42 research outputs found

    Power Allocation and Capacity Analysis for FBMC-OQAM With Superimposed Training

    Get PDF
    Superimposed training (ST) is a semiblind channel estimation technique, proposed for orthogonal frequency division multiplexing (OFDM), where training sequences are added to data symbols, avoiding the use of dedicated pilot-subcarriers, and increasing the available bandwidth compared with pilot symbol assisted modulation (PSAM). Filter bank multicarrier offset quadrature amplitude modulation (FBMC-OQAM) is a promising waveform technique considered to replace the OFDM, which takes advantage of well-designed filters to avoid the use of cyclic prefix and reduce the out-band-emissions. In this paper, we provide the expressions of the average channel capacity of the FBMC-OQAM combined with either PSAM or ST schemes, considering imperfect channel estimation and the presence of the pilot sequences. In order to compute the capacity expression of our proposal, ST-FBMC-OQAM, we analyze the channel estimation error and its variance. The average channel capacity is deduced considering the noise, data interference from ST, and the intrinsic self-interference of the FBMC-OQAM. Additionally, to maximize the average channel capacity, the optimal value of data power allocation is also obtained. The simulation results confirm the validity of the capacity analysis and demonstrate the superiority of the ST-FBMC-OQAM over existing proposals

    Superimposed Training for Channel Estimation in FBMC-OQAM

    Get PDF
    Proceedings of: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)Wireless broadband communication systems are always requiring higher data rates. In order to achieve this goal, we should provide advanced schemes which are capable of improving the spectral efficiency and reusing, in a better way, the available radio spectrum resources. Filter Bank Multi-Carrier Offset Quadrature Amplitude Modulation (FBMC-OQAM) combined with Superimposed Training (ST) is a promising technique with a very high spectral efficiency. This improvement is due to the low out-of-band emissions of FBMC-OQAM, because it uses a well-designed prototype filter, and the lack of dedicated pilot tones owing to ST scheme. However, this combination is not straightforward due to the appearance of the self-interference at receiver side in FBMC-OQAM. In this paper, we provide a novel channel estimation which is capable of dealing with this self-interference in the context of combining these two techniques.This work has been partly supported by Spanish National Projects ELISA (TEC2014-59255-C3-3-R) and MACHINE (TSI-100102-2015-17); and also by National Secretary of Science, Technology and Innovation SENESCYT Ecuador

    Channel estimation techniques for next generation mobile communication systems

    Get PDF
    Mención Internacional en el título de doctorWe are witnessing a revolution in wireless technology, where the society is demanding new services, such as smart cities, autonomous vehicles, augmented reality, etc. These challenging services not only are demanding an enormous increase of data rates in the range of 1000 times higher, but also they are real-time applications with an important delay constraint. Furthermore, an unprecedented number of different machine-type devices will be also connected to the network, known as Internet of Things (IoT), where they will be transmitting real-time measurements from different sensors. In this context, the Third Generation Partnership Project (3GPP) has already developed the new Fifth Generation (5G) of mobile communication systems, which should be capable of satisfying all the requirements. Hence, 5G will provide three key aspects, such as: enhanced mobile broad-band (eMBB) services, massive machine type communications (mMTC) and ultra reliable low latency communications (URLLC). In order to accomplish all the mentioned requirements, it is important to develop new key radio technologies capable of exploiting the wireless environment with a higher efficiency. Orthogonal frequency division multiplexing (OFDM) is the most widely used waveform by the industry, however, it also exhibits high side lobes reducing considerably the spectral efficiency. Therefore, filter-bank multi-carrier combined with offset quadrature amplitude modulation (FBMC-OQAM) is a waveform candidate to replace OFDM due to the fact that it provides extremely low out-ofband emissions (OBE). The traditional spectrum frequencies range is close to saturation, thus, there is a need to exploit higher bands, such as millimeter waves (mm-Wave), making possible the deployment of ultra broad-band services. However, the high path loss in these bands increases the blockage probability of the radio-link, forcing us to use massive multiple-input multiple-output (MIMO) systems in order to increase either the diversity or capacity of the overall link. All these emergent radio technologies can make 5G a reality. However, all their benefits can be only exploited under the knowledge and availability of the channel state information (CSI) in order to compensate the effects produced by the channel. The channel estimation process is a well known procedure in the area of signal processing for communications, where it is a challenging task due to the fact that we have to obtain a good estimator, maintaining at the same time the efficiency and reduced complexity of the system and obtaining the results as fast as possible. In FBMC-OQAM, there are several proposed channel estimation techniques, however, all of them required a high number of operations in order to deal with the self-interference produced by the prototype filter, hence, increasing the complexity. The existing channel estimation and equalization techniques for massive MIMO are in general too complex due to the large number of antennas, where we must estimate the channel response of each antenna of the array and perform some prohibitive matrix inversions to obtain the equalizers. Besides, for the particular case of mm-Wave, the existing techniques either do not adapt well to the dynamic ranges of signal-to-noise ratio (SNR) scenarios or they assume some approximations which reduce the quality of the estimator. In this thesis, we focus on the channel estimation for different emerging techniques that are capable of obtaining a better performance with a lower number of operations, suitable for low complexity devices and for URLLC. Firstly, we proposed new pilot sequences for FBMC-OQAM enabling the use of a simple averaging process in order to obtain the CSI. We show that our technique outperforms the existing ones in terms of complexity and performance. Secondly, we propose an alternative low-complexity way of computing the precoding/postcoding equalizer under the scenario of massive MIMO, keeping the quality of the estimator. Finally, we propose a new channel estimation technique for massive MIMO for mm-Wave, capable of adapting to very variable scenarios in terms of SNR and outperforming the existing techniques. We provide some analysis of the mean squared error (MSE) and complexity of each proposed technique. Furthermore, some numerical results are given in order to provide a better understanding of the problem and solutions.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Antonia María Tulino.- Secretario: Máximo Morales Céspedes.- Vocal: Octavia A. Dobr

    Downlink Transmission in FBMC-based Massive MIMO with Co-located and Distributed Antennas

    Full text link
    This paper introduces a practical precoding method for the downlink of Filter Bank Multicarrier-based (FBMC-based) massive multiple-input multiple-output (MIMO) systems. The proposed method comprises a two-stage precoder, consisting of a fractionally spaced prefilter (FSP) per subcarrier to equalize the channel across each subcarrier band. This is followed by a conventional precoder that concentrates the signals of different users at their spatial locations, ensuring each user receives only the intended information. In practical scenarios, a perfect channel reciprocity may not hold due to radio chain mismatches in the uplink and downlink. Moreover, the channel state information (CSI) may not be perfectly known at the base station. To address these issues, we theoretically analyze the performance of the proposed precoder in presence of imperfect CSI and channel reciprocity calibration errors. Our investigation covers both co-located (cell-based) and cell-free massive MIMO cases. In the cell-free massive MIMO setup, we propose an access point selection method based on the received SINRs of different users in the uplink. Finally, we conduct numerical evaluations to assess the performance of the proposed precoder. Our results demonstrate the excellent performance of the proposed precoder when compared with the orthogonal frequency division multiplexing (OFDM) method as a benchmark.Comment: arXiv admin note: text overlap with arXiv:2201.1073

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Low-complexity interference variance estimation methods for coded multicarrier systems: application to SFN

    Get PDF
    For single-frequency network (SFN) transmission, the echoes coming from different transmitters are superimposed at the reception, giving rise to a frequency selective channel. Although multicarrier modulations lower the dispersion, the demodulated signal is sensitive to be degraded by inter-symbol interference (ISI) and inter-carrier interference (ICI). In view of this, we use channel coding in conjunction either with filter bank multicarrier (FBMC) modulation or with orthogonal frequency division multiplexing (OFDM). To deal with the loss of orthogonality, we have devised an interference-aware receiver that carries out a soft detection under the assumption that the residual interference plus noise (IN) term is Gaussian-distributed. To keep the complexity low, we propose to estimate the variance of the IN term by resorting to data-aided algorithms. Experimental results show that regardless of the method, FBMC provides a slightly better performance in terms of coded bit error rate than OFDM, while the spectral efficiency is increased when FBMC is considered.Peer ReviewedPostprint (published version

    Pilot Pouring in Superimposed Training for Channel Estimation in CB-FMT

    Get PDF
    Cyclic block filtered multi-tone (CB-FMT) is a waveform that can be efficiently synthesized through a filter-bank in the frequency domain. Although the main principles have been already established, channel estimation has not been addressed yet. This is because of assuming that the existing techniques based on pilot symbol assisted modulation (PSAM), implemented in OFDM-like schemes, can be reused. However, PSAM leads to an undesirable loss of data-rate. In this paper, an alternative method inspired by the superimposed training (ST) concept, namely pilot pouring ST (PPST), is proposed. In PPST, pilots are superimposed over data taking advantage of the particular spectral characteristics of CB-FMT. Exploiting the sub-channel spectrum, the pilot symbols are poured in those resources unused for data transmission. This spectral shaping of pilots is also exploited at the receiver to carry out channel estimation, by enhancing those channel estimates that exhibit a low data interference contribution. Furthermore, a frequency domain resource mapping strategy for the data and poured pilot symbols is proposed to enable an accurate estimation in strongly frequency-selective channels. The parameters of the proposed scheme are optimized to minimize the channel estimation mean squared error (MSE). Finally, several numerical results illustrate the performance advantages of the proposed technique as compared to other alternatives

    Millimetre-Wave Fibre-Wireless Technologies for 5G Mobile Fronthaul

    Get PDF
    The unprecedented growth in mobile data traffic, driven primarily by bandwidth rich applications and high definition video is accelerating the development of fifth generation (5G) mobile network. As mobile access network evolves towards centralisation, mobile fronthaul (MFH) architecture becomes essential in providing high capacity, ubiquitous and yet affordable services to subscribers. In order to meet the demand for high data rates in the access, Millimetre-wave (mmWave) has been highlighted as an essential technology in the development of 5G-new radio (5G-NR). In the present MFH architecture which is typically based on common public radio interface (CPRI) protocol, baseband signals are digitised before fibre transmission, featuring high overhead data and stringent synchronisation requirements. A direct application of mmWave 5G-NR to CPRI digital MFH, where signal bandwidth is expected to be up to 1GHz will be challenging, due to the increased complexity of the digitising interface and huge overhead data that will be required for such bandwidth. Alternatively, radio over fibre (RoF) technique can be employed in the transportation of mmWave wireless signals via the MFH link, thereby avoiding the expensive digitisation interface and excessive overhead associated with its implementation. Additionally, mmWave carrier can be realised with the aid of photonic components employed in the RoF link, further reducing the system complexity. However, noise and nonlinearities inherent to analog transmission presents implementation challenges, limiting the system dynamic range. Therefore, it is important to investigate the effects of these impairments in RoF based MFH architecture. This thesis presents extensive research on the impact of noise and nonlinearities on 5G candidate waveforms, in mmWave 5G fibre wireless MFH. Besides orthogonal frequency division multiplexing (OFDM), another radio access technology (RAT) that has received significant attention is filter bank multicarrier (FBMC), particularly due to its high spectral containment and excellent performance in asynchronous transmission. Hence, FBMC waveform is adopted in this work to study the impact of noise and nonlinearities on the mmWave fibre-wireless MFH architecture. Since OFDM is widely deployed and it has been adopted for 5G-NR, the performance of OFDM and FBMC based 5G mmWave RAT in fibre wireless MFH architecture is compared for several implementations and transmission scenarios. To this extent, an end to end transmission testbed is designed and implemented using industry standard VPI Transmission Maker® to investigate five mmWave upconversion techniques. Simulation results show that the impact of noise is higher in FBMC when the signal to-noise (SNR) is low, however, FBMC exhibits better performance compared to OFDM as the SNR improved. More importantly, an evaluation of the contribution of each noise component to the overall system SNR is carried out. It is observed in the investigation that noise contribution from the optical carriers employed in the heterodyne upconversion of intermediate frequency (IF) signals to mmWave frequency dominate the system noise. An adaptive modulation technique is employed to optimise the system throughput based on the received SNR. The throughput of FBMC based system reduced significantly compared to OFDM, due to laser phase noise and chromatic dispersion (CD). Additionally, it is shown that by employing frequency domain averaging technique to enhance the channel estimation (CE), the throughput of FBMC is significantly increased and consequently, a comparable performance is obtained for both waveforms. Furthermore, several coexistence scenarios for multi service transmission are studied, considering OFDM and FBMC based RATs to evaluate the impact inter band interference (IBI), due to power amplifier (PA) nonlinearity on the system performance. The low out of band (OOB) emission in FBMC plays an important role in minimising IBI to adjacent services. Therefore, FBMC requires less guardband in coexistence with multiple services in 5G fibre-wireless MFH. Conversely, OFDM introduced significant OOB to adjacent services requiring large guardband in multi-service coexistence transmission scenario. Finally, a novel transmission scheme is proposed and investigated to simultaneously generate multiple mmWave signals using laser heterodyning mmWave upconversion technique. With appropriate IF and optical frequency plan, several mmWave signals can be realised. Simulation results demonstrate successful simultaneous realisation of 28GHz, 38GHz, and 60GHz mmWave signals
    corecore