy, Jr=zp—xp,  J3=xp,— YDy,

222 2_ 2 2

XT=y =z Xy Xz Yy X -z Xy ¥z
Ki=\1+—""7""7 +—=—p,+—p, Ky=\l+—|p,+ —p.+ P, 35
I ( 1 )px S Pyt 5P K ( 4 )p} S Pet P (35)

4 :+ S Pxt Py

zz—xz—yz) Xz yz
Pty Pty

K3 = ( 1 +
The commutation relations are

Vit =15 {KLKb=T5 {KL}=K; (36)

and their cyclic permutations. The relation between this basis and the standard basis of rotation
generators on the sphere I;,,=s¢p,,—SuPe=—Ine 1S

Ji=ly, Jy=1y, Ji=ln, K=y, K=l Ky=Ig. (37)

We shall use the x,y,z coordinates as standard but we also need to see how these coordinates
relate to analogous Cartesian-like coordinates centered at any point T on the sphere. We can
always find a complex orthogonal matrix O, not unique, such that T=OP. If X,Y,Z, (34), define
local Cartesian-like coordinates near P then via t=0s(X,Y,Z) they also define local coordinates in
a neighborhood of T=(T;,T,,T3,T,). Moreover, since O is orthogonal we have

ds*=dt-dt=dOs-dOs=ds-ds = dX?+dy*+dZz?),

1
IPATA
(1+%)
so we can consider X,Y,Z as Cartesian-like coordinates in a neighborhood of T. We can also
require that the coordinate axes line up so that differentiation of s by X,Y,Z, respectively, at P
corresponds to (normalized) differentiation of t by x,y,z, respectively, at T, i.e., so that py
corresponds to (1+7%/4)p,, etc. Thus,
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1 0
2 0 2 1
ot =0 , ayt =0 ,

1+ =T 0 1+14 =T 0
0 0

0 0

2 0 0

at =0 , T=0
1+t ° ) |y 1 0
0 1

This determines O uniquely, since the column vectors on the left-hand sides of these expressions
are mutually orthogonal unit vectors. We find

T2 —T,-1 _ DT, L,
T+ T,+1 Ty+1 !
T,T, T5-T,—1 LT,
0,=| T+l T,+1 T+ 2l (38)
T,T; T,T; T2-T,—1
T+ el T+l
- T, - T, ~ Ty T,

In the P-based coordinate system the coordinates of t are u, v, w where u=2t,/(1+1,), v
=2t,/(1+1,), w=213/(1+t4). From the equation t=0ys we can solve for u, v, w to obtain

B A[r?2X = 2x(xX + yY + zZ) + 4(x + X) — xR?]
B 16 — 8(xX + yY + zZ) + r’R?

>

ALY = 2y(xX +yY +22) +4(y +Y) - yR*]
- 16 — 8(xX + yY + zZ) + r’R?

) (39)

_ A[r*Z - 2z(xX + yY +2Z) + 4(z + Z) — zR?]
- 16 — 8(xX + yY + zZ) + ’R?

To recapitulate: t is a point on the complex unit sphere, (x,y,z) are the coordinates of T in the
P-based system, (u,v,w) are the coordinates of t in the P-based system, and (X,Y,Z) are the
coordinates of t in the T-based system. Thus, for fixed T, Eq. (39) defines the coordinate trans-
formation between (u,v,w) and (X,Y,Z). We can write Eq. (39) in a simpler form by introducing
the supplementary variables

u-—x - U—2Z
v=2"2 y2 i o BT e v wn,
1+7 1+75 1+5
Then
1—%xX

1—%(xX+yY+zZ)+%’
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1-1yy 1-12
V= 1 2 2R W= 1 2 2R (40)
1-3(xX+yY +22) + ¢ 1-5(X+yY +27) + 5

with inverse

U+30°
1+%(xU+yV+zW)+r—21%2’

V+1i0? W+ :0?
=T 2o A= o
1+5(xU+yV+zW) + 52 1+5(xU+yV+zW) + 5%

(41)

In Ref. 22 we have determined all orthogonal separable coordinate systems on the complex
unit three sphere. Of the 21 systems listed those that are generic, in the sense we used for
Euclidean separable systems, are given as follows with coordinates followed by defining constants
of the motion. (Here we take the Hamiltonian as £0=I%2+I%3+I%4+I§3+I§4+I§4, and we recall the

ldentlty I23I41+I31]42+112[43=0.)
[1111] (system (17) in Ref. [22])

(X1 — ), — er)(x3—e3)

(e —e1)(ex— 63)(62 —ey) ’

2 (i —e)ly—e)xs—ey)

N (e1—ey)(e; —63)(31 —64)’

3=

(x1 = eq) (s — e4) (x5 — eq)
(eq—er)(es—e3)(eq—ey) ’

SZ:(X1—€3)(X2—63)(X3—63) 2=
: (63—61)(63—62)(63—64)’ ¢

Ly=(e;+ 62)1%2 + (e + 63)1%3 + (e + 34)1%4 +(er+ 63)153 + (e + 64)154 +(e3+ 64)154’

2 2 2 2 2 2
ﬁz = 3162112 + 6183113 + 3164114 + 6283123 + 3264124 + 6384134.

[211] (system (18) in Ref. [22])

(x; —e)lx,—e))(x3—ey)
(e1—e3)(e; —ey)

(isl +S2)2=—2

s

S%_ng_ ael<(x1 —61)()62—6’1)()63—@1))’

(e —e3)(e;—ey)

() = eq) (X — ey) (3 = 64)‘

(eq— 61)2(64 —e3) '

2 (x) = e3)(xy — e3) (x5 — €3) 2
3=~ S4==

g (63—61)2(93—@4) '

L= I+ il + (I3 + ily3)? + 2¢, (21, + I3y + By + I3 + I53) + 2e5(I3, + 115 + I53)

+2e,(Iy+ By + 13y),

€3 . e .
L= el +ejes(ITy+ ) + ejey(Ii, + 1) + eseqlyy + 5(113 +ily)° + 34(114 +ily,)°.
[22] (system (19) in Ref. [22])
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(x;—e)—e)(x3—ey)

(e;— 93)2 '

(s +is,)°==2

b}

2 (r —e3)xp—e3)(xz—es) 5 2__1(()‘:1_el)(-xZ_el)(x.“a_el))
(3 is9)"==2 (91—63)2 PR de, (61—93)2

[_‘,1 =- 154 + 1%3 + i113123 + i114124 + i]23124 + i113114 + (el - 63)[1%2 - 154] + €y,

1
Lr=elly+ e, + eres[ I+ By + Iy + Iy] + Z[1§3 + 15, = Iy = Doy + 2il 1315 + 2il 31 4 — 2il 1414

. €1 . . ¢
- 21123124 - 4113124 - 2112134] + 3[1%3 - 154 - 1%4 + 153 + 2l1]3114 + 21123124] + E[— 1%4 + 1%3 + 1%4
— Dy + 2il 3155+ 2il 4154].

[31] (system (20) in Ref. in [22])

2= (x) = ey)(xy — e4) (x5 — e4)
C (94—31)3 '

(x1 =) —e)lxs—ey)

(e1—e4)

(s, +is))>=-2

\/553(6‘1 + isz) —-_ i((-xl —el)(xz— e])(.X3 _ el))

dey (e1—e4)

18 (x—e)p-e)xs—e)),
2 ge? (e1—ey) 7

ST+ s +si=—
L= \5(114134 =Ty + ilyulsy + il ol13) + ey (I + Iy + Ig) + eg(By + Iy + 1)

1 1 . € .
Ly=- 51%3 + 5153 —ily3l3+ 6164(154 + 1%4 + 154) = e%(l%z + 1%3 + 133) - _6(_ 2il ol 15+ 2115153)
N

+ \56’4(114134 +ilyls,).
[4] (system (21) in [22])

(s1+ iS2)2 ==-2(x;—e))(xy - ex)(x3—e3),

(51 +i55) (53 + isg) = f((xl et - e))xs =€),
€1

2(sy +is5) (53— is4) + (53 + i54)2 == ;((xl —e)(xy—ey)(x3-¢y));
1

1
L= 5(2134114 + 20101y = 2slsy = 2 ol — By + By = Ly + Iy + 20l 311 + i3 10+ 2il 151
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1 1
Ly==1,—Isly - 2154"‘ ~Ly+ I~ ~1

i i i i
= L3l — ~Ipaloy—1ulos + 1314 — iloyd3, + i3]
4 4 131237 51230245 1al24 T S L1304 = Hoalaa T 103034

4 13 2
2 13434 2 14423

We now show that each generic separable system on the three sphere uniquely determines a
superintegrable system with nondegenerate potential. The proof is, in most part, analogous to that
for the Euclidean case. Consider system (1111). If we have a superintegrable system that admits
the symmetries £, £, for all values of the parameters e, ...,e, then it must have the basis of
symmetries

VII Sy=Ih+fo, Si=hs+fi. Si=Lu+fo Si=D+fs

34=I%4+f4’ SS=I§4+fS~

The system of Bertrand-Darboux equations associated with these symmetries has rank five so the
potential is uniquely determined. Solving the Bertrand-Darboux equations we obtain the nonde-
generate potential on the three sphere

V(s) =5 +
S1

B vy 06
St 5+ 3. (42)
This potential is not Stickel equivalent to a potential on Euclidean space.

Three of the four remaining systems can be obtained in the same way. However there is an
alternative approach which enables us to obtain systems 2, 3, and 4 from 1 via well defined

limiting processes. These are discussed elsewhere, e.g., Refs. 16 and 17, but we content ourselves
with an example of how to obtain [211] from [1111]. If we make the transformations

1 1 - a ﬁ
§ = =y, $,— =, +ey), -\VB2é, -
11— e 6)’1 ) — V/;_(yl €,), a—-\B B— T2

then we deduce the relations

s me)o-e)w=e) 9,

ne (er—e)le;—es) 2T 07@1y1'

The coordinates on the sphere can be represented using the identifications y;=(s;+is,)/\2, y,
=(s, —isz)/\r’a, y3=83, Y4=54 wWhere 2y1y2+y§+yﬁ:s%+s§+s§+s3:1. We then transform the poten-
tial according to a/s%+ﬂ/s%+ 'y/s§+ 5/s42‘ — a/y%+,3y2/y? + 'y/y§+ 5/yﬁ.

An exactly similar approach leads to the coordinates, constants of the motion and nondegen-
erate potential for the system [22]. Here the limit is taken in the form e;=¢,+¢€, es=e3+ €’ where
€, € —0. For the system [31] we set e,=¢,+¢€, e3=¢;+¢€" and allow €, € — 0, whereas for system
[4] we set e;=¢,+€, e3=¢,+¢€, es=e;+¢€, and allow €, €, ,—0. In all cases except [4] the
requirement that we have separation for all values of the parameters ¢; yields a set of six linearly
independent second-order constants of the motion that can be verified to correspond to a nonde-
generate superintegrable system. In the case [4] the constants of the motion do not depend on e,
and we have only three independent symmetries. However, there is a unique potential that is
obtained as the limit of the nondegenerate potential for case [1111]. By writing down the Bertrand-
Darboux equations for this limit potential we can directly verify that it admits six linearly inde-
pendent symmetries and is nondegenerate.

Theorem 8: Each of the five generic three-sphere separable systems determines a unique
nondegenerate superintegrable system that permits separation simultaneously for all values of the
paramelers e;. For each of these systems there is a basis of five (strongly) functionally independent
and six linearly independent second order symmetries. In addition to system [VIII] above there are
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043514-21  Classical 3D superintegrable systems

the following superintegrable systems (nondegenerate potential, followed by a basis of constants
of the motion):
I’ [211] (Stdckel equivalent to the Euclidean superintegrable system [I])

o ay(s|—isy) a3 ay
2 T2
S4

V=
(s1+is)>  (sy+is)? s

30=I%2+fo’ S1=I§4+f1» 52=I%3+I§3 + /2, (43)

Si=I+ Byt fs Sa=Ip(Ia+ily) +fa, Ss=ILy(Iu+ily) + fs.

I’ [22] (Stéckel equivalent to the Euclidean superintegrable system [II])

as 014(S3 - i54)'

a; a,(sq = is;)
(s3+is5)

V=
(si+is)>  (sy+isy)  (s3+isy)’

8021%24']00, S =1§4+f1, 82=I%3+1%4+I§3 +I§4+f2’
(44)

Sy=Ih+ I+ illialy+ Ll + 3, Sa=1I13+ Dy + il 3114+ Islog) + fa,

Ss =iy + Ly +i(ls1 14+ 1ialos — Laloy = Izlag) = 201300 — Loy + fs.
IV’ [31] (Stickel equivalent to the Euclidean superintegrable system [IV])

2.2 22
a; a,s3 as(sy+55-3s3)  ay
(s, +isp)* si ’

V=
(Sl + iS2)2 (Sl + iS2)3

So=Ih+ s+ D3+ fo, Si=Ly+ b+ L+ fi, Sy=(y—il ;) +fa,
(45)

Sy=1p(I—il3) + f, Sy=Lyl 4+ ily) + f4,

Ss=114l34— I1plos + i(lalss + 1ol 3) + f's.
VI’ [4] (Stickel equivalent to the Euclidean superintegrable system [VI])

. . . 3 .
ay(s5+isy) a3[(s1 +isy) (53— is4) — 5(s3+ 1s4)2]

ay
(51 +isy)*

V=
(si+is0)° (s +is))’
V(2.2 32,2 .
a4[(s1 + lsz)(sl +53 = 5(s3 +573) + (53 + isy)° ]

(sy+ isz)s '

So=Ly+ B+ B+ s+ By + By + V,
Si= (3= Iy + il +il1)* + fy,

Sy = 4Ipslzy + Lilzy + 113hg) + 4ilaalsy = 11315) + 2011305 = Lyalog = Iislia + Dslog) = 211005 + 1

2 _p _p
+ Iy =Ty = I3+ /o,
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S3=2(Iolos + Lalsy — Iiolyy = Tialsg) = 2i(Ioslog + I3l + Iislag + Dulzg + Tolog + 1ol 3) = I3+ By

2 p
+ = Ds+ f3,

Sy= (3= Dy + il + il 1) (I3 + Dy + iz = il 1) + f4,

Ss= (13— Dy + il +ily) (134 — 1)) + fs. (46)
We also mention that the nongeneric superintegrable system on the three sphere with potential

a Bs3 VsS4 8(1 — 4s3 — 4s3)

00’ = + + +
(si+is))*  (sy+isy)® (51 +isy)? (s) +isy)*

is Stiickel equivalent to the Euclidean superintegrable system [00].

F. Interbasis expansions for three-sphere systems

In analogy with our treatment of Euclidean systems, to proceed with the classification of
nondegenerate superintegrable systems on the three sphere we need to look more closely at the
relationship between a standard basis of symmetries and the natural basis written in terms of the
angular momentum generators J,, K, €=1,...,3. Then, near the regular point T, i.e., (x,y,z), we
have a basis of “natural symmetries” J,=Yp,—Zpy, J,=Zpx—Xpz J3=Xpy—Ypx, K=Ky, K,
=Ky, K;=K;. At the point itself we have (1+7%/4)p,=px, (1+r2/4)p,=py, (1+r*/4)p,,=p,. Now
suppose we have a three-sphere superintegrable system with nondegenerate potential. Then there
will exist fifteen rational functions AY[x,y,z], BY[x,y,z], C'[x,y,z], [with respect to the (X,Y,Z)
coordinates and restricted to the point (X,Y,Z)=(0,0,0), that completely characterize the super-
integrable system]. In particular, only ten of these, (23), are linearly independent, see relations
(A2), and they are subject to the five quadratic conditions (A3) with G(X,Y,Z)=InA=-2 In(1
+R?/4). These functions are related to the symmetries S= Ea”p,p +W via the conditions (A1l).
The second order basis symmetries at the regular point S (m)(X)= Ea({,m)(X)p,p] +f(em)(X) take the

form S(€m>(0 0,0)=pp;+f(em(0,0,0) when evaluated at the point. Thus we can expand each

standard ba51s symmetry in a neighborhood of the point (x,y,z) in terms of the natural basis at the
point via

Sif)"’) = KK,y + ™ + ™ B+ o™ P+ oK+ oK + oMK + oK

(€m)

+ a’(lf)m)Kle + g K2.13 + a12 K3J1 + Ol(l K3.12 + a(fm J1J2 + a']fm)JlJ3

+ a16 J2J3 + W(€m)(x) (47)

where the a(( ™ are constants in X,Y,Z but rational functions of the parameters x,y,z of the

regular pomt Here we are taking into account the identity Eh 1K/, =0 and the fact that K, =p,, at
the point (X,Y,Z)=(0,0,0). Again, nondegenerate superintegrable system is uniquely determined
by the ten numbers (23), and these numbers themselves are subject to five quadratic identities
(A3). (Note that G and all of its first and second derivatives vanish when X=Y=Z=0, except that
G,;=-1,i=1,2,3. Further, we can use relations (40) to express the derivatives of V at the regular
point with respect to the (X,Y,Z) coordinates in terms of derivatives with respect to (u,v,w).
Thus the numbers (23) can be expressed as linear combinations of the corresponding numbers with
respect to the (u,v,w) coordinates.)

Although all of the expansion constants a,(fm) can be expressed in terms of these ten numbers,
we shall restrict ourselves to expanding the two symmetries

8;1)2) = K1K2 + a3J% + a'4J§ + a5J§ + CK6K1J1 + CY7K2J2 + a8K1J2 + a9K1J3 + aloKle + a11K2J3

+ a12K3J1 + a13K3J2 + a'14J1J2 + C(15J1J3 + a/16J2J3 + W(lz)(X), (48)
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(13) _ r 2 r 2 r 2 ’ ’ ’ ' ’ ’
SXO =K\ K5+ azJi + a,J5 + asJ5 + agK J| + ;K05 + K T, + agK J5 + a KoJ | + a1 Ky J;

+ a{2K3]1 + a'i3K3J2 + a{4]1.]2 + a{5]1J3 + a{6J2.13 + W(l3)(X) (49)

(Here, as=a§12) §13).) Since the six Bertrand-Darboux equations for these two symmetries

have rank five, the symmetries completely determine the AY, BY, C”, hence the superintegrable
system.
From (39)—(41) we have (with J,,=up,—vp, and cyclic permutations)

1 X2 y? z2> X yx )
J, = l+———=-—\J,+—J, +—J,—-yK, +zK, |,
1 2<< 4 4 4 u 2 w 2 v T YRy, T,

’
, a=a

1 2 2 2 N
Jr= 2(<1——+y— S RN B S T
1+’_ 4 4 4 2 2
4
1 2 2 2 X
Jy= 2<(1———y—+z— T+ g+ 20, — XK, + VK, |,
1+’_ 4 4 4 2 2
4
1 X2 2 2 X X
K= 2<<1+——y——z— Ku+y—Kv+Z—KW—yJw+zJU )
1+’_ 4 4 4 2 2
4
1 2 2 2 N
K,= 2((1——+——Z— KU+—yKu+QKW—zJ,,+xJW s
140 474 4 2 2

2 2 2
K= 2<(1 —x——y—+z—)KW+EKu+y—ZKU—xJU+yJu>.
1+5 4 4 4 2 2

The inverse of these relations takes almost exactly the same form. Now, suppose we have a
nondegenerate three-sphere superintegrable system with potential V, that is separable with respect
to some orthogonal coordinates. (As every superintegrable system is multiseparable, we know that
such coordinates exist.) By performing an Euclidean transformation, if necessary, we can assume
that the separable coordinates are in some standard form determined by two constants of the
motion in involution, Li=3a"p;p;+fi, Ly=2b"p;p;+f,. Clearly, L; and L, lie in the six-
dimensional space of second order symmetries for the superintegrable system. Thus, the quadratic
form a, for example, satisfies the three Bertrand-Darboux equations for potential V. Since V is
nondegenerate we can express the second derivatives V;;—Vy, and V;; with j# k in the Bertrand-
Darboux equations as linear combinations of the first derivatives V). Equating coefficients of
V1. V,, V3 separately in each of the three equations, we end up with nine linear conditions for the
ten constants A??, ..., B> at each regular point. If we choose the Cartesian-like coordinates X,Y,Z
that vanish at the regular point, then we obtain the same 18 conditions as in the Euclidean case.
Indeed, the first derivatives G; all vanish at the regular point.

For the second symmetry there will be nine more such linear conditions with a” replaced by
bU. Thus we will have eighteen linear equations (not linearly independent) for the ten quantities
A?, ... ,B%.

The five fundamental quadratic identities (A3) are identical to those for the Euclidean case.
This is because the only nonzero terms in the metric for the three sphere are G;;=—1 and all such
terms occur in the form G;—G ;=0 in the five quadratic conditions.

Another source of conditions is obtained by writing the symmetry L; in terms of the standard
basis: aif(x)=E€Sma€m(xo),4%’m)(x), where .A’&,m) is the quadratic form associated with the stan-
dard basis symmetry S at x,. Expanding both sides of this equation in terms of the natural

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/ijmp/copyright.jsp



043514-24  Kalnins, Kress, and Miller J. Math. Phys. 47, 043514 (2006)

basis we obtain linear and quadratic conditions on the ten basic quantities. In this case there is a
difference between the Euclidean and three-sphere expressions. For example if we equate coeffi-
cients of the natural basis element J;J, we find the quadratic conditions for L, and L,

—ab(xg) = X a”(xp)al”,  —bh(xg) = X bM(xp)al (. (50)

{<m {<=m

It is no longer true that —aj3=2a}3 as in the Euclidean case. The expressions for the terms a(]im)

can be computed from the basic formulas (A1). They involve the terms G;; and differ from the
Euclidean case. For example, from (A1) and formulas for the derivatives d,A’%, 3.8/, 9,C/* we can
calculate —ag(xo) corresponding to the basis symmetry S!2 and obtain

_ 351’(11&2) - %322c23 _ %(C13)2 _ §C13A22+ é(AZ?))Z + %CS?’(%BZ?’ _ 2C22) + % _ %(B33)2 + §B33BZZ
+ %(B12)2+A33Blz— %(323)2_’_% A12)2_ %B33A12_ éA22A33 +é A33)2_ éc33A13.

Though there are many other quadratic conditions for L;, L, to belong to the symmetry algebra, we
shall use only these two.

G. Significance of generic three-sphere systems

Suppose we have a nondegenerate superintegrable system that admits separation for some
special choice of ellipsoidal coordinates [1111]. (Here we do not assume that the system separates
for all values of the parameters c,e;,e,,e3,e,, but only for one value.) By performing an Euclid-
ean transformation and a change of scale we can assume that the coordinates are in the standard
form [1111] in our table and that ¢,;=0, e,=1, e;=a, and e,=b where a,b are any fixed complex
numbers such that ab(a—1)(b—1)(b—a)#0. We follow the same method given before in the
Euclidean case. We evaluate the a/, b at any regular point with coordinates (x,y,z). Substituting
these expressions into the eighteen linear conditions, with the help of MAPLE, we find that there are
exactly seven independent linear conditions. Thus the ten quantities A%?, ..., B> can be expressed
linearly in terms of three of these quantities. Substituting this result into the five fundamental
quadratic identities (A3) we find that these identities yield exactly two solutions. Finally we
substitute each of these solutions into (50) and find conditions that rule out one of these solutions.
Thus only one solution exists and it must be the one that we already knew: System [VIII] that
separates simultaneously for all choices of the parameters ey, ...,e4. What was far from obvious is
the fact that no other nondegenerate superintegrable system separates for any special case of
ellipsoidal coordinates on the three sphere.

Theorem 9: A three-sphere nondegenerate superintegrable system admits separation in a
special case of the generic coordinates [1111], [211], [22], [31], or [4], respectively, if and only
if it is equivalent via a complex rotation to system [VII], [I'], [II'], [IV'], or [VI'], respectively.

We have indicated the proof for coordinates [1111]. The other generic coordinates are Stickel
transforms of generic coordinates in Euclidean space so the proof for them follows immediately
from Theorem 7.

APPENDIX

This is a list of some important results from Ref. 3. Using the nondegenerate potential con-
dition and the Bertrand-Darboux equations we can solve for all of the first partial derivatives a{k
of a quadratic symmetry to obtain the defining conditions [with A=exp(G)]

a}l =- Gla11 - Gza12 - G3a13,
a%z =- G1a12 - G2a22 - G3a23,

a§3 =- G1a13 - G2a23 - G3a33,

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/ijmp/copyright.jsp



043514-25  Classical 3D superintegrable systems J. Math. Phys. 47, 043514 (2006)
3a12=a12A22— (a22—a“)Alz—a23A13+a13A23+ Gza“ _ 2G1a12— G2a22— G3a23,
3ay' =—2a"A% +2(a® - a")A"? + 2a7A" - 2aPAP - 2Ga" + Gia"? - Gya® - Ga®,
3a§3 - a2c® &+ (a33 _ all)CIS +aBC12 - B33 - Gla“ _ G2a12— 2G3a13 " G1a33,
3a?3 =2a2C?3 — 2(a33 _ all)Cl3 —2a23C"12 4243 - Glall _ G2012+ G3a13 _ 2G1a33,
3a%3 _ a23(333 _ Bzz) _ (a33 _ a22)323 —aBB12 4 4213 _ G1a13 _ 2G2a23 _ G3a33 " G3a22,
3a§2= _ 2a23(B33 _Bzz) n 2(a33 _ 022)323 1243B12_2,412B13 _ G1a13 n G2a23 _ G3a33 _ 2G3022,
3ai3= —aBA2 (all —a33)A13 +a13A33+a12A23—2G1a13 _ G2a23— G3a33 " G3a11,
3a§1 =2aBA12 4 2(a33 _ all)ALS —2a3AB = 2412423 4 G1a13 _ G2a23 _ G3a33 _ 2G3all,
3a;3 —_ 248312 4 2(a22 _ a33)C23 +242c13 _ 2a23(C22— C33) _ Glalz _ G2a22+ G3a23 _ 2G2a33,
3a§3 =a3c2- (azz_a33)C23 —a2chB3 - a23(C33 _ sz) _ G1a12— G2a22 _ 2G3a23 + G2a33,
3a;2= _ab3p23 (a22_all)BIZ_a12322+a23Bl3_ G]all _ 2G2a12— G3al3 n G,azz,
3a%2 =245 — 2(a22 _ all)BIZ +2a'2B22 _2,423p13 _ Gla“ 4 G2a12 _ G3a13 _ 2G1a22,

Sa%3=a]2(323+ C22) +all(Bl3+ CIZ) _a22C12_a33BIS+al3(BS3+ C23) _a23(C13+B]2)

—-2G1a* + Gya"? + Gya'?.

3a;2=a12(_ 2323+ C22) +a11(C12_2313) _a22C12+2a33BIS+a13(_ 2B33+ C23)

+a® (= CB+2B"2) - 2G;a"? + Goa"* + Ga®.

361;3 - a12(323 _ 2c22) + all(Bl3 _ zch) + 2a22C]2 _ a33Bl3 + a13(B33 _ zc23) + a23(2c13 _ BIZ)
-2G,a" + G1a® + G3a"?, (A1)
plus the linear relations

A23 =Bl3 — C12’ B23 _A31 _ C22 — O,

(A2)
B2 AR AR _ P20, B¥4+A2-(CB=0.

Using the linear relations we can express C'2, C'3, C*2, C*, and B'? in terms of the remaining ten
functions. Finally, requiring that the integrability conditions for (A1) hold identically, we obtain
exactly five quadratic identities for the ten independent functions:

1 1 1 1 1
—ABBZ _APAB L ABB? 4 BPA% 4 BPAP 4+ 5A22G3 - 5A33G3 - 531263 - 56163 - EA”GI
3 1 23 22123
+5G 13— ;A%Gy - AYB? =0, (A3a)
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(A2 4 B124% _ ABA22 _ BBA12 _ CBAB 4 B2A12 Z B2A2 4 AR _ (412)2 4 %Gn— %Gf

3 1 1 1 1 1 1 1 1
— =Gy + —ABGy+ —BBG, - —A2G, + —ABG, - =B®G; - —=B*G, + =C¥Gy+ —(G4)* =0,
2 2 2 2 2 2 2 2 2

(A3b)

1 3 3
_ (B33)2_B33A12+B33BZZ+BI2A33+B23c33 _ (323)2 + (B]2)2+ 5(GI)Z_ EG11 + 5G33

1 1 1 1
- 5333G2 - EA”GI - 5(G3)2 - 5C33G3 =0, (A3c)

3 1 1 1 1
_BI2A23 _ A3AB L AR 4 A12B23 4 5G23— EABG] _ EA12G3 _ E323(;2_ 5G2G3

1
_ 5B33G3 =0, (A3d)

3 1 1 1 1
AIZBIZ_'_ C33A23_A23B23+B33A22_B33A33+ 5Glz_ 5Gle_ 5AIZG1 _ 5BIZGz_ 5A23G3 =0.

(A3e)
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