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a b s t r a c t

This paper deals with convergence analysis and applications of a Zienkiewicz-type
(Z-type) triangular element, applied to fourth-order partial differential equations. For the
biharmonic problem we prove the order of convergence by comparison to a suitable
modified Hermite triangular finite element. This method is more natural and it could
be applied to the corresponding fourth-order eigenvalue problem. We also propose a
simple postprocessing method which improves the order of convergence of finite element
eigenpairs. Thus, an a posteriori analysis is presented by means of different triangular
elements. Some computational aspects are discussed and numerical examples are given.
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1. Introduction

In general, a finite element method (FEM) for treating fourth-order problems requires trial and test functions belonging
to subspaces of the Sobolev space H2(Ω), and this would require C1-elements, i.e., piecewise polynomials which are C1
across interelement boundaries. A motivation for avoiding the use of C1 finite elements is their very high dimension. Also,
in many cases the feasible C0-elements for fourth-order problems give more simple and flexible computational schemes.
However, the effective choice of a method is complex, depending on many aspects of the underlying problem. Herein, in
order to avoid the C1-requirement we will use a nonconforming Zienkiewicz-type (Z-type) triangle element [1,2] applied
to some biharmonic problems. On the other hand, nonconforming finite elements are commonly used for approximation
fourth-order eigenvalue problems (EVP) in linear plate theory.
The rest of the paper is organized as follows. In the next section we give a brief description of continuous fourth-order

problems. In Section 3, a technique of finite element discretization is presented bymeans of nonconforming Z-type triangles.
Section 4 is devoted to the main result. Here the error estimates are derived. In Section 5, a postprocessing technique for
acceleration of the convergence for eigenpairs is presented. Finally, numerical examples are given to verify the validity of
the analytic results.

2. Statement of the problems

Let Ω be a bounded polygonal domain in R2 with boundary ∂Ω . Let also Hm(Ω) be the usual mth-order Sobolev space
onΩ with a norm ‖ · ‖m,Ω and a seminorm | · |m,Ω . Throughout this paper, (·, ·) denotes the L2(Ω)-inner product.
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Fig. 1.

Consider the following fourth-order model problem for f ∈ L2(Ω):

∆2u = f inΩ, u =
∂u
∂ν
= 0 on ∂Ω, (1)

where ν = (ν1, ν2) is the unit outer normal vector of ∂Ω and∆ is the standard Laplacian operator.
Let us also consider a thin elastic plate corresponding to the domainΩ . If the material is homogeneous and isotropic, the

question of the possible small vibrations of the plate leads to the basic eigenvalue problem:

∆2u = λu inΩ, u =
∂u
∂ν
= 0 on ∂Ω. (2)

The weak formulation of the problem (1) is: find u ∈ H20 (Ω) such that

a(u, v) = (f , v), ∀v ∈ H20 (Ω), (3)

where

a(u, v) =
∫
Ω

2∑
i,j=1

∂2iju ∂
2
ijvdx, ∀u, v ∈ H

2(Ω).

By analogy with (3), the variational EVP corresponding to (2) is: find (λ, u) ∈ R× H20 (Ω) such that

a(u, v) = λ(u, v), ∀v ∈ V = H20 (Ω). (4)

Obviously, the bilinear form a(·, ·) is symmetric and V -elliptic (see [3,4]). Moreover, the inclusion of V in L2(Ω)
is compact. Therefore, problem (4) has a countable infinite set of eigenvalues λj, all strictly positive and having finite
multiplicity, without a finite accumulation point (see, e.g., [5]). The corresponding eigenfunctions uj can be chosen to be
orthonormal in L2(Ω) and they constitute a Hilbert basis for V .

3. Finite element approximations

We shall approximate the solutions of (3) and (4) by the finite element method. Consider a family of triangulations
τh = ∪i Ki of Ω . Finite elements Ki fulfill standard assumptions (see [6, Chapter 3]). If hi denotes the diameter of Ki,
h = maxi hi is the finite element parameter corresponding to any partition τh.
With a partition τh we associate a finite dimensional space Vh by means of Z-type triangular elements. It is well-known

that the Zienkiewicz triangle represents a reduced cubic Hermite finite element for which (see [1,7,2]):

• K is a triangle with vertices ai, 1 ≤ i ≤ 3;
• one possible set of degrees of freedom is (for any test function p)

p(ai), 1 ≤ i ≤ 3 and Dp(ai)(aj − ai), 1 ≤ i, j ≤ 3, i 6= j;

• PK ⊂ P3(K) and dim PK = 9 (Fig. 1(a)).

Using directional derivatives, there are a variety of ways to define a finite element. Some Z-type triangular elements
having the same degrees of freedom can also be proposed in different ways [2].
So, for any triangle K we define

PK = P ′3(K) = P2(K)+ span
{
λ2i λj − λiλ

2
j , 1 ≤ i < j ≤ 3

}
,

where λi, i = 1, 2, 3, are the barycentric coordinates of K . Then we can define the shape function space by P ′3(K).

Lemma 3.1 ([2], Lemma 1). The set of degrees of freedom is PK -unisolvent.
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(a) dim PK = 18. (b) dim PK = 10.

Fig. 2.

Our approach requires the use of not just Z-type elements. In Fig. 1(b) the modified Hermite triangle is depicted, which
uses the degrees of freedom of the Zienkiewicz element and the integral value of the corresponding element.
The Z-type finite element that we use (Fig. 1(a)) satisfies the following properties:

(i) It is an incomplete and nonconforming C0-element for fourth-order problems.
(ii) It uses thedegrees of freedom just like the Zienkiewicz triangle, but its polynomial space is obtained in a specificmanner.
(iii) It takes values of functions and their derivatives at vertices as degrees of freedom and through this the global number

of degrees of freedom is the smallest one.
(iv) It is convergent (applied to fourth-order problems) in contrast to the Zienkiewicz triangle, which is only convergent in

parallel line conditions and is divergent in general grids.

The vertex point degrees of freedomused for the Zienkiewicz triangle are an advantage in finite element implementation.
In addition the work is slightly reduced.
Then, the approximate variational problem of (3) is: find uh ∈ Vh such that

ah(uh, vh) = (f , vh), ∀vh ∈ Vh, (5)

where

ah(uh, vh) =
∑
K∈τh

∫
K

2∑
i,j=1

∂2uh
∂xi∂xj

∂2vh

∂xi∂xj
dx.

By analogy, we determine the approximate eigenpairs (λh, uh) using a nonconforming Z-type finite element. Then, the
EVP corresponding to (4) is: find (λh, uh) ∈ R× Vh such that

ah(uh, vh) = λh(uh, vh), ∀vh ∈ Vh. (6)

4. Convergence analysis

First, we introduce the mesh-dependent norm and seminorm [7,2]. For any v ∈ L2(Ω) with v|K ∈ H
m(K), ∀K ∈ τh, we

define

‖v‖m,h =

(∑
K∈τh

‖v‖2m,K

)1/2
, |v|m,h =

(∑
K∈τh

|v|2m,K

)1/2
.

In order to carry out convergence analysis of the Z-type element considered for fourth-order problems, we also consider
the Hermite triangle with a suitably modified tenth degree of freedom. It takes an integral value on K instead of the value
at the barycenter of K (see Fig. 2(b)).
Let Πh denote the interpolation operator corresponding to the Z-type finite element partition τh and πh be the

interpolation operator related to the modified Hermite finite element. Our convergence analysis is based on the estimation
ofΠhv − πhv for any v ∈ H20 ∩ H

3(Ω) on each element K ∈ τh.

Theorem 4.1. Let Vh be the FE space corresponding to the nonconforming Z-type element. Then there exists a constant C =
C(Ω) > 0, independent of h and such that

inf
vh∈Vh

2∑
m=0

hm|v − vh|m,h ≤ Ch3‖v‖3,Ω , ∀v ∈ H20 ∩ H
3(Ω).

Proof. Let us estimate Πhv − πhv on each finite element K ∈ τh. For this purpose we transform any triangle K to the
reference element

T = {(t1, t2) : t1, t2 ≥ 0, t1 + t2 ≤ 1}.
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The shape functions of the Z-type element on the reference element T are

ϕ1(t1, t2) = −
1
2
t1t2 − t21 +

3
2
t21 t2 +

1
2
t1t22 + t

3
1 ;

(
∂(1,0)ϕ1(1, 0) = 1

)
ϕ2(t1, t2) = 2t1t2 + 3t21 − 2t

2
1 t2 − 2t1t

2
2 − 2t

3
1 ; (ϕ2(1, 0) = 1)

ϕ3(t1, t2) = −
1
2
t1t2 −

1
2
t21 t2 +

1
2
t1t22 ;

(
∂(1,−1)ϕ3(1, 0) = 1

)
ϕ4(t1, t2) = −

1
2
t1t2 +

1
2
t21 t2 −

1
2
t1t22 ;

(
∂(−1,1)ϕ4(0, 1) = 1

)
ϕ5(t1, t2) = 2t1t2 + 3t22 − 2t

2
1 t2 − 2t1t

2
2 − 2t

3
2 ; (ϕ5(0, 1) = 1)

ϕ6(t1, t2) = −
1
2
t1t2 − t22 +

1
2
t21 t2 +

3
2
t1t22 + t

3
2 ;

(
∂(0,1)ϕ6(0, 1) = 1

)
ϕ7(t1, t2) = −t2 +

3
2
t1t2 + 2t22 −

1
2
t21 t2 −

3
2
t1t22 − t

3
2 ;

(
∂(0,−1)ϕ7(0, 0) = 1

)
ϕ8(t1, t2) = 1− 4t1t2 − 3t21 − 3t

2
2 + 4t

2
1 t2 + 4t1t

2
2 + 2t

3
1 + 2t

3
2 ; (ϕ8(0, 0) = 1)

ϕ9(t1, t2) = −t1 + 2t21 − t
3
1 +

3
2
t1t2 −

3
2
t21 t2 −

1
2
t1t22 .

(
∂(−1,0)ϕ9(0, 0) = 1

)
.

By analogy, we obtain the shape functions of the Hermite element on T consecutively from a1 to a3:

ψ1(t1, t2) = 2t1t2 − t21 − t
2
1 t2 − 2t1t

2
2 + t

3
1 ;

(
∂(1,0)ψ1(1, 0) = 1

)
ψ2(t1, t2) = −18t1t2 + 3t21 + 18t

2
1 t2 + 18t1t

2
2 − 2t

3
1 ; (ψ2(1, 0) = 1)

ψ3(t1, t2) = 2t1t2 − 3t21 t2 − 2t1x
2
2;

(
∂(1,−1)ψ3(1, 0) = 1

)
ψ4(t1, t2) = 2t1t2 − 2t21 t2 − 3t1t

2
2 ;

(
∂(−1,1)ψ4(0, 1) = 1

)
ψ5(t1, t2) = −18t1t2 + 3t22 + 18t

2
1 t2 + 18t1t

2
2 − 2t

3
2 ; (ψ5(0, 1) = 1)

ψ6(t1, t2) = 2t1t2 − t22 − 2t
2
1 t2 − t1t

2
2 + t

3
2 ;

(
∂(0,1)ψ6(0, 1) = 1

)
ψ7(t1, t2) = −t2 + 4t1t2 + 2t22 − 3t

2
1 t2 − 4t1t

2
2 − t

3
2 ;

(
∂(0,−1)ψ7(0, 0) = 1

)
ψ8(t1, t2) = 1− 24t1t2 − 3t21 − 3t

2
2 + 24t

2
1 t2 + 24t1t

2
2 + 2t

3
1 + 2t

3
2 ; (ψ8(0, 0) = 1)

ψ9(t1, t2) = −t1 + 4t1t2 + 2t21 − 4t
2
1 t2 − 3t1t

2
2 − t

3
1 ;

(
∂(−1,0)ψ9(0, 0) = 1

)
ψ10(t1, t2) = 60t1t2 − 60t21 t2 − 60t1t

2
2 .

(
1

meas T

∫
T
ψ10(t)dt = 1

)
.

Using these shape functions we calculate

(Πhv − πhv)|T = (60t1t2 − 60t21 t2 − 60t1t
2
2 )

[
v(a1)+ v(a2)+ v(a3)

3

−
∂(a1−a2)v(a1)+ ∂(a1−a3)v(a1)

24
−
∂(a2−a1)v(a2)+ ∂(a2−a3)v(a2)

24

−
∂(a3−a1)v(a3)+ ∂(a3−a2)v(a3)

24
−

1
meas T

∫
T
v(t)dt

]
= 60t1t2(1− t1 − t2)ET (v) ≤

20
9
|ET (v)|, (7)

where

ET (v) =

1
3

3∑
i=1

v(ai)−
1
24

3∑
i,j=1
i6=j

∂(ai−aj)v(ai)−
1

meas T

∫
T
v(t) dt


is the error functional of the quadrature formula.
It is easy to see that

ET (v) = 0 for any v ∈ P2(T ).

Therefore, from the Bramble–Hilbert lemma [6] there exists a constant C > 0 such that

|ET (v)| ≤ C |v|3,T .
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Let FK be the invertible affine mapping which maps the reference finite element T onto the finite element K :

FK : T → K , t → x = FK (t) = BK (t)+ bK

with BK ∈ R2×2, bK ∈ R2×1, and where det BK = O(h2).
So, we obtain

|ET (v)| ≤ Ch3 (det BK )−1/2 |v|3,K . (8)

Thus, using that

‖Πhv − πhv‖0,K = (det BK )1/2 ‖Πhv − πhv‖0,T ,

from (7) and (8) it follows that

‖Πhv − πhv‖0,h =

(∑
K∈τh

‖Πhv − πhv‖
2
0,K

)1/2
≤ Ch3‖v‖3,Ω . (9)

By explicit calculations, we also obtain

∂i (Πhv − πhv)|T = tj(1− 2ti − tj)ET (v), i, j ∈ {1, 2} , i 6= j,

where |T denotes the restriction to the reference element T .
Since (Πhv − πhv) ∈ P3(K), for the last equality in the conjecturewith the inverse inequality [6, pp. 133–137] we obtain

|∂i (Πhv − πhv) ||T ≤ Ch
2
|v|3,K ,

and, in the same manner,

|∂ij (Πhv − πhv) ||T ≤ Ch|v|3,K , i, j = 1, 2.

These inequalities and (9) give

‖Πhv − πhv‖m,h ≤ Ch3−m‖v‖3,Ω , m = 0, 1, 2. (10)

Finally, we use the fact that the order of convergence of ‖v − πhv‖m,h, m = 0, 1, 2, is an optimal one for the cubic
Hermite polynomials (see [7,6]). From this and (10) we apply the inequality

‖v −Πhv‖m,h ≤ ‖v − πhv‖m,h + ‖Πhv − πhv‖m,h.

Then the result of the theorem follows from the FE interpolation theory. �

Remark 1. Observe that form = 0, 1 we have

‖Πhv − πhv‖m,h = ‖Πhv − πhv‖m,Ω .

Now, we shall prove the main estimate:

Theorem 4.2. Let u ∈ H3(Ω)∩H20 (Ω) be the solution of (3) and uh ∈ Vh be the solution of the problem (5) using a Z-type finite
element. Then there exists a constant C = C(Ω) > 0, independent of h and such that

‖u− uh‖2,h ≤ Ch‖u‖3,Ω . (11)

Proof. By Theorem 4.1, it is readily seen that for any v ∈ H20 (Ω)

lim
h→0

inf
vh∈Vh
‖v − vh‖2,h = 0.

Therefore

lim
h→0
‖u− uh‖2,h = 0.

Having in mind that Vh is constructed of Z-type nonconforming finite elements, we have (see also [2, Lemma 3])

|ah(v, vh)− (∆2v, vh)| ≤ Ch|v|3,Ω |vh|2,h, ∀v ∈ H3(Ω), ∀vh ∈ Vh. (12)

Now, for the solutions u and uh we apply the second Strang lemma (see [6, Theorem 31.1]):

‖u− uh‖2,h ≤ C

 inf
vh∈Vh
‖u− vh‖2,h + sup

vh∈Vh
vh 6=0

|ah(u, vh)− (f , vh)|
‖vh‖2,h

 .
Then, the main estimate (11) follows from (12) and the result of Theorem 4.1. �
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We can apply the results of the last two theorems to the corresponding fourth-order elliptic EVP (2) (see [3]).
It is to be noted here that the sesquilinear form ah is uniformly elliptic, i.e. (α > 0),

α‖∆v‖20,Ω ≤ ah(v, v), ∀v ∈ H
2
0 (Ω).

Let us also define the elliptic projectionRh ∈ L(V , Vh) by

ah(Rhu− u, vh) = 0, ∀vh ∈ Vh. (13)

Thus, Rh is an operator of orthogonal projection from V over Vh with respect to the scalar product ah(·, ·). The next
theorem gives the error estimate of the eigenvalues using a nonconforming Z-type finite element.

Theorem 4.3. Let (λ, u) and (λh, uh) be eigensolutions of (4) and (6), respectively. Then for any simple eigenvalue λm (m ≥
1), λm,h −→ λm (h→ 0). Moreover, if the corresponding eigenfunction um belongs to H20 (Ω) ∩ H

3(Ω), then

|λm − λm,h| ≤ Ch2‖um‖23,Ω . (14)

Proof. First, let us notice that from Theorem 4.1 and (13), it follows that for any u ∈ V

‖u−Rhu‖2,h ≤ C inf
vh∈Vh
‖u− vh‖2,h. (15)

We shall estimate the difference λm − λm,h for any integer m ≥ 1. For this purpose we introduce the space Vm which is
generated by the first m (exact) eigenfunctions {ui}, 1 ≤ i ≤ m. The approximate eigenvalue λm,h can be characterized as
various extrema of the Rayleigh quotient [3]. Then (dim (RhVm) = m)

λm,h ≤ max
06=vh∈RhVm

ah(vh, vh)
‖vh‖

2
0,Ω
= max

v∈Vm
‖v‖0,Ω=1

ah(Rhv,Rhv)
‖Rhv‖

2
0,Ω

.

SinceRhv is an orthogonal projection over Vh with respect to ah(·, ·), we have

ah(Rhv,Rhv) ≤ ah(v, v),

and therefore

λm,h ≤ sup
v∈Vm
‖v‖0,Ω=1

ah(v, v)
‖Rhv‖

2
0,Ω
≤ λm sup

v∈Vm
‖v‖0,Ω=1

1
‖Rhv‖

2
0,Ω
. (16)

In the last inequality we suppose that ah(v, v) = a(v, v). This is true if for example Vm ⊂ H2(Ω). We also emphasize
that ‖vh‖s,h = ‖vh‖s,Ω , s = 0, 1, for all vh ∈ Vh. For this, let us consider a function v ∈ Vm such that ‖v‖0,Ω = 1. Then

v =

m∑
i=1

αiui with
m∑
i=1

α2i = 1.

Using that v is normalized with respect to L2(Ω)we obtain

1− ‖Rhv‖20,Ω = (v −Rhv, v +Rhv) = 2(v −Rhv, v)− ‖v −Rhv‖
2
0,Ω ,

or

‖Rhv‖
2
0,Ω ≥ 1− 2(v −Rhv, v). (17)

On the other hand, from (4) we derive

(v −Rhv, v) =
m∑
i=1

αi(v −Rhv, ui) =
m∑
i=1

αi

λi
ah(v −Rhv, ui).

Applying equality (13) we get

(v −Rhv, v) =
m∑
i=1

αi

λi
ah(v −Rhv, ui −Rhui).

Next, as ah(·, ·) is continuous, i.e. (M = const > 0),

ah(u, v) ≤ M‖u‖2,h‖v‖2,h,

and we obtain

(v −Rhv, v) ≤ M‖v −Rhv‖2,h

∥∥∥∥∥ m∑
i=1

αi

λi
(ui −Rhui)

∥∥∥∥∥
2,h

.
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Having in mind that λ1 is the smallest eigenvalue, by the Cauchy–Schwarz inequality we estimate∥∥∥∥∥ m∑
i=1

αi

λi
(ui −Rhui)

∥∥∥∥∥
2,h

≤

(
m∑
i=1

α2i

λ2i

)1/2 ( m∑
i=1

‖ui −Rhui‖22,h

)1/2
≤

√
m
λ1

sup
v∈Vm
‖v‖0,Ω=1

‖v −Rhv‖2,h. (18)

Combining (16)–(18), we obtain

λm,h ≤

1+ C sup
v∈Vm
‖v‖0,Ω=1

‖v −Rhv‖
2
2,h

 λm.
We rewrite the last result as

|λm,h − λm| ≤ C(λ) sup
v∈Vm
‖v‖0,Ω=1

‖v −Rhv‖
2
2,h ≤ C

m∑
i=1

‖ui −Rhui‖22,h.

Now, let us suppose that Vm ⊂ H3(Ω) ∩ H20 (Ω) and ui ∈ H
3(Ω), i = 1, . . . ,m. Applying (15) and the approximation

property of the Z-type finite element proved in Theorem 4.1 to the last inequality we prove the estimate (14).
As a corollary of the considerations above, if λm is a simple eigenvalue, for the corresponding eigenfunctions we have

‖um,h − um‖2,h ≤ C sup
v∈Vm
‖v‖0,Ω=1

‖v −Rhv‖2,h ≤ C

(
m∑
i=1

‖ui −Rhui‖22,h

)1/2
.

From (15) under Vm ⊂ H3(Ω) ∩ H20 (Ω)we get

‖um,h − um‖2,h ≤ Ch

(
m∑
i=1

‖ui‖23,h

)1/2
. � (19)

5. The superconvergent postprocessing technique

At present, modern engineering and scientific computing use intensively superconvergence postprocessing methods.
Procedures for accelerating the convergence of FE approximations of the eigenpairs are developed by authors for different
problems (see, e.g., [8,9,4]). Herein we prove that these ideas could be applied to biharmonic EVP approximated by
nonconforming finite elements. We present a relatively simple postprocessing method that gives better accuracy for
eigenvalues. It is based on a postprocessing technique whereby an additional solving of a source problem on augmented
FE space is involved. This method is illustrated with a numerical example in the next section.
Let uh be any approximate eigenfunction of (6) with ‖uh‖0,Ω = 1. Since the FE solution uh obtained with the

nonconforming Z-type element is already known, we consider the following variational elliptic problem:
a(̃u, v) = (uh, v), ∀v ∈ V . (20)

Theorem 5.1. Let the FE space Vh be constructed of Z-type nonconforming triangular elements. If (λ, u) is an eigenpair of
problem (4), u ∈ H3(Ω) and (λh, uh) is the corresponding solution of (6). We also suppose that the eigenfunctions are normalized:
‖u‖0,Ω = ‖uh‖0,Ω = 1. Then

|λ− λ̃| = O(‖u− uh‖20,Ω), (21)

where λ̃ is defined by

λ̃ =
1

(̃u, uh)
.

Proof. For any functionw ∈ Hr(Ω), r ≥ 0, consider the following elliptic problem:

a(u, v) = (w, v) ∀v ∈ V .

Then the operator T : Hr(Ω)→ V defined by u = T w, u ∈ V , is the solution operator for the boundary value (source)
problem. Since a(·, ·) is a symmetric form and a(u, v) is an inner product on V , then the operator T is symmetric and positive
(see also [3]). Thus we have

a(T u, v) = (u, v) ∀v ∈ V .
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On the other hand if u is a solution of the EVP (3), then

a(u, T u) = λ(u, T u).

From the symmetry of T we easily get

1
λ
−
1

λ̃
= (T u, u)− (T uh, uh) = (T u, u)− (T uh, uh)+ (T (u− uh), u− uh)− (T (u− uh), u− uh).

Consequently

1
λ
−
1

λ̃
= 2(T u, u− uh)− (T (u− uh), u− uh). (22)

Now we will estimate the two terms in the right-hand side of (22):

2(T u, u− uh) =
2
λ
(1− (u, uh)) =

1
λ
((u, u)− 2(u, uh)+ (uh, uh))

=
1
λ
(u− uh, u− uh) ≤ C‖u− uh‖20,Ω .

Having in mind that the operator T is bounded, we have

| (T (u− uh), u− uh) | ≤ C‖u− uh‖20,Ω .

Finally, from (22) and the last two inequalities we derive the estimate (21). �

As a corollary of the above result, if the FE partitions are regular, then the following superconvergent estimate holds:

|λ− λ̃| ≤ Ch6‖u‖23,Ω .

Nevertheless, this estimate is not very practical since the exact solution of the source problem (20) is hardly ever available.
Tomake it useful for computational practicewe need to approximate appropriately λ̃. So, the FE solution, which corresponds
to (20) is

ah(̃uh, vh) = (uh, vh), ∀vh ∈ Ṽh, (23)

where Ṽh will be made precise. Namely,

(i) Ṽ (1)h is constructed using a modified Hermite element (Fig. 2(b)). Recall that this element is also a nonconforming one.

(ii) Ṽ (2)h is a finite element space obtained by using the conforming Bell’s triangle shown in Fig. 2(a) (see also [7,6]). We
point out here that Bell’s triangle is optimal among triangular polygonal finite elements of class C1 (see [6, Theorem
9.3]), since dim PK ≥ 18 for such kinds of finite elements.

It is to be noted here that the set of degrees of freedom of Bell’s triangle could be chosen as follows (for any test function
p):

p(ai), 1 ≤ i ≤ 3; Dp(ai)(aj − ai), 1 ≤ i, j ≤ 3, i 6= j;

D2p(ai)(aj − ai)(ak − ai), 1 ≤ i, j, k ≤ 3, i 6= j, i 6= k.

In Fig. 2 • denotes evaluation at the point,© denotes evaluation of first derivatives at the center of the circle and the outer
circle denotes evaluation of second-order derivatives at the center of the circle.
We define

λ̃h =
1

(̃uh, uh)
,

where uh and ũh are the solutions of (6) and (23), respectively.

Theorem 5.2. Let the assumptions of Theorem 5.1 be fulfilled and let us use the finite element subspaces Ṽ (s)h , s = 1, 2. Then the
following estimate holds:

|λ− λ̃h| ≤ Ch2(s+1), s = 1, 2. (24)
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Proof. Using the definition of λ and λ̃h we have

1

λ̃
−
1

λ̃h
= (̃u, uh)− (̃uh, uh) = a(̃u, ũ)− ah(̃uh, ũh)

= ah(̃u− ũh, ũ)+ ah(̃uh, ũ)− ah(̃uh, ũh)
= ah(̃u− ũh, ũ)− ah(̃u− ũh, ũh),

and consequently

1

λ̃
−
1

λ̃h
= ah(̃u− ũh, ũ− ũh).

The continuity of the ah-form gives

|̃λ− λ̃h| ≤ C ‖̃u− ũh‖22,h.

By arguments similar to those in Theorem 4.3 and by standard assumptions for the smoothness of ũ we can derive the
estimate as (19) (see also [6]):

‖̃u− ũh‖2,h ≤ Chs+1‖̃u‖2s+1,Ω , s = 1, 2.

The superconvergent estimate (24) follows from the last inequality, (21) and

|λ− λ̃h| ≤ |λ− λ̃| + |̃λ− λ̃h|. �

Now we can present a postprocessing algorithm which will give improved approximations of the eigenvalues:

1. Solve the eigenvalue problem (6) using a Z-type finite element and as a result obtain λh ∈ R and uh ∈ Vh.
2. Solve the source problem (23) and find ũh ∈ Ṽ

(s)
h , s = 1 or s = 2.

3. Compute λ̃ = 1
(̃uh,uh)

.

The value λ̃h represents a new (and better) approximation of λ.

6. Numerical results

The theoretical results are illustrated by reporting this example of a related two-dimensional biharmonic eigenvalue
problem. LetΩ be a square domain:

Ω : −
π

2
< xi <

π

2
, i = 1, 2.

The model problem considered is

∆2u = λu inΩ,

u =
∂u
∂ν
= 0 on ∂Ω.

For this problem the exact eigenvalues are not known. We use their lower and upper bounds obtained in [10] (see
also [11]).
In Table 1 the results from our numerical experiments for the first four eigenvalues are given. They illustrate the

computation by means of Z-type finite elements. The domain is divided into a uniform mesh with 2n2 isosceles triangular
Z-type elements and themesh parameter is h = π/n, n = 5, 6, 7, 8. As can be seen, the numerical implementation confirms
the convergence asserted by Theorems 4.1–4.3. The proposed Z-type elements are appropriate, especially for computing
eigenvalues. And for the approximate eigenvalues and eigenfunctions obtained by means of the proposed elements some
postprocessing technique could easily be applied to improve both the rate of convergence to the exact solution and the
properties of the approximate eigenfunctions.
In Table 2 the implementation of the proposed postprocessing algorithm, putting to use modified Hermite elements

(s = 1), is shown. Here we give the computational results obtained after division of the domain into 2n2 isosceles triangular
elements, where n = 4, 6, 8. Regardless of the fact that the second and the third eigenvalue are equal, the proposed
postprocessing technique is put into effect for both of them. As can be seen, the postprocessing takes effect especially well
on a coarse grid.
It is to be noted here that if one is mainly interested in the computing of eigenvalues, one can successfully apply Hermite

elements, because they completely ensure an improvement of the approximate values. However, as regards eigenfunctions,
the use of Bell’s finite elements for the postprocessing procedure not only gives a better improvement compared to the use
of Hermite elements, but also improves the smoothness of the approximate eigenfunctions.
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Table 1
Eigenvalues computed by means of Z-type finite elements.

Number of FEs λ1 λ2 λ3 λ4

50 14.8023 64.1267 70.4634 162.3236
72 14.0465 60.3152 65.3925 156.5718
98 13.6470 58.6170 62.5207 153.7372
128 13.4721 57.7318 61.3971 152.4870
Bounds:
Lower 13.2820 55.2400 55.2400 120.0070
Upper 13.3842 56.5610 56.5610 124.0740

Table 2
Eigenvalues computed by means of Z-type finite elements (FEM) and their improvements as a result of the postprocessing procedure (PP) achieved by
means of Hermite finite elements.

Number of FEs λ1 λ2 λ3 λ4

32 FEM 15.0780 67.1107 75.2068 168.1998
PP 14.8992 63.2144 71.7732 153.0853

72 FEM 14.0465 60.3152 65.3925 156.5718
PP 13.9459 58.7350 63.3821 149.8718

128 FEM 13.4721 57.7318 61.3971 152.4870
PP 13.4152 56.1393 58.9924 148.6162

Bounds: Lower 13.2820 55.2400 55.2400 120.0070
Upper 13.3842 56.5610 56.5610 124.0740

References

[1] G.P. Bazaley, Y.K. Cheung, B.M. Irons, O.C. Zienkiewicz, Triangular elements in plate bending—conforming and non-conforming solutions,
in: Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson, A.F. Base, Ohio, 1965, pp. 547–576.

[2] M. Wang, Z. Shi, J. Xu, A new class of Zienkiewicz-type non-conforming element in any dimensions, Numer. Math. 106 (2007) 335–347.
[3] I. Babuska, J. Osborn, Eigenvalue problems, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991,
pp. 641–787.

[4] M.R. Racheva, A.B. Andreev, Superconvergence postprocessing for eigenvalues, Comp. Meth. Appl. Math. 2 (2) (2002) 171–185.
[5] P.A. Raviart, J.M. Thomas, Introduction a l’Analyse Numerique des Equations aux Derivees Partielles, Masson, Paris, 1988.
[6] P. Ciarlet, Basic Error Estimates for the FEM, vol. 2, Elsevier, Amsterdam, 1991, pp. 17–351.
[7] S. Brenner, L.R. Scott, The Mathematical Theory for Finite Element Methods, Springer-Verlag, New York, 1992.
[8] A.B. Andreev, R.D. Lazarov, M.R. Racheva, Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic
eigenvalue problems, J. Comput. Appl. Math. 182 (2005) 333–349.

[9] A.B. Andreev, M.R. Racheva, Superconvergent finite element post-processing for eigenvalue problemswith nonlocal boundary Conditions, in: I. Lirkov,
et al. (Eds.), LSSC 2007, in: LNCS, vol. 4818, Springer, Heidelberg, 2008, pp. 645–653.

[10] A. Weinstein, W. Stenger, Methods of intermediate problems for eigenvalues, in: Theory and Applications, Academic Press, 1972.
[11] K. Ishihara, A mixed finite element method for the biharmonic eigenvalue problem of plate bending, Publ. Res. Inst. Math. Sci. 14 (1978) 399–414.


	A Zienkiewicz-type finite element applied to fourth-order problems
	Introduction
	Statement of the problems
	Finite element approximations
	Convergence analysis
	The superconvergent postprocessing technique
	Numerical results
	References


