12 research outputs found

    A Zienkiewicz-type finite element applied to fourth-order problems

    Get PDF
    AbstractThis paper deals with convergence analysis and applications of a Zienkiewicz-type (Z-type) triangular element, applied to fourth-order partial differential equations. For the biharmonic problem we prove the order of convergence by comparison to a suitable modified Hermite triangular finite element. This method is more natural and it could be applied to the corresponding fourth-order eigenvalue problem. We also propose a simple postprocessing method which improves the order of convergence of finite element eigenpairs. Thus, an a posteriori analysis is presented by means of different triangular elements. Some computational aspects are discussed and numerical examples are given

    Recovery Techniques For Finite Element Methods And Their Applications

    Get PDF
    Recovery techniques are important post-processing methods to obtain improved approximate solutions from primary data with reasonable cost. The practical us- age of recovery techniques is not only to improve the quality of approximation, but also to provide an asymptotically exact posteriori error estimators for adaptive meth- ods. This dissertation presents recovery techniques for nonconforming finite element methods and high order derivative as well as applications of gradient recovery. Our first target is to develop a systematic gradient recovery technique for Crouzeix- Raviart element. The proposed method uses finite element solution to build a better approximation of the exact gradient based on local least square fittings. Due to poly- nomial preserving property of least square fitting, it is easy to show that the new proposed method preserves quadratic polynomials. In addition, the proposed gra- dient recovery is linearly bounded. Numerical tests indicate the recovered gradient is superconvergent to the exact gradient for both second order elliptic equation and Stokes equation. The gradient recovery technique can be used in a posteriori error estimates for Crouzeix-Raviart element, which is relatively simple to implement and problem independent. Our second target is to propose and analyze a new effective Hessian recovery for continuous finite element of arbitrary order. The proposed Hessian recovery is based on polynomial preserving recovery. The proposed method preserves polynomials of degree (k + 1) on general unstructured meshes and polynomials of degree (k + 2) on translation invariant meshes. Based on it polynomial preserving property, we can able to prove superconvergence of the proposed method on mildly structured meshes. In addition, we establish the ultraconvergence result for the new Hessian recovery technique on translation invariant finite element space of arbitrary order. Our third target is to demonstrate application of gradient recovery in eigenvalue computation. We propose two superconvergent two-grid methods for elliptic eigen- value problems by taking advantage of two-gird method, two-space method, shifted- inverse power method, and gradient recovery enhancement. Theoretical and numer- ical results reveal that the proposed methods provide superconvergent eigenfunction approximation and ultraconvergent eigenvalue approximation. In addition, two mul- tilevel adaptive methods based recovery type a posterior error estimate are proposed

    Polynomial Preserving Recovery For Weak Galerkin Methods And Their Applications

    Get PDF
    Gradient recovery technique is widely used to reconstruct a better numerical gradient from a finite element solution, for mesh smoothing, a posteriori error estimate and adaptive finite element methods. The PPR technique generates a higher order approximation of the gradient on a patch of mesh elements around each mesh vertex. It can be used for different finite element methods for different problems. This dissertation presents recovery techniques for the weak Galerkin methods and as well as applications of gradient recovery on various of problems, including elliptic problems, interface problems, and Stokes problems. Our first target is to develop a boundary strategy for the current PPR algorithm. The current accuracy of PPR near boundaries is not as good as that in the interior of the domain. It might be even worse than without recovery. Some special treatments are needed to improve the accuracy of PPR on the boundary. In this thesis, we present two boundary recovery strategies to resolve the problem caused by boundaries. Numerical experiments indicate that both of the newly proposed strategies made an improvement to the original PPR. Our second target is to generalize PPR to the weak Galerkin methods. Different from the standard finite element methods, the weak Galerkin methods use a different set of degrees of freedom. Instead of the weak gradient information, we are able to obtain the recovered gradient information for the numerical solution in the generalization of PPR. In the PPR process, we are also able to recover the function value at the nodal points which will produce a global continuous solution instead of piecewise continuous function. Our third target is to apply our proposed strategy and WGPPR to interface problems. We treat an interface as a boundary when performing gradient recovery, and the jump condition on the interface can be well captured by the function recovery process. In addition, adaptive methods based on WGPPR recovery type a posteriori error estimator is proposed and numerically tested in this thesis. Application on the elliptic problem and interface problem validate the effectiveness and robustness of our algorithm. Furthermore, WGPPR has been applied to 3D problem and Stokes problem as well. Superconvergent phenomenon is again observed

    Proceedings of the 30th Nordic Seminar on Computational Mechanics (NSCM-30)

    Get PDF

    Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics

    Get PDF

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore