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1

CHAPTER 1 INTRODUCTION

Gradient recovery [13, 16, 18, 26, 29, 30, 31, 32, 33, 34] is an effective and widely

used post-processing technique in scientific and engineering computation. The main

purpose of this technique is to reconstruct a better numerical gradient from a finite

element solution. It can be used for mesh smoothing, a posteriori error estimate [18, 31,

32, 34, 29, 38], and adaptive finite element method [35] even with anisotropic meshes

[44, 15, 17, 25].

An efficient gradient recovery technique must be fast, easy to implement, and ac-

curate in approximating the exact gradient. Some popular post-processing techniques

include the celebrated Zienkiewicz-Zhu superconvergent patch recovery (SPR) [33],

polynomial preserving recovery (PPR)[30, 18] and edge based recovery [26], which

were proposed to obtain accurate gradients with reasonable cost. The SPR recovers

the gradient at vertices by local least-squares fitting to the finite element gradient in

an associated patch, while the PPR recovers the gradient at a vertex by local least-

squares fitting to the finite element solution in an associated patch and then taking

the gradient of the least-squares fitted polynomial. The Superconvergent Patch Re-

covery (SPR) and Polynomial Preserving Recovery (PPR) are two popular methods

which have been adopted by commercial software such as ANSYS, Abaqus, COMSOL

Multiphysics [7], Diffpack, LS-DYNA, etc.

More recently, the gradient recovery technique was applied to improve the accuracy

of eigenvalue approximation. In [27], Shen and Zhou introduced a defect correction
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scheme based on averaging recovery, like a global L2 projection and a Clément-type

operator. In [21], Naga, Zhang and Zhou used Polynomial Preserving Recovery in eigen-

value approximation and superconvergence results is achieved. In [22], Wu and Zhang

further showed polynomial preserving recovery can also enhance eigenvalue approxima-

tion on adaptive meshes. The idea was further studied in [23, 24]. Later in [20], Naga

and Zhang introduced the function recovery technique and applied it on eigenvalue

approximation. In our recent work [14], we propose some fast and efficient solvers for

elliptic eigenvalue problems. Our first algorithm is a combination of the shifted-inverse

power based two-grid scheme [39, 40] and polynomial recovery enhancing technique [21].

The second algorithm can be viewed as a combination of the two-grid scheme [39, 40]

and the two-space method [42, 41]. Both of our methods inherit the superconvergence

property of the previous methods but have much lower computational cost.

Post-processing for second order derivatives, which are related to physical quan-

tities such as momentum and Hessian, are also desirable. In adaptive mesh design,

Hessian matrix can indicate the direction where the function changes the most and

hence it could be used to construct anisotropic meshes to cope with the anisotropic

properties of the solution of the underlying PDEs [43, 44]. It is also widely employed in

FEM approximation of second order nonvariational elliptic problems [46] and nonlinear

equations like Monge-Ampère equation [47, 48]. Moreover, it is used in designing a non-

local finite element technique [45] as well. In our recent work [36], an effective Hessian

recovery method is proposed, both theoretical analysis and numerical experiment have

validated the superconvergence property of our algorithm. Our work is not targeted
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in the direction of adaptive mesh refinement; instead, our emphasis is to obtain accu-

rate Hessian matrices via recovery techniques. This idea is natural: apply PPR twice

to the primarily computed data. However, the mathematical theory behind it is non-

trivial and quite involved, especially in the ultraconvergence analysis of the recovered

Hessian. A direct calculation of the gradient from the linear finite element space has

linear convergent rate and the Hessian has no convergence at all. Our Hessian recovery

method can achieve second order convergence under some uniform meshes, which is a

very surprising result!

The PPR often forms a higher-order approximation of the gradient on a patch of

mesh elements around each mesh vertex. For regular meshes, the convergence rate of

the recovered gradient is O(hp+1)-the same as for the solution itself [5, p.471] [6, p.1061].

However, the accuracy of PPR near boundaries is not as good as that away from the

boundaries. It might even be worse than without recovery. [5, p.471][6, p.1061]. Some

special treatments are needed to improve the accuracy of PPR on the boundary. In

this thesis, we present two boundary recovery strategies to resolve the problem caused

by boundaries. Our first strategy to recover the gradient at a boundary vertex is as fol-

lows. First, by using the standard PPR local least-squares fitting procedure for interior

vertex, we construct a polynomial for each selected interior vertices close to the target

boundary vertex. Then we take the average of all quantities evaluating the gradient of

the obtained polynomials at the target boundary vertex as the recovered gradient. The

second recovery strategy is as below: We construct a relatively large element patch by

merging all the element patches of some selected interior vertices near the target point.
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Then we select all mesh nodes in the above patch as sampling points to fit a poly-

nomial in least-squares sense and define the recovered gradient by the gradient of the

constructed polynomial at the target point. The basic idea behind our two strategies is:

the classic PPR method cannot achieve a good approximation on boundary comparable

to that in the interior of the domain since the classic selected boundary patch does not

contain sufficient information. Therefore, we should replace the boundary patch by the

interior patches which has more information than the boundary patch and which has

a certain symmetric property. Both the above proposed methods use more information

than the classic PPR methods. Our two methods are numerically tested and compared

with standard implementation in COMSOL Multiphysics. The numerical results in L2

norm validate that both our methods lead to superconvergent recovered gradient up to

boundary. The numerical errors in L∞ norm show improved accuracy over the classical

PPR method near boundary.

The weak Galerkin finite element methods is a novel numerical method that was

first proposed and analyzed by Wang and Ye in [118] for general second order elliptic

problems on simplicial grids, and later on in [101, 98, 108] for shape regular polytopal

meshes. The main idea of weak Galerkin finite element methods is the use of weak func-

tions where the differential operators, such as gradient, divergence, curl, Laplacian, are

approximated by their weak forms as distributions. Different algorithms and improve-

ment have been made for solving second order elliptic equations [68, 80, 85, 117, 55].

By replacing the differential operators in the weak form of different problem, the weak

Galerkin finite element methods have been successfully applied to various problems. A
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weak Galerkin method was introduced in [116] for the elliptic interface problems by us-

ing a Lagrange multiplier to handle the interface conditions. Later in [69], a new weak

Galerkin method has been developed for the same interface problem, the main differ-

ence is the use of a parameter free stabilizer term which makes the new WGFEMs more

flexible in handling complicated interface geometries. By introducing the weak Lapla-

cian operator, biharmonic equations have been studied in [92, 93, 101, 108, 110, 115, 54].

With the definition of weak divergence and weak curl, the div-curl system is discre-

tised by the WGFEMs in [71]. Under the same concept, the weak Galerkin meth-

ods have been further developed to solve many other problems, including Helmholtz

equations [56, 111, 88], Maxwell equations [89], Wave equations [60], Stokes equations

[67, 81, 83, 87, 99, 57], Brinkman equations [74, 76, 103], Oseen equations [66], Darcy-

Stokes equations [78, 102, 58]. Furthermore, fourth order problem have been solved by

WGFEMs in [79, 59]. Besides the success in solving different problems with WGFEMs,

there are also a lot of modified versions of WGFEMs to serve different purpose. In

[106], Gao and Wang proposed a modified WGFEMs for a class of parabolic problems.

In [90], Gao et. al. proposed a modified WGFEMs for convection-diffusion problems in

2D. The Sobolev equation has been studied by Gao and Wang in [94], using a mod-

ified weak Galerkin finite element method as well. Mu and her group introduced the

modified WGFEMs for the Stokes equations in [99]. The advantage of these modified

weak finite element method is its lower global degrees of freedom. Most of these work

on weak Galerkin finite element methods concern only a priori error estimates for the

corresponding numerical solutions. The superconvergence of weak Galerkin finite ele-
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ment method is still lack of attention. Recently, Chen et. al. [109] presented a residual

type a posteriori error estimator and analyzed its convergence property. This is the

first article concerning about the a posteriori error estimation and the adaptivity of

weak Galerkin method. In [64], Zhang et. al. presented an a posteriori error estimator

for the modified weak Galerkin finite element methods.

Due to its problem independent and method independent feature, PPR can be

generalized to finite volume methods, finite difference methods and non-conforming

finite element methods. In this thesis, we will apply PPR on the information generated

by different weak Galerkin scheme and denote it by WGPPR. Detailed framework of

WGPPR and several numerical experiments will be provided to show this process.

Boundary recovery technique can be used at an interface, where the solution or its

gradient has jumps. In other words, we treat an interface (if the location is known a

priori) as a boundary when performing gradient recovery or function recovery. In this

thesis, we will present the detail on applying WGPPR to interface problems and this

is the first appearance of this approach. Furthermore, since we have seen success in

applying PPR to adaptive methods for standard Galerkin methods, it is natural for

us to apply the same idea to the adaptivity of weak Galerkin method. In addition,

WGFEMs for Stokes problem is considered as well. WGPPR is employed to recover

the gradient information and superconvergent phenomenon is again observed.

The rest of this dissertation is organized as follows:

Chapter 2 introduces the polynomial preserving recovery technique with its bound-

ary strategies. We present two strategies to improve the performance of PPR gradient
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recovery on the boundary. Several numerical experiments are provided to validate our

methods. This chapter is based on our published paper [37].

Chapter 3 is devoted to the weak Galerkin methods on second order elliptic problem.

Two different schemes of weak Galerkin are defined, and the supercloseness property

is analyzed.

Chapter 4 is about the gradient recovery technique for the weak Galerkin methods:

WGPPR. We gather the information obtained from WGFEMs solution in different

schemes and perform the polynomial preserving recovery process. Superconvergence

phenomenon are observed from numerical tests which verify the superconvergence prop-

erty of our proposed algorithm.

Chapter 5 will focus on interface problem and WGPPR will be applied to perform

gradient recovery and function recovery. Numerical experiments are performed to prove

the superconvergence property of the proposed method.

Chapter 6 studies the adaptive method for weak Galerkin which uses the recovery

type posteriori error estimator based on WGPPR. Furthermore, our proposed recovery

algorithm is applied to different problems, including 3D Poisson problem and Stokes

problem using WGFEMs.
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CHAPTER 2 BOUNDARY STRATEGIES

Consider the following model second order elliptic problem
−∆u = f, in Ω,

u = g, on ∂Ω;

(2.0.1)

where Ω is a bounded polygonal domain with Lipschitz boundary ∂Ω in R2. In this

thesis, we adopt the standard notations for Sobolev space and their associate norms

[4].

A multi-index α is a 2-tuple of non-negative integers αi, i = 1, 2 with length |α| =∑2
i=1 αi. Define the weak partial derivative Dαv = ( ∂

∂x
)α1( ∂

∂y
)α2 [1, 2, 4] and denote

Dkv with |α| = k the vector of all partial derivatives of order r. W k
p (Ω) denotes the

Sobolev space W k
p (Ω) = {v : Dαv ∈ Lp(Ω), |α| ≤ k} equipped with the norm

‖v‖k,p,Ω = (
∑
|α|≤k

ˆ
Ω

|Dαv(z)|pdz)
1
p , 1 ≤ p <∞,

‖v‖k,∞,Ω = ess sup
|α|≤k,z∈Ω

|Dαv(z)|, p =∞;

and seminorm

|v|k,p,Ω = (
∑
|α|=k

ˆ
Ω

|Dαv(z)|pdz)
1
p , 1 ≤ p <∞,

|v|k,∞,Ω = ess sup
|α|=k,z∈Ω

|Dαv(z)|, p =∞.

When p = 2, we denote simply Hk(Ω) = W k
2 (Ω). The space H(div; Ω) is defined as the

set of vector-valued functions on Ω which, together with their divergence, are square

integrable, i.e.,

H(div; Ω) = {v : v ∈ [L2(Ω)]2,∇ · u ∈ L2(Ω)}.

The norm inH(div; Ω) is defined by ‖v‖
H(div;Ω)

= (‖v‖2+‖∇·v‖2)
1
2 . For any 0 < h < 1

2
,
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let Th be a shape regular triangulation of Ω with mesh size at most h, i.e.

Ω =
⋃
T∈Th

T,

where T is a triangle. For any positive integer r, define the continuous finite element

space Sh of order r as

Sh = {v ∈ C(Ω) : v|T ∈ Pr(T ), ∀T ∈ Th} ⊂ H1(Ω),

where Pr denote the space of polynomial defined on T with degree less than or equal

to r. Denote the finite element solution in Sh by uh, and the set of mesh nodes and

interior mesh nodes by Nh and N̊h, respectively.

The standard Lagrange basis of Sh is denoted by {φz : z ∈ Nh} with φz(z
′) = δzz′

for all z, z′ ∈ Nh. For any continuous function u, let Ihu be the standard interpolation

of u into the finite element space Sh, i.e. Ihu =
∑

z∈Nh u(z)φz.

Throughout this thesis, we denote u ≤ Cv by u . v where the letter C or c denotes

a constant which is independent of h and may not necessarily be the same at each

occurrence.

2.1 Polynomial Preserving Recovery

In this section, we will give a brief introduction to the polynomial preserving recov-

ery method. For the sake of clarity, only C0 finite element methods will be considered.

Given a vertex z ∈ Nh, let L(z, n) denote the union of mesh elements in the first n

layers around z, i.e.,

L(z, n) =


z, if n = 0,⋃{τ : τ ∈ Th, τ ∩ L(z, 0) 6= φ}, if n = 1,⋃{τ : τ ∈ Th, τ ∩ L(z, n− 1) is a (d− 1)-simplex}, if n ≥ 2.

(2.1.1)

An element patch Kz around an interior vertex z is defined based on L(z, n), which
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contains nz nodes. For details construction of Kz, readers are referred to [30, 19]. We

select all mesh nodes zj ∈ Nh, j = 1, 2, · · · , nz in this element patch Kz as sampling

points, and fit a polynomial of degree r + 1 in the least-squares sense, i.e., we seek

pz ∈ Pr+1(Kz) such that

nz∑
j=1

(pz − uh)2(zj) = min
q∈Pr+1

nz∑
j=1

(q − uh)2(zj). (2.1.2)

The recovered gradient at node z is then defined as

(Ghuh)(z) := ∇pz(z). (2.1.3)

If r = 1, all sampling points are vertices and Ghuh is completely defined. If r > 1,

sampling points may contain the following two types of node:

• Edge node: if z lies on an edge e formed by two vertices z1 and z2, we define

(Ghuh)(z) = λ∇pz1(z) + (1− λ)∇pz2(z) (2.1.4)

where λ is determined by the ratio of distances of z to z1 and z2.

• Interior node: if z lies in the interior of a triangle T formed by three vertices z1,

z2, and z3, we define

(Ghuh)(z) =
3∑
j=1

λj∇pzj(z), (2.1.5)

where λj is the barycentric coordinate of z.

With all nodal values ofGhuh determined, the gradient recovery operator:Gh : Sh → Sdh

is then well defined.

It was proved in [30] that the least-squares fitting procedure has a unique solution

under certain geometric conditions. As for linear element, we need at least six nodes to

fit a quadratic polynomial and those sampling points should not be on a conic curve.

In addition, the gradient recovery operator Gh has the following properties [19, 30]:
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1. Gh is a bounded operator in the sense that there exists a constant C, independent

of h, such that ||Ghv||L2(Ω) ≤ C|v|H1(Ω), ∀v ∈ Sh.

2. For any nodal point z, if p ∈ Pr+1(Kz), (Ghp)(z) = ∇p(z).

Furthermore, the following superconvergence results hold [30].

Theorem 2.1.1. Let Th be an arbitrary mesh. Then, Gh preserves polynomials of

degrees up to r + 1 in Ω. Furthermore, if the nodes involved in PPR at a mesh vertex

z ∈ Nh are symmetrically distributed around z, and if r is even, then Gh preserves

polynomials of degree up to r + 2 at z.

Theorem 2.1.2. Let z be a mesh node and Kz be the corresponding patch. If u ∈

W r+2
∞ (Kz), then

||∇u−Ghu||L∞(Kz) ≤ Chr+1|u|W r+2
∞ (ωz),

where ωz is a larger element patch which contains Kz.

2.2 PPR on boundary

If not handled properly, gradient recovery techniques may deteriorate near boundary

[30, 19]. High performance near/on boundary is one of the key characteristics of a

good gradient recovery technique. In this section, we present two systematic strategies

to construct robust PPR operator up to boundary. Both strategies have comparable

accuracy near boundary ∂Ω as in the interior of Ω. Only linear element is considered

here. Extension to higher-order elements can be done by combining ideas in this work

with PPR for higher-order cases. In the sequel, we denote z as a mesh vertex on

boundary, i.e., z ∈ Nh ∩ ∂Ω.
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2.2.1 Strategy 1

Simple averaging of the recovered gradient from PPR under uniform triangular

mesh of the regular pattern produces ultra-convergence (two orders higher) gradient

recovery for quadratic element at element edge centers [30]. In light of this fact, our

first strategy is to treat z ∈ Nh ∩ ∂Ω similarly as an edge center in quadratic element.

For any boundary vertex z, define

Kz = L(z, n0), (2.2.1)

where n0 is the smallest integer such that L(z, n0) contains at least one interior vertex.

Let z0, z1, . . . , znz be all the interior vertices in Kz. Then our recovered gradient at

z is defined as

(Ghuh)(z) =
1

nz + 1

nz∑
j=0

∇pzj(z), (2.2.2)

where pzj is the polynomial that fits uh at the interior vertex zj in Kzj , a well defined

element patch according to [30].

To describe how to construct Kz , consider a typical Delaunay unstructured mesh on

rectangle [0, 2]× [0, 1] which is obtained using Triangle [28], see Fig 2.2.1. Boundary

vertices can be grouped into those connecting with one interior vertex, two interior

vertices, three interior vertices, and so on. It is worth to mention that the first group

usually contains only corner vertices. Fig 2.2.1 depicts three types of boundary vertices

and their corresponding patches.

(1) The left upper corner z is contained in two elements that share the same interior

vertex z0. According to definition , Kz is the element patch which consists of two

triangles. We then define (Ghuh)(z) = ∇pz0(z).

(2) The bottom z is contained in three elements that have two interior vertices

z0 and z1. According to definition Kz is the element patch which consists of three
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triangles. We then define (Ghuh)(z) =
1

2
(∇pz0(z) +∇pz1(z)).

(3) The upper z is contained in four elements that have three interior vertices z0,

z1, and z2. According to definition , Kz is the element patch which consists of four

triangles. The recovered gradient at z is then defined as (Ghuh)(z) =
1

3
(∇pz0(z) +

∇pz1(z) +∇pz2(z)).

z

z0

z

z0 z1

z

z0 z1

z2

Figure 2.2.1: Examples for patch used in Strategy 1

2.2.2 Strategy 2

Here we treat z just like an interior vertex. However, the definition of Kz is more

delicate and deserves special consideration. Kz is constructed in two steps. In the first

step, we define a temporary patch K̃z as Kz in (2.2.1). After constructing the temporary

patch K̃z, we define

Kz =

 ⋃
z̃∈K̃z∩N̊h

Kz̃

⋃ ⋃
z̃∈K̃z∩Nh∩∂Ω

L(z̃, 1)

 , (2.2.3)

where Kz̃ is defined in reference [30] for z̃ ∈ N̊h. Note that we distinguish between

interior vertices and boundary vertices in the temporary patch K̃z. For a boundary

vertex z′, only triangles having z′ as a vertex is added to Kz; but for an interior vertex

z′′, its own patch Kz′′ is adding to Kz. Let pz ∈ P2(Kz) be the polynomial that best
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fits uh at the mesh nodes in Kz in discrete least squares sense, i.e.,

pz = arg min
p∈P2(Kz)

∑
z̃∈Nh∩Kz

|(uh − p)(z̃)|2. (2.2.4)

Then define the gradient recovery operator at vertex z as (Ghuh)(z) = ∇pz(z).

To demonstrate the process of constructing Kz in Strategy 2, we use the same

Delaunay mesh as in Strategy 1. All three types boundary vertices are described in

previous subsection. Note that we construct Kz in two steps. Firstly, we construct K̃z

which is shown in Fig 2.2.1. Then Kz can be constructed which is illustrated in Fig

2.2.2.

(1) The left upper corner z is contained in two elements that share the same interior

vertex z0. Therefore, K̃z is the union of Kz0 and the patches corresponding to the other

two boundary vertices near z. Hence, the two red triangles are added to Kz0 and this

completes the construction of K̃z.

(2) The bottom z is contained in three elements that have two interior vertices z0

and z1. Kz is constructed as shown previous in Fig 2.2.1 and K̃z contains Kz0 and Kz1 .

The union of Kz0 and Kz1 are all green triangles near bottom edge in Fig 2.2.2. For

the other two boundary vertices in K̃z, we will add triangles containing them into Kz,

i.e. the three red triangles near the bottom edge.

(3) Finally, we look at the boundary vertex connecting with 3 interior vertices; see

the solid dot point on the top edge in Fig 2.2.2. We first construct K̃z which consists of

four triangles having z as a vertex; see Fig 2.2.1 for detail. z0, z1 and z2 are all interior

vertices in K̃z. According to (2.2.3), Kz contains Kz0 , Kz1 and Kz2 . The union of Kz0 ,

Kz1 and Kz2 are all green triangles near the top edge in Fig 2.2.2. For other boundary

vertices in K̃z, we only add triangles containing them into Kz, i.e. the two red triangles

near the top edge. Thus Kz is the element patch consisting of sixteen triangles.

Remark. Definition of Kz in (2.2.3) always guarantees the existence and uniqueness
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z

z

z

Figure 2.2.2: Examples for patch used in Strategy 2

of pz. The construction procedure is systematic and works for arbitrary mesh.

Remark. Comparing with the boundary recovery methods proposed in [30], the points

involved in our procedure are more symmetric. Hence, this strategy is more stable and

robust.

Before ending this subsection, we consider a special situation. For mesh generated

by engineering procedure such as Delaunay mesh generator, any vertex connects with

at least one interior vertex, i.e. L(z, 1)∩N̊h 6= ∅; see Fig 2.2.1 or 2.2.2. But it may occur

that L(z, 1) ∩ N̊h = ∅, such as regular and chevon pattern of uniform mesh. Even in

this case, both our strategies can be applied without any change. One typical example

is shown in Fig 2.2.3 or 2.2.4. For strategy 1, Kz should be defined as L(z, 2) instead

of L(z, 1) . In other words, Kz are two green triangles in Fig 2.2.3. Then the recovered

gradient at z is defined as (Ghuh)(z) = ∇pz0(z). In order to define Kz in strategy 2,

we first construct K̃z containing one interior vertex z0; see the second sub-figure of

Fig 2.2.4. According to (2.2.3), Kz contains Kz0 , i.e. all green triangles in the third

sub-figure of Fig 2.2.4. Similarly, all triangles containing z′ are added to Kz for each

boundary vertex z′ in K̃z.
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z z

z0

Figure 2.2.3: Patch of isolated corner vertex in strategy 1

z z

z0

z

Figure 2.2.4: Patch of isolated corner vertex in strategy 2
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2.2.3 Some illustrations

In this subsection, we use three examples of uniform mesh to demonstrate super-

convergence and robustness of our two gradient recovery strategies on boundary. Let

G1
h and G2

h denote boundary recovery operator defined by Strategy 1 and Strategy 2,

respectively.

Example 1. We consider a typical corner vertex in regular pattern, see the solid

dot point in Fig 2.2.6. In this case, the corner point belongs to only one element, to

which there is no interior vertex attached. According to strategy 1, we fit a quadratic

polynomial pz̃(x, y) at z̃ instead of fitting a quadratic polynomial of pz(x, y) at z, where

z̃ is the closest interior vertex to z, i.e. the solid dot point in Fig 2.2.5. Note that Fig

2.2.5 shows the patch of the interior vertex z̃ instead of z. Applying the least squares

fitting procedure described in [30], we obtain

pz̃(x, y) =u0 +
1

6h
(2u1 + u2 − u3 − 2u4 − u5 + u6)x

+
1

6h
(−u1 + u2 + 2u3 + u4 − u5 − 2u6)y

+
1

6h2
(−6u0 + 3u1 + 3u4)x2 +

1

6h2
(−6u0 + 3u3 + 3u6)y2

+
1

6h2
(6u0 − 3u1 + 3u2 − 3u3 − 3u4 + 3u5 − 3u6)xy.

Differentiating with respect to x and y, we get

∂pz̃
∂x

=
1

6h
(2u1 + u2 − u3 − 2u4 − u5 + u6) +

1

3h2
(−6u0 + 3u1 + 3u4)x+

+
1

6h2
(6u0 − 3u1 + 3u2 − 3u3 − 3u4 + 3u5 − 3u6)y;

∂pz̃
∂y

=
1

6h
(−u1 + u2 + 2u3 + u4 − u5 − 2u6) +

1

3h2
(−6u0 + 3u3 + 3u6)y

+
1

6h2
(6u0 − 3u1 + 3u2 − 3u3 − 3u4 + 3u5 − 3u6)x.
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Evaluating ∂pz̃
∂x

and ∂pz̃
∂y

at z yields

G1
hu(z) =

1

6h


−18u0 + 11u1 − 2u2 + 2u3 + 7u4 − 4u5 + 4u6

18u0 − 4u1 + 4u2 − 7u3 − 2u4 + 2u5 − 11u6

 , (2.2.5)

as depicted in Fig 2.2.5. Using Mathematica, we can easily calculate the Taylor

expansion:

G1
hu(z) =


ux(z)− h2

6
(2uxxx(z)− 7uxxy(z) + 2uxyy(z)) +O(h3)

uy(z)− h2

6
(2uxxy(z)− 7uxyy(z) + 2uyyy(z)) +O(h3)

 , (2.2.6)

which is a second order finite difference scheme approximating ∇u(z).

Now we turn to Strategy 2. It fits a quadratic polynomial

p̂z(ξ, η) = (1, ξ, η, ξ2, ξη, η2)(â1, . . . , â6)T ,

in the least-squares sense at z, see the solid dot point in Fig 2.2.6, with respect to eight

nodal values in (ξ, η) coordinates

~ξ = (0, 0, 0,−1,−2,−1,−1,−2)T , ~η = (0, 1, 2, 1, 0, 0, 2, 1).

We obtain

pz(x, y) =
1

42
(38u0 + 6u1 − 2u2 − 8u3 − 2u4 + 6u5 + 2u6 + 2u7)

1

42h
(44u0 + 11u1 + 8u2 − 38u3 − 6u4 − 38u5 − 8u6 + 27u7)x

1

42h
(−44u0 + 38u1 + 6u2 + 38u3 − 8u4 − 11u5 − 27u6 + 8u7)y

1

42h2
(12u0 + 3u1 + 6u2 − 18u3 + 6u4 − 18u5 − 6u6 + 15u7)x2

1

42h2
(−18u0 + 6u1 + 12u2 + 6u3 + 12u4 + 6u5 − 12u6 − 12u7)xy

1

42h2
(12u0 − 18u1 + 6u2 − 18u3 + 6u4 + 3u5 + 15u6 − 6u7)y2.
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It indicates that

∂pz
∂x

=
1

42h
(44u0 + 11u1 + 8u2 − 38u3 − 6u4 − 38u5 − 8u6 + 27u7)

1

21h2
(12u0 + 3u1 + 6u2 − 18u3 + 6u4 − 18u5 − 6u6 + 15u7)x

1

42h2
(−18u0 + 6u1 + 12u2 + 6u3 + 12u4 + 6u5 − 12u6 − 12u7)y;

∂pz
∂y

=
1

42h
(−44u0 + 38u1 + 6u2 + 38u3 − 8u4 − 11u5 − 27u6 + 8u7)

1

42h2
(−18u0 + 6u1 + 12u2 + 6u3 + 12u4 + 6u5 − 12u6 − 12u7)x

1

21h2
(12u0 − 18u1 + 6u2 − 18u3 + 6u4 + 3u5 + 15u6 − 6u7)y.

Then we obtain the recovered gradient at boundary vertex z (see Fig 2.2.6)

G2
hu(z) =

1

42h


44u0 + 11u1 + 8u2 − 38u3 − 6u4 − 38u5 − 8u6 + 27u7

−44u0 + 38u1 + 6u2 + 38u3 − 8u4 − 11u5 − 27u6 + 8u7

 . (2.2.7)

The following Taylor expansion is computed in Mathematica as well:

G2
hu(z) =


ux(z)− h2

42
(14uxxx(z)− 27uxxy(z)− 8uxyy(z)) +O(h3)

uy(z) + h2

42
(8uxxy(z) + 27uxyy(z)− 14uyyy(z)) +O(h3)

 ; (2.2.8)

which again is a second-order finite difference schem.
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Figure 2.2.5: Denominator 42h
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Figure 2.2.6: Denominator 6h
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Remark. The main difference between Strategy 1 and Strategy 2 is that the former

fits quadratic polynomials at some interior vertices near z but the later fits a quadratic

polynomial at the very boundary vertex z.

Example 2. In this example, a typical boundary vertex, as plotted in Fig 2.2.7,

in chevron pattern mesh is considered. Firstly, we employ Strategy 1 to this case.

Repeating the same procedure as in Example 1, we find that

G1
hu(z) =

1

12h


−6u4 + 6u6

10u0 + 7u1 − 6u2 + 7u3 − 7u4 − 4u5 − 7u6

 . (2.2.9)

as shown in Fig 2.2.7. It is easy to verify in Mathematica that

G1
hu(z) =


ux(z)− h2

6
uxxx(z) +O(h3)

uy(z) + h2

12
(7uxxy(z)− 4uyyy(z)) +O(h3)

 ; (2.2.10)

which provides a second-order approximation to the exact gradient ∇u. Then we con-
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Figure 2.2.7: Denominator 12h

sider Strategy 2. The patch Kz of z is showed in Fig 2.2.8. Following the same procedure
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as Example 1, we derive that

G2x
h u(z) =

1

140h
(−28u5 − 14u6 + 14u8 + 28u9) ,

and

G2y
h u(z) =

1

140h
(66u0 + 61u1 − 70u2 + 61u3 + 46u4 − 52u5

−37u6 − 37u7 − 37u8 − 52u9 + 46u10) ;

where G2x
h and G2y

h represent the first and second row of G2
h respectively. Note that

Strategy 2 uses larger patch, see Fig 2.2.8, but it also produces a second-order finite

difference scheme. Actually, we have

G2
hu(z) =


ux(z)− 17h2

30
uxxx(z) +O(h3)

uy(z) + h2

12
(21uxxy(z)− 4uyyy(z)) +O(h3)

 . (2.2.11)

Example 3. This example demonstrates that G1
h and G2

h may involve the same vertices
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Figure 2.2.8: Denominator 140h

but produce different finite difference schemes. Let z be a boundary vertex as plotted

in Fig 2.2.9. As for Strategy 1, we need to fit three least square polynomials at three

interior vertices z0, z1 and z2 connecting z and then take average. It is not hard to
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compute that

G1x
h u(z) =

1

36h
(−10u0 − 7u3 + 5u4 + 2u5 − u6 − 13u7

+10u9 − 2u10 − 5u11 + 7u12 + 13u13 + u14) ,

and

G1y
h u(z) =

1

36h
(−10u0 + 24u1 − 4u3 − 5u4 + 8u5 − 3u6 − 12u7

−24u8 + 16u9 + 8u10 − 5u11 − 4u12 − 12u13 − 3u14) ,

where G1x
h and G1y

h are two rows of G1
h. Using Mathematica to compute the Taylor

expansion, we obtain

G1
hu(z) =


ux(z)− h2

6
(uxxx(z) + uxyy(z)) +O(h3)

uy(z)− h2

3
uyyy(z) +O(h3)

 . (2.2.12)

which clearly indicates that G1
h provides a second order approximation to the exact

gradient ∇u(z).
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Figure 2.2.9: Denominator 36h

To see how Strategy 2 works, we construct patch Kz, as shown in Fig 2.2.10, in two
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steps. Using all vertices in Kz, fit a quadratic polynomial at z which yields

G2x
h u(z) =

1

60h
(2u1 + 4u2 − 2u3 − u4 + u6 + 2u7 − 4u8 − 2u9

−10u10 − 5u11 + 5u13 + 10u14) ,

and

G2y
h u(z) =

1

10h
(4u0 + 4u1 + 4u2 − u3 − u4 − u5 − u6 − u7

+4u8 + 4u9 − 3u10 − 3u11 − 3u12 − 3u13 − 3u14) ,

where G2x
h and G2y

h have the same meaning as previous example. Taylor expansion

results in

G2
hu(z) =


ux(z) + h2

30
(17uxxx(z)− 5uxyy(z)) +O(h3)

uy(z) + h2

3
(3uxxy(z)− uyyy(z)) +O(h3)

 . (2.2.13)

This means that G2
hu(z) is also a second order approximation of the exact gradient

∇u(z).
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Figure 2.2.10: Denominator 60h

Remark. Comparing the computational complexity of Strategy 1 and Strategy 2,

we see that Strategy 1 needs to perform three least-squares fittings with three 9 × 6

matrices. On the other hand, Strategy 2 does one least-squares fittings with one 15× 6

matrix. Thus the computational cost of those two strategies are comparable.
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Remark. We have discussed three cases to illustrate proposed two strategies for PPR

on boundary. Indeed, both G1
hu and G2

hu converge to ∇u with second-order rate for all

boundary vertices of arbitrary mesh due to the polynomial preserving property.

2.3 Numercial Examples

In this section, we provide four numerical examples to verify superconvergence and

robustness of our boundary recovery strategies and also compare the results with COM-

SOL Multiphysics integrated ′ppr′ command. In order to detect boundary influence,

define Nh,2 = {z ∈ Nh : dist(z, ∂Ω) ≤ L} be the set of all near boundary nodes and let

Nh,1 = Nh \Nh,2 denote the set of nodes away from boundary. Now, the domain Ωh is

splitted into Ωh,1 and Ωh,2 where

Ωh,1 =
⋃
{τ ∈ Th : all vertices in τ ∈ Nh,1}, (2.3.1)

and

Ωh,2 = Ω \ Ωh,1, (2.3.2)

where L is some small quantity to indicates the width of the boundary. In this section,

the width of the boundary is chosen as L = 0.1.

The notations used are the following:

De = ∇(u− uh), where uh is the finite element solution.

De1 = ∇u−G1
huh, where G1

huh is defined by PPR using Strategy 1.

De2 = ∇u−G2
huh, where G2

huh is defined by PPR using Strategy 2.

De3 = ∇u − G3
huh, where G3

huh is defined by PPR using COMSOL Multiphysics

integrated ′ppr′ command.

All computations are carried out in COMSOL Multiphysics 3.5a on Delaunay tri-

angulation. We perform three levels mesh refinement by connecting midpoints of each

triangles.
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Example 1. We first consider a symmetric and infinitely smooth case:

−∆u = 2π2 sin πx sin πy, in Ω = [0, 1]2,

with u = 0 on ∂Ω. The exact solution is u(x, y) = sin πx sin πy.

The maximum error of ∇u−Ghuh for interior nodes and near boundary nodes are

depicted in Table 2.3.1 and Table 2.3.2, respectively. It can be observed that after per-

forming PPR by any of the three methods, the maximum error decreases significantly

comparing to that without performing gradient recovery processing. In Table 2.3.1,

the L∞ norm of De1 and De2 are identical since they have the same strategy for the

interior nodes and only differ on the boundary. It is worth to point out that to achieve

the same accuracy, PPR 1 or PPR 2 requires approximately only 1
4

degrees of freedom

(DOF) of COMSOL Multiphysics integrated ′ppr′ command.

In Table 2.3.2, we observe clearly superconvergence phenomena. Before recovery,

De shows a convergence rate O(N−
1
2 ). After PPR, our second strategy converges at

a rate of O(N−1). Moreover, to achieve the same level of accuracy, PPR 1 requires

approximately 1
4

degrees of freedom of COMSOL Multihphysics.

Table 2.3.1: Example 1: ‖ · ‖L∞(Nh,1) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

1241 2.37e-01 – 1.54e-02 – 1.54e-02 – 2.58e-02 –

4841 1.27e-01 0.46 5.48e-03 0.76 5.48e-03 0.76 1.66e-02 0.32

19121 6.55e-02 0.48 2.34e-03 0.62 2.34e-03 0.62 8.02e-03 0.52

76001 3.33e-02 0.49 1.11e-03 0.54 1.11e-03 0.54 3.73e-03 0.56

In addition, we report the L2 error in Table 2.3.3 and Table 2.3.4. As expected,

it is observed that ∇(u − uh) is O(N−
1
2 ). Concerning the convergence of recovered

gradients, all three strategies show superconvergence at rate of O(N−1) in the interior

domain and near the boundary region.
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Table 2.3.2: Example 1: ‖ · ‖L∞(Nh,2) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

1241 2.87e-01 – 8.08e-03 – 2.83e-02 – 2.76e-02 –

4841 1.45e-01 0.50 2.36e-03 0.90 7.08e-03 1.02 7.03e-03 1.00

19121 7.25e-02 0.50 9.85e-04 0.64 1.77e-03 1.01 2.23e-03 0.83

76001 3.63e-02 0.50 4.48e-04 0.57 4.48e-04 0.99 8.08e-04 0.74

Table 2.3.3: Example 1: ‖ · ‖L2(Ωh,1) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

1241 5.70e-02 – 6.92e-03 – 6.92e-03 – 5.57e-03 –

4841 2.86e-02 0.505 1.80e-03 0.98 1.82e-03 0.98 1.63e-03 0.90

19121 1.45e-02 0.497 4.83e-04 0.98 4.83e-04 0.97 4.10e-04 0.99

76001 7.27e-03 0.500 1.26e-04 0.97 1.26e-04 0.97 1.09e-04 0.97

Table 2.3.4: Example 1: ‖ · ‖L2(Ωh,2) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

1241 5.17e-02 – 4.98e-03 – 7.07e-03 – 4.04e-03 –

4841 2.58e-02 0.51 1.32e-03 0.97 1.59e-03 1.09 1.01e-03 1.01

19121 1.27e-02 0.51 3.34e-04 1.00 3.69e-04 1.07 2.53e-04 1.01

76001 6.33e-03 0.51 8.48e-05 0.99 8.92e-05 1.03 6.26e-05 1.01

Example 2. Our second example is:

−∆u = 1, in Ω = [0, 1]2,

with u = 0 on ∂Ω. The exact solution is given by the infinite series

u(x, y) =
x(1− x) + y(1− y)

4
− 2

π3

∞∑
m=0

1

(2m+ 1)3(1 + e−(2m+1)π)

· {[e−(2m+1)πy + e−(2m+1)π(1−y)] sin((2m+ 1)πx)

+ [e−(2m+1)πx + e−(2m+1)π(1−x)] sin((2m+ 1)πy)}.
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This problem has weak singularities at four corners. In order to observe the asymptotic

behavior of numerical approximations, we start from the second mesh level in the

previous example and perform one more level mesh refinement. The maximum error of

gradient and convergence rates are reported in Table 2.3.5 and Table 2.3.6. Due to the

corner singularities, the maximum error occurs near the boundary and it is observed

in Table 2.3.6. It can be seen that all strategies have enhanced the maximum error of

gradient as expected. In Table 2.3.5, we can also observe that De1 and De2 on level 2

are comparable to De3 on level 4. In Table 2.3.6, De1 in level 3 is even smaller than

De2 and De3 on level 4.

The L2 errors are displayed in Table 2.3.7 and Table 2.3.8. Inside the domain,

Strategy 1 and Strategy 2 superconverges at rate ≈ O(N−0.9) while COMSOL Mul-

tiphysics integrated ′ppr′ command superconverges at rate ≈ O(N−1). However, we

can observe smaller errors in both of our strategies than in COMSOL Multiphysics.

Concerning the performing PPR near boundary, all three strategies are comparable

and superconvergent.

Table 2.3.5: Example 2: ‖ · ‖L∞(Nh,1) on Delaunay Triangluation

DOF De order De1 order De2 order De3 order

4841 1.16e-02 – 3.34e-04 – 3.33e-04 – 1.27e-03 –

19121 5.99e-03 0.48 1.58e-04 0.55 1.58e-04 0.55 5.41e-04 0.62

76001 2.98e-03 0.51 8.03e-05 0.49 8.03e-05 0.49 2.57e-04 0.54

303041 1.49e-03 0.50 4.04e-05 0.50 4.05e-05 0.50 1.30e-04 0.50

Example 3. We now consider an anisotropic diffusion problem defined in the unit

square Ω = (0, 1)2 as follows
−∇ · (A∇u) = f, in Ω

u = 0, on ∂Ω
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Table 2.3.6: Example 2: ‖ · ‖L∞(Nh,2) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

4841 3.07e-02 – 3.42e-03 – 8.51e-03 – 6.99e-03 –

19121 1.77e-02 0.40 1.54e-03 0.58 4.22e-03 0.51 3.45e-03 0.51

76001 9.95e-03 0.42 7.73e-04 0.50 2.18e-03 0.48 1.80e-03 0.47

303041 5.44e-03 0.44 3.41e-04 0.59 1.04e-03 0.53 8.53e-04 0.54

Table 2.3.7: Example 2: ‖ · ‖L2(Ωh,1) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

4841 2.24e-03 – 6.21e-05 – 6.21e-05 – 1.26e-04 –

19121 1.14e-03 0.49 1.91e-05 0.86 1.91e-05 0.86 3.33e-05 0.97

76001 5.75e-04 0.50 5.54e-06 0.90 5.54e-06 0.90 8.76e-06 0.97

303041 2.89e-04 0.50 1.56e-06 0.92 1.56e-06 0.92 2.31e-06 0.96

Table 2.3.8: Example 2: ‖ · ‖L2(Ωh,2) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

4841 3.09e-03 – 1.22e-04 – 3.11e-04 – 2.47e-04 –

19121 1.53e-03 0.51 3.33e-05 0.94 7.94e-05 0.99 6.71e-05 0.95

76001 7.63e-04 0.50 9.04e-06 0.94 2.02e-05 0.99 1.75e-05 0.98

303041 3.80e-04 0.50 2.44e-06 0.95 5.15e-06 0.99 4.59e-06 0.97

where the diffusion matrix is given by

A =


k2 0

0 1

 ,

and f(x) is chosen such that the exact solution is u = sin(πx)sin(kπy). We test the

case k = 10. For anisotropic problems, it is more suitable to use anisotropic meshes

or adaptive meshes. Nevertheless, for the sake of identifying the performance of PPR,

the same Delaunay meshes as in Example 1 would serve the purpose. The results are
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listed in Table 2.3.9 and Table 2.3.10. The numerical results indicate that all three

PPR strategies have improved the error on each mesh level.

As for L2 error, it can observed from Table 2.3.11 and Table 2.3.12 that all three

strategies superconverge at rate of O(N−1) asymptotically.

Table 2.3.9: Example 3: ‖ · ‖L∞(Nh,1) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

1241 1.82e+01 – 1.63e+01 – 1.63e+01 – 1.59e+01 –

4841 1.08e+01 0.38 6.89e+00 0.63 6.89e+00 0.63 6.89e+00 0.62

19121 5.10e+00 0.55 2.35e+00 0.78 2.35e+00 0.78 2.39e+00 0.77

76001 2.44e+00 0.53 8.21e-01 0.76 8.21e-01 0.76 1.05e+00 0.60

Table 2.3.10: Example 3: ‖ · ‖L∞(Nh,2) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

1241 1.27e+01 – 4.84e+00 – 4.56e+00 – 5.14e+00 –

4841 6.63e+00 0.48 1.92e+00 0.68 1.92e+00 0.63 1.92e+00 0.72

19121 3.35e+00 0.50 6.02e-01 0.84 6.03e-01 0.84 6.99e-01 0.74

76001 1.68e+00 0.50 2.38e-01 0.67 2.38e-01 0.67 4.55e-01 0.31

Table 2.3.11: Example 3: ‖ · ‖L2(Ωh,1) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

1241 5.16e+00 – 5.38e+00 – 5.38e+00 – 4.38e+00 –

4841 2.29e+00 0.60 1.96e+00 0.74 1.96e+00 0.74 1.69e+00 0.70

19121 9.79e-01 0.62 5.81e-01 0.89 5.81e-01 0.89 4.83e-01 0.91

76001 4.50e-01 0.56 1.58e-01 0.94 1.58e-01 0.94 1.40e-01 0.90

Example 4. In all previous examples, solutions are analytic. Let us consider the

Laplace equation on the L-shaped domain Ω = (−1, 1)× (−1, 1) \ (0, 1)× (−1, 0). The

Dirichlet boundary condition is imposed so that the true solution u = r2/3sin(2θ/3) in
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Table 2.3.12: Example 3: ‖ · ‖L2(Ωh,2) on Delaunay Triangulation

DOF De order De1 order De2 order De3 order

1241 1.94e+00 – 1.55e+00 – 1.58e+00 – 1.13e+00 –

4841 9.54e-01 0.52 4.94e-01 0.84 5.00e-01 0.84 3.92e-01 0.78

19121 4.63e-01 0.53 1.31e-01 0.97 1.32e-01 0.97 9.96e-02 1.00

76001 2.29e-01 0.51 3.48e-02 0.96 3.49e-02 0.96 2.85e-02 0.91

polar coordinates. In order to remove the pollution caused by the corner singularity,

recovery based adaptive method [18] is employed. We start with an initial mesh shown

in Fig 2.3.1 and use Dörfler marking strategy [8] with θ = 0.3.

Due to the corner singularity, the maximum error of∇u−∇uh is divergent. Hence we

track ||∇u−∇uh||0,Ω and ||∇u−Ghuh||0,Ω instead. The numerical results are depicted

in Fig 2.3.2. For PPR with both Strategy 1 and Strategy 2, a superconvergence rate

O(N−1) is observed, where N represents the total degrees of freedom. We also test

the ‘ppr’ command in COMSOL Multiphysics and obtain a superconvergence rate

O(N−0.9). In Fig 2.3.2, a comparison among different strategies is made. It is observed

that to achieve the same level of accuracy, both Strategy 1 and Strategy 2 require less

degrees of freedom than PPR in COMSOL Multiphysics, and De1 needs almost half

less degrees of freedom than De3.

2.4 Conclusion remarks

In this chapter, we have introduced two strategies to improve performance of PPR

gradient recovery on boundary. Numerical tests provide convincing evidence that our

methods inherit the superconvergence property of PPR in the interior of solution do-

mains.

It is also worth to emphasize that both strategies are problem independent and

method independent just as PPR itself. In order to obtain recovered gradient on the
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Figure 2.3.1: Initial mesh for Example 4
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Figure 2.3.2: Comparison of decay of error among different strategies

boundary, all we need are numerical data nearby. It does not matter what the original

problem is, even though the quality of the recovery might be influenced by the under-
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lying problem, the method itself is universal. Although our technique is demonstrated

for the finite element method, it can be well applied to other methods, such as finite

difference method and finite volume method, as long as numerical data are provided

at some sampling points. In later sections, we will extend this technique to the newly

proposed WGFEMs.

Finally, boundary recovery technique can be used at an interface, where the solution

or its gradient has jumps. In other words, we treat an interface (if the location is known

a priori) as a boundary when performing gradient recovery. We will apply this idea on

the weak Galerkin method for interface problem in chapter 5.
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CHAPTER 3 WGFEMS FOR 2ND ORDER EL-

LIPTIC PROBLEMS

WGFEMs refers to finite element techniques for partial differential equations in

which differential operators are approximated by weak forms as distributions. Let K

be any polygonal domain with boundary ∂K. A weak function v on K refers to a

function v = {v0, vb} such that v0 ∈ L2(K) and vb ∈ H
1
2 (K). Denote by W (K) the

space of weak function on K:

W (K) := {v = {v0, vb} : v0 ∈ L2(K), vb ∈ H
1
2 (K)}. (3.0.1)

One can treat v0 as the value of v in K, and vb as the value of v on ∂K. Note that vb

may not necessarily be related to the trace of v0 on ∂K should a trace be well-defined.

Definition 3.0.1. For any v ∈ W (K), the weak gradient of v is defined as a linear

functional ∇wv in the dual space of H(div, K) whose action on each q ∈ H(div, K) is

given by

(∇wv, q)K := −(v0,∇ · q)K+ < vb, q · n >∂K , (3.0.2)

where n is the outward normal direction to ∂K, (v0,∇ · q)K =
´
K
v0(∇ · q)dK is the

action of v0 on ∇ · q, and < vb, q · n >∂K is the action of q · n on vb ∈ H
1
2 (∂K).

By choosing a finite element subspace of H(div, K), we obtain a discrete weak

gradient. When K is a domain such as triangles, tetrahedron, rectangles and cubes, we

choose Raviart-Thomas element or BDM element.

Let Pr(K) be the set of polynomials on K with degree no more than r and P̂k(K)

be the set of homogeneous polynomials of order k in the variable x = (x1, · · · , xd)T .

Let Gk(K) be either [Pk(K)]d or RTk(K) = [Pk(K)]d + P̂k(K)x. For this thesis, we

choose d = 2.

Definition 3.0.2. The discrete weak gradient of v denoted by ∇w,k,Kv is defined as
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the unique polynomial (∇w,k,Kv) ∈ Gk(K) satisfying the following equation

(∇w,k,Kv, q) = −(v0,∇ · q)K+ < vb, q · n >∂K , ∀q ∈ Gk(K). (3.0.3)

For the weak function space W (K), we discretize it by Wj,l(K) given as follows

Wj,l(K) := {v = {v0, vb} : v0 ∈ Pj(K), vb ∈ Pl(∂K)}.

Note that if v ∈ H1(K) and ∇v ∈ Gk(K), then ∇w,k,Kv = ∇v.

Different weak Galerkin finite element methods can be derived by choosing Wj,l(K)

and Gk(K) with various combinations of the indices j, l and k. Please refer to [118] for

details. In this thesis, we will consider the case (P0, P0, RT0) and (P1, P1, P0) element.

For any given integer k ≥ 1, denote by Wk(T ) the discrete weak function space

consisting of polynomials of degree k in T and piecewise polynomials of degree k on

each flat spaces of ∂T , that is

Wk(T ) := {v = {v0, vb} : vo ∈ Pk(T ), vb|e ∈ Pk(e), e ∈ ∂T}. (3.0.4)

Patching together Wk(T ) over all elements T ∈ Th, the weak Galerkin finite element

spaces Wh is given by

Wh :=
∏
T∈Th

Wk(T ). (3.0.5)

3.1 WG scheme for (P0, P0, RT0) element

Let Th be a shape-regular, quasi-uniform mesh of the domain Ω, with mesh size h.

Denote by Eh the set of all edges or faces in Th, and let E0
h = Eh \ ∂Ω be the set of all

interior edges or faces. We now define global weak Galerkin finite element spaces

Vh := {v = {v0, vb} : {v0, vb}|T ∈ Wk(T )},

V 0
h := {v : v ∈ Vh, vb = 0 on ∂Ω}.

The component v0 is defined element-wise and totally discontinuous. The compo-
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nent vb is defined on edges/faces which glue v0 in different elements to be a reasonable

approximation of a function in H1
0 (Ω).

Denote by∇w,k the discrete weak gradient operator on Vh computed on each element

T , i.e.,

(∇w,kv)|T := ∇w,k,T (v|T ), ∀v ∈ Vh.

For simplicity of notation, we shall drop the subscript k from now on in the notation

∇w,k for the discrete weak gradient.

A numerical approximation for the model problem (2.0.1) can be obtained by seek-

ing uh = {u0, ub} ∈ V 0
h satisfying ub = Qbg on ∂Ω and the following equation:

a(uh, v) = (f, v0), ∀v = {v0, vb} ∈ V 0
h , (3.1.1)

where

a(w, v) = (∇ww,∇wv) :=
∑
T∈Th

(∇ww,∇wv)T . (3.1.2)

andQbg is an approximation of the boundary value in the polynomial space Pl(∂T∩∂Ω).

For simplicity, Qbg is taken as the standard L2 projection for each boundary segment;

other approximations of the boundary value u = g can also be employed in (3.1.1).

Lemma 3.1.1. Let u ∈ H1(Ω) be the solution of (2.0.1) and uh ∈ Sh(j, j + 1) be the

weak Galerkin approximation of u obtained from (3.1.1). Let Qhu be the L2 projection

of the exact solution u, then there exists a constant C and positive constant K such

that

α1

2
(‖∇w(uh −Qhu)‖2 + ‖u0 −Q0u‖2) ≤C(‖Πh(∇u)−Rh(∇u)‖2 +K‖u0 −Q0u‖2.

The following approximation theorem holds true and was proved in [118].

Theorem 3.1.2. Assume that the dual of the problem (2.0.1) has the H1+s regularity,
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s ∈ (0, 1]. Let u ∈ H1(Ω) be the solution of (2.0.1) and assume it is sufficiently smooth

such that u ∈ Hm+1(Ω) with 0 ≤ m ≤ j + 1. Let uh be a weak Galerkin approximation

of u from (3.1.1) by using the weak finite element space Sh(j, j). Let Qhu be the L2

projection of u in the corresponding finite element space. Then, there exists a constant

C such that

‖∇w(uh −Qhu)‖+ ‖u0 +Q0u‖ ≤ C(hm‖u‖m+1 + h1+s‖f −Q0f‖), (3.1.3)

‖uh −Qhu‖ ≤ C(h1+s‖f −Q0f‖+ hm+s‖u‖m+1). (3.1.4)

3.2 WG scheme for (P1, P1, P0) element

Denote by Vh a finite element space of V consisting of functions of Wh which are

continuous across each interior edge:

Vh = {v ∈ Wh : [v]e = 0, ∀e ∈ E0
h}.

and let V 0
h be a subspace of Vh consisting of functions with vanishing boundary value

V 0
h = {v ∈ Vh, v = 0 on ∂Ω}.

On Vh, we define the two following forms:

a(v, w) =
∑
T∈Th

ˆ
T

∇wv · ∇wwdT, (3.2.1)

s(v, w) =
∑
T∈Th

h−βT < v0 − vb, w0 − wb >∂T . (3.2.2)

Denote by as(·, ·) a stabilization of a(·, ·) given by

as(v, w) = a(v, w) + s(v, w). (3.2.3)

The weak galerkin scheme is then given as following: seek uh = {u0, ub} ∈ Vh satisfying

both ub = Qbg on ∂Ω and the following equation:

as(uh, v) = (f, v0), (3.2.4)
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∀v = {v0, vb} ∈ V 0
h , where Qbg is an approximation of the Dirichlet boundary value

in the polynomial space Pk(∂T ∩ ∂Ω). For simplicity, we take Qbg as the standard L2

projection of the boundary value g on each boundary segment.

The following approximation estimates hold and was proved in [98].

Theorem 3.2.1. Let uh ∈ Vh be the weak Galerkin finite element solution of the

problem (2.0.1) arising from (3.2.4). Assume that the exact solution is so regular that

u ∈ Hk+1(Ω). Then there exists a constant C such that

9uh −Qhu9 ≤ Chk‖u‖k+1. (3.2.5)

Furthermore, onsider the dual problem that seeks Φ ∈ H1
0 (Ω) satisfying

−∇ · (∇Φ) = e0, in Ω, (3.2.6)

we assume that the usual H2-regularity is satisfied for the dual problem. Then we have

the following estimates:

Theorem 3.2.2. In addition to the assumptions of Theorem (3.2.1), we also assume

that the dual problem (3.2.6) has the usual H2-regularity. Then there exists a constant

C such that

‖Q0u− u0‖ ≤ Chk+1‖u‖k+1. (3.2.7)

3.3 Supercloseness Analysis

We first introduce the definition of the mesh structure which guarantees the super-

closeness result.

Definition 3.3.1. [38] Two adjacent triangles are said to form an O(h1+α) approximate

parallelogram if the lengths of any two opposite edges differ only by O(h1+α).
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Definition 3.3.2. [38] The triangluation Th is called to satisfy Condition (α, σ) if

there exists a partition T1,h ∪T2,h of Th and positive constants α and σ such that every

two adjacent triangles in T1,h form an O(h1+α) parallelogram and∑
T∈T2,h

|T | = O(hσ).

The following lemma is proved in [38] by Xu and Zhang.

Lemma 3.3.3. Assume that Th satisfy Condition (α, σ), then for any vh ∈ Sh,

|
∑
T∈Th

ˆ
T

∇(Ihu− u) · ∇vh| ≤ ch1+ρ(‖u‖3,Ω + |u|2,∞,Ω)|v|1,Ω, (3.3.1)

where ρ = min(α, σ
2
, 1

2
) and Ihu ∈ Sh is the interpolation of u.

Lemma 3.3.4. The interpolation operator Ih satisfies

(∇wIhv, ~q)h = (∇Ihv, ~q)h,∀v ∈ C0(Ω), q ∈ Wh, (3.3.2)

where (·, ·)h =
∑

T∈Th(·, ·)T .

The following lemma is proved by Wang et. al. in [119].

Lemma 3.3.5. The functional 9 · 9 : Vh → R defined by

9v92 = as(v, v),∀v ∈ Vh, (3.3.3)

is a norm on the space V 0
h . Furthermore, the following inequalities hold true:∑

T∈Th

‖∇v0‖2
T . 9v92,∀v ∈ Vh, (3.3.4)

∑
T∈Th

h−1
T ‖v0 − vb‖2

∂T . 9v92,∀v ∈ Vh. (3.3.5)

Now we are ready to derive an error estimate for 9Ihu − uh9, where uh is the

solution of the weak Galerkin method (3.2.4) and Ihu is the interploation of the exact

solution of problem (2.0.1).
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Theorem 3.3.6. Let u ∈ H3(Ω) be the solution of (2.0.1) and uh ∈ Vh be solution of

weak Galerkin method (3.2.4), we have the following error estimate:

9Ihu− uh9 ≤ chmin{1+ρ,β+1
2
}(‖u‖3,Ω + |u|2,∞,Ω). (3.3.6)

Proof. From Lemma 3.3.4 and Cauchy-Swarchtz inequality, we have

9Ihu− uh92 = as(Ihu− uh, Ihu− uh)

= as(Ihu, Ihu− uh)− as(uh, Ihu− uh)

=
∑
T∈Th

(∇wIhu,∇w(Ihu− uh))T − (f, Ihu− u0)

=
∑
T∈Th

(∇Ihu,∇w(Ihu− uh))T −
∑
T∈Th

(∇u,∇(Ihu− u0)T

+
∑
T∈Th

< ∇u · ~n, Ihu− u0 − (Ih − ub) >∂Ω

=
∑
T∈Th

(∇(Ihu− uh),∇(Ihu− u0))T

−
∑
T∈Th

< ∇(Ihu− u) · ~n, Ihu− u0 − (Ih − ub) >∂Ω

≤
∑
T∈Th

(∇(Ihu− u),∇(Ihu− u0))T

+ (
∑
T∈Th

hβT‖∇(Ihu− u)‖2
∂T )

1
2 (
∑
T∈Th

h−βT ‖Ihu− u0 − (Ihu− ub)‖2
∂T )

1
2

(3.3.7)

For u ∈ H3 ∩W2,∞, Lemma 3.3.3 implies∑
T∈Th

(∇(Ihu− u),∇(Ihu− u0))T ≤ h1+ρ(‖u‖3,Ω + |u|2,∞,Ω)|Ihu− u0|1,Ω. (3.3.8)

By definition of 9 · 9, we have

(
∑
T∈Th

h−βT ‖Ihu− u0 − (Ihu− ub)‖2
∂T )

1
2 ≤ 9Ihu− uh 9 . (3.3.9)
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Furthermore, we have

(
∑
T∈Th

hβT‖∇(Ihu− u)‖2
∂T )

1
2 ≤ (

∑
T∈Th

hβT (h−1‖u− Ihu‖2
1,T + h‖∇(u− Ihu)‖2

1,T )
1
2

≤ (
∑
T∈Th

hβT (h−1 · h2‖u‖2
3,T + h‖u‖2

3,T ))
1
2

≤ h
β+1
2 ‖u‖2

3,Ω.

(3.3.10)

Hence, we have

9Ihu− uh92 ≤ h1+ρ(‖u‖3,Ω + |u|2,∞,Ω)|Ihu− u0|1,Ω

+ h
β+1
2 ‖u‖2

3,Ω 9 Ihu− uh9

≤ Chmin{1+ρ,β+1
2
}(‖u‖3,Ω + |u|2,∞,Ω) 9 Ihu− uh 9 . (3.3.11)

This yields the desired result and completes the proof.
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CHAPTER 4 PPR FOR WGFEMS

As an intermediate product, the weak gradient could be computed and obtained

by the weak Galerkin finite element methods. However, we are more interested in the

gradient information at the mesh grids. Gradient recovery technique serves this purpose

well and provides a better approximation of ∇u.

In a recent work of Wang et. al. in [119], they develped an modified form of PPR

scheme. Different from standard FEMs approximation, WG solution is discontinuous

across boundary of elements which leads to multiple values of a nodal points. Their

strategy is to take an appropriate weighted average to unify these values and then

apply the standard PPR scheme for nodal points. In this thesis, we employ the main

concept of PPR and generalize it to WGFEMs, and call it by WGPPR. In the rest of

this chapter, we will introduce a detailed framework of WGPPR for WGFEMs using

(P0, P0, RT0) element and (P1, P1, P0) element.

4.1 WGPPR for (P0,P0,RT0) element

Different from PPR for C0 finite element method, the sampling points for the vertex

z are not vertices anymore in WGPPR. Instead, we take the degree of freedom as

assembly points. For (P0, P0, RT0) element, barycenters and edge centers are employed

as sampling points. Let Ch and Mh denote the set of degree of freedom inside the

elements and the set of degree of freedom on the edges, respectively. Denote the set of

sampling points for z by Lz, and define it as

Lz = {ζ : ζ ∈ Ch ∩Kz}
⋃
{ζ : ζ ∈Mh ∩Kz}. (4.1.1)

Inspired by the idea of PPR for C0 Lagrange element, we fit a quadratic polynomial

on each patch Kz. Define the least-squares fitting polynomial pz as follows:

pz = arg min
p∈P2(Kz)

∑
ζ∈Lz

|(uh − p)(ζ)|2, (4.1.2)
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u7 u8
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u17

u18

Figure 4.1.1: regular pattern

and define the recovered gradient at z as

Ghuh(z) = ∇pz(x, y; z). (4.1.3)

To illustrate the idea, we look at the two-dimensional problem and employ the

weak Galerkin method defined on a regular mesh using (P0(K0), P0(F ), RT0(K)). In

other words, the weak Galerkin method uses piecewise constants on both the triangles

and the edges. Different from the C0 Lagrange element, the degree of freedom lies in

the triangles and edges. Fig 4.1.1 shows a distribution of the degree of freedom for

(P0, P0, RT0) on regular pattern mesh. In what follows, we will demonstrate how to

recover the gradient information at z0, which is not one of the degrees of freedom for

WGFEMs.

To avoid computational instability resulting from small h, we introduce the coor-

dinate transformation

F : (x, y)→ (ξ, η) =
(x− y)− (x0, y0)

h
, (4.1.4)

where h = max{|z − ζ| : ζ ∈ Lz}. All computations are then carried out on the local

element patch K̂z = F (Kz). Thus, the fitted polynomial can be written as

pz(x, y) = P Ta = P̂ T â, (4.1.5)
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with

P T = (1, x, y, x2, xy, y2), P̂ T = (1, ξ, η, ξ2, ξη, η2); (4.1.6)

aT = (a0, a1, a2, a3, a4, a5), âT = (a0, ha1, ha2, h
2a3, h

2a4, h
2a5). (4.1.7)

The coefficient vector â is then uniquely determined by solving the system

ATAâ = AT b (4.1.8)

where b = (uh(ζ1), uh(ζz), · · · , uh(ζm))T and

A =



1 ξ0 η0 ξ2
0 ξ0η0 η2

0

1 ξ1 η1 ξ2
1 ξ1η1 η2

1

...
...

...
...

...
...

1 ξm ηm ξ2
m ξmηm η2

m


. (4.1.9)

Here m denotes the number of degree of freedom in Lz. Consequently, the recovered

gradient at z is given by

Ghuh = ∇pz(0, 0; z) =


a1

a2

 =
1

h


â1

â2

 . (4.1.10)

Remark. In order to solve (4.1.8), Lz must contain at least 6 points, i.e., m ≥ 6. This

condition is mostly satisfied since two adjoint elements will provide sufficient degree

of freedom. For some extreme boundary cases, please refer to Chapter 2 regarding the

boundary strategies.

Remark. In the PPR process, if we evaluate the least-squares fitting polynomial

p2(x, y; z0) alone at the node z0, we get a recovered function value at node z0, i.e.,

Rhuh(z0) = p2(0, 0; z0). It is worth to point out that WGFEMs provide totally discon-
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tinuous solution across elements. With the recovered solution Rhuh, we will actually

obtain a global continuous approximation to the exact solution u.

4.1.1 Regular pattern

To demonstrate the above procedure, we apply WGPPR to recover the gradient

information at z on the uniform regular pattern mesh (see Fig 4.1.1) in detail. Similar

to previous chapters, we use the exact solution u here instead of the WGFEM solution

uh to demonstrate the superconvergence property of WGPPR.

Given

ξ = (−1

2
,−1

3
,−1,−1

2
, 0,

1

2
,−2

3
,
1

3
,−1

2
,
1

2
,−1

3
,
2

3
,−1

2
, 0,

1

2
, 1,

1

3
,
1

2
)T ;

η = (−1,−2

3
,−1

2
,−1

2
,−1

2
,−1

2
,−1

3
,−1

3
, 0, 0,

1

3
,
1

3
,
1

2
,
1

2
,
1

2
,
1

2
,
2

3
, 1)T ;

b = (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15, u16, u17, u18)T ;

where ui = u(F−1(ξi, ηi)) for i = 1, · · · , 18. The least square fitting polynomial with

respect to (ξ, η) is then in the form of

p̂2(ξ, η) = (1, ξ, η, ξ2, ξη, η2)(â0, â1, â2, â3, â4, â5)T .

Let ~e = (1, 1, 1, 1, 1, 1)T , and

A = (~e, ~ξ, ~η, ~ξ ◦ ~ξ, ~ξ ◦ ~η, ~η ◦ ~η), (4.1.11)

where ◦ is the Hadamard product for matricies. Let S = (ATA)−1AT , then simple

calculation yields â = Sb. Since

(â0, â1, â2, â3, â4, â5) = (a0, ha1, ha2, h
2a3, h

2a4, h
2a5),

we must have

p2(x, y) = â0 +
1

h
(â1x+ â2y) +

1

h2
(â3x

2 + â4xy + ây2).

Differentiating p2(x, y) with respect to x and y respectively and evaluate at (0, 0), the
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recovered gradient at a vertex z0 is given by

Gx
hu =

1

16h
(− 3u3 − u4 + u5 + 3u6 − 2u7 + 2u8 − 2u9 + 2u10

− 2u11 + 2u12 − 3u13 − 1u14 + u15 + 3u16), (4.1.12)

and

Gy
hu =

1

16h
(− 3u1 − 2u2 − u4 − 2u5 − 3u6 − 2u8 + u9 − u10

+ 2u11 + 3u13 + 2u14 + u15 + 2u17 + 3u18), (4.1.13)

where Gx
h(z) and Gy

h(z) are x-component and y-component of Ghu(z) respectively.

3
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12
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−1 −2

0

2

2

0

−2

−2

Figure 4.1.2: Regular pattern: (Left) Gx
h : 1

16h
. (Right) Gy

h : 1
16h

.

By using Mathematica, we get the following Taylor expansion

Gx
huh(z) = u(1,0)(z) +

53h2

576
(u(1,2)(z) + u(2,1)(z) + u(3,0)(z)) +O(h4),

Gy
huh(z) = u(0,1)(z) +

53h2

576
(u(1,2)(z) + u(2,1)(z) + u(0,3)(z)) +O(h4),

which is a second-order finite difference scheme. With Ghu given at each vertex, the

recovered gradient field can be obtained by linear interpolation.
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Remark. In the PPR process, if we evaluate the least-squares fitting polynomial

p2(x, y; z0) alone at the node z0, we get a recovered function value at node z0, i.e.,

Rhuh(z0) = p2(0, 0; z0).

The following expression can also be derived at the vertex z0:

Rhu =
1

186
(− 19u1 + 21u2 − 19u3 + 29u4 + 29u5 − 19u6 + 21u7 + 21u8 + 29u9 + 29u10

+ 21u11 + 21u12 − 19u13 + 29u14 + 29u15 − 19u16 + 21u17 − 19u18),

and by Taylor Expansion we can obtain the following:

Rhuh(z) = u(z)− 157h3

26784
(u(0,4)(z)+2u(1,3)(z)+3u(2,2)(z)+2u(3,1)(z)+u(4,0)(z))+O(h6).

4.1.2 Chevron pattern

For Chevron pattern mesh, the procedure is the same as regular pattern. At first

we can compute

Gx
hu =

1

25390h
(1161u1 − 1161u2 − 438u3 + 438u4 − 3132u5 − 1566u6

+ 1566u8 + 3132u9 − 3300u10 + 3300u11 − 4293u12

+ 4293u13 − 4074u14 + 4074u15 − 7020u16 + 7020u18), (4.1.14)

and

Gy
hu =

1

4979980h
(115743u1 + 115743u2 − 809526u3 − 809526u4 + 126732u5

− 788163u6 − 1093128u7 − 788163u8 + 126732u9 − 545790u10

− 545790u11 − 312909u12 − 312909u13 + 600702u14 + 600702u15

+ 1541505u16 + 1236540u17 + 1541505u18). (4.1.15)

It is straightforward to verify the following taylor expansion in Mathematica:

Gx
huh(z) = u(1,0)(z) + (

12499

182808
u(1,2)(z) +

206699

2742120
u(3,0)(z))h2 +O(h3)
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Gy
huh(z) = u(0,1)(z) + (

21151817

537837840
u(0,3)(z) +

2606239

35855856
u(2,1)(z))h2 +O(h3)

which are second order difference schemes.

Remark. Similarly, we could obtain the recovered function value at the vertices

Rhu =
1

29879880
(− 3157489u1 − 3157489u2 + 3209238u3 + 3209238u4 − 3174976u5

+ 3566789u6 + 5814044u7 + 3566789u8 − 3174976u9 + 2789550u10

+ 2789550u11 + 4572467u12 + 4572467u13 + 3314394u14 + 3314394u15

− 140455u16 + 2106800u17 − 140455u18),

(4.1.16)

and the taylor expansion gives

Rhuh(z) = u(z) +
h3

1075675680
(23133673u(0,3)(z) + 49867995u(2,1)(z)) +O(h4).

7020−7020

−3132

1161 −1161

3132

4293

0

−4293

−1566 0 1566

4074−4074

−3300

−438 438

3300

15415051541505

126732

115743 115743

126732

−312909

1236540

−312909

−788163−1093128−788163

600702600702

−545790

−809526 −809526

−545790

Figure 4.1.3: Chevron pattern: (Left) Gx
h : 1

25390h
. (Right) Gy

h : 1
4979980h

.

4.1.3 Unionjack pattern

Then we consider the Unionjack pattern mesh.
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Figure 4.1.4: Unionjack pattern: (Left) Gx
h : 1

157h
. (Right) Gy

h : 1
157h

.

The recovered gradient are computed by

Gx
hu =

1

157h
(−3u1 + 3u2 − 2u3 + 2u4 − 6u5 − 3u6 + 3u8 + 6u9

− 4u10 + 4u11 − 3u12 + 3u13 − 4u14 + 4u15 − 6u16 − 3u17 + 3u19

+ 6u20 − 2u21 + 2u22 − 3u23 + 3u24) (4.1.17)

and

Gy
hu =

1

157h
(−6u1 − 6u2 − 4u3 − 4u4 − 3u5 − 3u6 − 3u7 − 3u8 − 3u9

− 210 − 2u11 + 2u14 + 2u15 + 3u16 + 3u17 + 3u18 + 3u19

+ 3u20 + 4u21 + 4u22 + 6u23 + 6u24) (4.1.18)

With Mathematica, the taylor expansion is given as:

Gx
huh(z) = u(1,0)(z) + (

857

5652
u(1,2)(z) +

3541

33912
u(3,0)(z))h2 +O(h3)

Gy
huh(z) = u(0,1)(z) + (

3541

33912
u(0,3)(z) +

857

5652
u(2,1)(z))h2 +O(h3)

which are second order difference schemes.
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Remark. Similarly, we could obtain the recovered function value at the vertices

Rhu =
1

27524
(−1810u1 − 1810u2 + 2115u3 + 2115u4 − 1810u5 + 2429u6 + 3842u7 + 2429u8

− 1810u9 + 2115u10 + 2115u11 + 3842u12 + 3842u13 + 2115u14 + 2115u15 − 1810u16

+ 2429u17 + 3842u18 + 2429u19 − 1810u20 + 2115u21 + 21150u22 − 1810u23 − 1810u24)

and the taylor expansion gives

Rhuh(z) = u(z)+
h4

11890368
(−86930u(0,4)(z)−235137u(2,2)(z)−86930u(4,0)(z))+O(h6).

4.1.4 Criss-cross pattern

For Criss-cross pattern, the recovered gradient is computed as

0

−6

0

6

3−3

−3 3

0

−4

0

4

6

0

−6

0

33

−3 −3

4

0

−4

0

Figure 4.1.5: Criss-cross pattern:(Left) Gx
h : 3

70h
. (Right) Gy

h : 3
70h

.

Gx
hu(z) =

3

70h
(−3(u3 − u4 + u9 − u10)− 6(u5 − u8)− 4(u6 − u7)),

and

Gy
hu(z) =

3

70h
(−3(u3 + u4 − u9 − u10)− 6(u1 − u12)− 4(u2 − u11)).
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The taylor expansion gives

Gx
huh(z) = u(1,0)(z) + (

9

280
u(1,2)(z) +

857

7560
u(3,0)(z))h2 +O(h4),

and

Gy
huh(z) = u(0,1)(z) + (

857

7560
u(0,3)(z) +

9

280
u(2,1)(z))h2 +O(h4).

This also means Ghu is a second order approximation to ∇u.

Remark. Similarly, the recovered funtion value at the vertices are given by

Rhu(z) =
1

104
(−23(u1 + u5 + u8 + u12) + 27(u2 + u6 + u7 + u11)

+ 22(u3 + u4 + u9 + u10)),

and taylor expansion gives

Rhuh(z) = u(z) +
h4

14976
(−179u(0,4)(z) + 198u(2,2)(z)− 179u(4,0)(z)) +O(h6).

4.2 WGPPR for (P1,P1,P0) element

Now, let us look at the two-dimensional problem and employ the weak Galerkin

method using (P1(T ), P1(e), P0(T )). That is, WG uses 3 degrees of freedom in each

element T and uses 2 degrees of freedoms on each edge. Here we choose the three

vertices from each triangle and two gaussian points from each edge, then the total

number of degrees of freedom is given by DOF = 3 ∗ NT + 2 ∗ NE. Since the WG

solution uh is piecewise on each element but continuous across the edges, for each

z ∈ Nz we choose all the degrees of freedom on the edges to be the sampling points for

the PPR process on each patch Kz, i.e.

Lz = {ζ : ζ ∈Mz ∩Kz}. (4.2.1)
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On each patch Kz, we fit a quadratic polynomial

pz = arg min
p∈P2(Kz)

∑
ζ∈Lz

|(uh − p)(ζ)|2, (4.2.2)

and define the recovered gradient at z as

Ghuh(z) = ∇pz(x, y; z). (4.2.3)

u1 u2

u3 u4 u5 u6

u7 u8 u9 u10

u11 u12 u13 u14

u15 u16 u17 u18

u19 u20 u21 u22

u23 u24

Figure 4.2.1: regular pattern

u1 u2 u3 u4

u5 u6 u7 u8 u9

u10 u11 u12 u13 u14

u15 u16 u17 u18

u19 u20 u21

u22 u23 u24

Figure 4.2.2: chevron pattern

To illustrate the idea of choosing sampling points, we still perform WGPPR on the

four different types of meshes: reguar pattern, chevron pattern, unionjack pattern and

crisscross pattern. The sampling points are displayed in Fig (4.2.1)-(4.2.4), respectively.

Again, we will also recover the function value Rhuh as a byproduct of gradient recovery

process since it can be easily recorded from the gradient recovery matrix. Similar to

previous section, the exact solution u is used instead of the WGFEM solution uh.
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u1 u2 u3 u4

u5 u6 u7 u8 u9

u10 u11 u12 u13 u14

u15 u16 u17 u18

u19 u20 u21 u22 u23

u24 u25 u26 u27 u28

u29 u30 u31 u32

Figure 4.2.3: unionjack pattern

u1 u2

u3 u4

u5 u6

u7 u8

u9 u10

u11 u12

u13 u14

u15 u16

Figure 4.2.4: crisscross pattern

4.2.1 Regular pattern

By using sampling points chosen in Fig (4.2.1) and applying PPR, we can easily

obtain the recovered gradient Ghu at a mesh grid z, where

Gx
hu(z) =

1

84h
(− 2

√
3u1 + 2

√
3u2 + (−9 +

√
3)u3 + (3 +

√
3)u4

− (3 +
√

3)u5 + (9−
√

3)u6 + (−9−
√

3)u7 + (−3 +
√

3)u8

+ (3−
√

3)u9 + (9 +
√

3)u10 − 2(3 +
√

3)u11 + 2(−3 +
√

3)u12

+ (6− 2
√

3)u13 + 2(3 +
√

3)u14 + (−9−
√

3)u15 + (−3 +
√

3)u16

+ (3−
√

3)u17 + (9 +
√

3)u18 + (−9 +
√

3)u19 + (−3−
√

3)u20

+ (3 +
√

3)u21 + (9−
√

3)u22 − 2
√

3u23 + 2
√

3u24),
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and

Gy
hu(z) =

1

84h
((−9 +

√
3)u1 + (−9−

√
3)u2 − 2

√
3u3 − 2(3 +

√
3)u4

− (3 +
√

3)u5 − (9 +
√

3)u6 + 2
√

3u7 + (−3 +
√

3)u8

+ 2(−3 +
√

3)u9 + (−9 +
√

3)u10 + (3 +
√

3)u11 + (3−
√

3)u12

+ (−3 +
√

3)u13 − (3 +
√

3)u14 + (9−
√

3)u15 + (6− 2
√

3)u16

+ (3−
√

3)u17 − 2
√

3u18 + (9 +
√

3)u19 + (6 + 2
√

3)u20

+ (3 +
√

3)u21 + 2
√

3u22 + (9 +
√

3)u23 + (9−
√

3)u24).

The recovered function value at node z is given by

Rhu(z) =
1

1080
(−18(u1 + u2 + u3 + u6 + u7 + u10

+ u15 + u18 + u19 + u22 + u23 + u24)

+ (108− 42
√

3)(u4 + u5 + u11 + u14 + u20 + u21)

+ (108 + 42
√

3(u8 + u9 + u12 + u13 + u16 + u17).

By using computer algebra system Mathematica, it is easy to verify the following

Taylor expansion

Rhu(z) = u(0,0)(z)− 11h4

6480
(u(0,4)(z) + 2u(1,3)(z) + 3u(2,2)(z) + 2u(3,1)(z) + u(4,0)(z)) +O(h5),

Gx
hu(z) = u(1,0)(z) +

8h2

63
(u(1,2)(z) + u(2,1)(z) + u(3,0)(z)) +O(h4),

Gy
hu(z) = u(0,1)(z) +

8h2

63
(u(1,2)(z) + u(2,1)(z) + u(0,3)(z)) +O(h4),

which is a second-order finite difference scheme.
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4.2.2 Chevron pattern

Similar to regular pattern, we choose the sampling points as in Fig (4.2.2) and the

recovered gradient is then computed as

Gx
hu(z) =

1

232h
((3 +

√
3)(u1 − u4) + (3−

√
3)(u2 − u3)

+ (−21 + 9
√

3)(u5 − u9) + (−6 +
√

3)(u6 − u8)

+ (−21− 9
√

3)(u10 − u14) + (−6−
√

3)(u11 − u13)

+ (−24− 8
√

3)(u15 − u18) + (−24 + 8
√

3)(u16 − u17)

+ (−33− 8
√

3)(u19 − u21) + (−33 + 8
√

3)(u22 − u24)),

and

Gy
hu(z) =

1

43606
((−2676 + 729

√
3)(u1 + u4) + (−2676− 729

√
3)(u2 + u3)

+ (84− 329
√

3)(u5 + u9) + (−2832 + 400
√

3)(u6 + u8)

+ (84− 329
√

3)(u10 + u14) + (−2832− 400
√

3)(u11 + u13)

+ (−4290− 329
√

3)u7 + (−4290 + 329
√

3)u12

+ (−702 + 729
√

3)(u15 + u18) + (−702− 729
√

3)(u16 + u17)

+ (6000− 1886
√

3)(u19 + u21) + (4542− 2615
√

3)u20)

+ (6000 + 1886
√

3)(u22 + u24) + (4542 + 2615
√

3)u23).
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The recovered function value is given as

Rhu(z) =
1

174424
((−1174− 4031

√
3)(u1 + u4) + (−1174 + 4031

√
3)(u2 + u3)

+ (−3874− 2996
√

3)(u5 + u9) + (12250− 7027
√

3)(u6 + u8)

+ (−3874 + 2996
√

3)(u10 + u14) + (12250 + 7027
√

3)(u11 + u13)

+ (20312− 2996
√

3)u7 + (20312 + 2996
√

3)u12

+ (16802− 4031
√

3)(u15 + u18) + (16802 + 4031
√

3)(u16 + u17)

+ (3610 + 1845
√

3)(u19 + u21) + (11672 + 5876
√

3)u20)

+ (3610− 1845
√

3)(u22 + u24) + (11672− 5876
√

3)u23).

It is straightforward to verify that

Rhu(z) = u(0,0)(z) +
h3

523272
(3420u(0,3)(z) + 36971u(2,1)(z) +O(h4),

Gx
hu(z) = u(1,0)(z) +

h2

2088
(66u(1,2)(z) + 251u(3,0)(z)) +O(h3),

Gy
hu(z) = u(0,1)(z) +

7h2

784908
(7890u(2,1)(z) + 12577u(0,3)(z)) +O(h3).

And this provides a second order approximation to ∇u.

4.2.3 Unionjack pattern

For unionjack pattern, the sampling points are displayed in Fig (4.2.3). The recov-

ered gradient is given by

Gx
hu(z) =

1

88h
((−3−

√
3)(u1 + u6 + u15 + u25 + u29)

+ (−3 +
√

3)(u2 + u11 + u16 + u20 + u30)

+ (3−
√

3)(u3 + u13 + u17 + u22 + u31)

+ (3 +
√

3)(u4 + u8 + u18 + u27 + u32)

− 6(u5 + u10 + u19 + u24) + 6(u9 + u14 + u23 + u28)),
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and

Gy
hu(z) =

1

88h
(−6(u1 + u2 + u3 + u4) + 6(u29 + u30 + u31 + u32))

(−3−
√

3)(u5 + u6 + u7 + u8 + u9)

+ (−3 +
√

3)(u10 + u11 + u12 + u13 + u14)

+ (3−
√

3)(u19 + u20 + u21 + u22 + u23)

+ (3 +
√

3)(u24 + u25 + u26 + u27 + u28).

The recovered function value is given by

Rhu(z) =
1

1536
((−7− 22

√
3)(u1 + u4 + u5 + u9 + u24 + u28 + u29 + u32)

+ (−7 + 22
√

3)(u2 + u3 + u10 + u14 + u19 + u23 + u30 + u31)

+ (81− 44
√

3)(u6 + u8 + u25 + u27)

+ (81 + 44
√

3)(u11 + u13 + u20 + u22)

+ (125− 22
√

3)(u7 + u15 + u18 + u26)

+ (125 + 22
√

3)(u12 + u16 + u17 + u21)).

By using Mathematica, it is easy to verify the following Taylor expansion

Rhu(z) = u(0,0)(z) +
h4

36864
(−49u(0,4)(z)− 1228u(2,2)(z)− 49u(4,0)(z)) +O(h5),

Gx
hu(z) = u(1,0)(z) +

h2

792
(186u(1,2)(z) + 107u(3,0)(z)) +O(h4),

Gy
hu(z) = u(0,1)(z) +

h2

792
(107u(0,3)(z) + 186u(2,1)(z)) +O(h4).

which again is second order convergence to ∇u.
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4.2.4 Criss-cross pattern

The sampling points for criss-cross pattern as shown in Fig (4.2.4). Following the

same procedure as previously, we obtain the recovered gradient as

Gx
hu(z) =

1

48h
(−2
√

3(u1 − u2 + u15 − u16)− 6(u5 − u6 + u11 − u12)

− (3 +
√

3)(u3 − u4 + u13 − u14)

− (3−
√

3)(u7 − u8 + u9 − u10)),

and

Gy
hu(z) =

1

48h
(−2
√

3(u5 + u6 − u11 − u12)− 6(u1 + u2 − u15 − u16)

− (3 +
√

3)(u3 + u4 − u13 − u14)

− (3−
√

3)(u7 + u8 − u9 − u10)).

The recovered function value is

Rhu(z) =
1

80
(−(u1 + u2 + u5 + u6 + u11 + u12 + u15 + u16)

+ (11− 6
√

3)(u3 + u4 + u13 + u14)

+ (11 + 6
√

3)(u7 + u8 + u9 + u10)).

The taylor expansion obtained from Mathematica are:

Rhu(z) = u(0,0)(z) +
h4

2880
(−5u(0,4)(z)− 14u(2,2)(z)− 5u(4,0)(z)) +O(h5),

Gx
hu(z) = u(1,0)(z) +

h2

72
(19u(1,2)(z) + 9u(3,0)(z)) +O(h4),

Gy
hu(z) = u(0,1)(z) +

h2

72
(9u(0,3)(z) + 19u(2,1)(z)) +O(h4).

This verifies that Ghu is a second order appoximation to ∇u.
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4.3 Property of the Gradient Recovery Operator

Theorem 4.3.1. The gradient recovery operator Gh preserves polynomial up to second

order.

Proof. Suppose ~z1, ~z2, · · · , ~zn are all the sampling points. Let b0(~z), b1(~z), · · · , b5(~z) be

a basis of P2(Kz). Then the least square fitting is to find

pz = arg min
p∈P2(Kz)

n∑
i=1

|(u(~zi)− p(~zi))|2, (4.3.1)

Without loss of generality, let p = α0b0(~z) + α1b1(~z) + · · · + α5b5(~z), then it is suffice

to find ~α = (α0, α1, · · · , α5). Let

A =



b0(~z1) b1(~z1) b2(~z1) b3(~z1) b4(~z1) b5(~z1)

b0(~z2) b1(~z2) b2(~z2) b3(~z2) b4(~z2) b5(~z2)

...
...

...
...

...
...

b0(~zn) b1(~zn) b2(~zn) b3(~zn) b4(~zn) b5(~zn)


(4.3.2)

and

F = (f(~z1), · · · , f(~zn)T ,

then it is equivalent to solve the linear matrix system

ATA~α = ATF.

Let f = bj(~z), 0 ≤ j ≤ 5, then it is easy to see that α = ej, which also implies p = bj.

Thus the least-square process preserves polynomial up to second order and we have

Ghp = ∇p.

Using the polynomial preserving property above, we can show the following approx-

imation theorem.
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Theorem 4.3.2. Suppose u ∈ H3(Kz), then we have

‖Ghu−∇u‖0,Kz ≤ ch2‖u‖3,Kz .

Proof. Define F (u) = ‖Ghu−∇u‖0,Kz , it is easy to see

F (u) ≤ ‖Ghu‖0,Kz + ‖∇u‖0,Kz

≤ c‖∇u‖0,Kz

≤ c‖u‖1,Kz .

The polynomial property of the gradient recovery operator Gh implies Ghp = ∇p for

any p ∈ P2(Kz). Thus we have F (u+ p) = F (u). By the Brambler-Hilbert Lemma, we

obtain F (u) ≤ ch2‖u‖3,Kz .

4.4 Numerical Examples

Consider the Laplace equation with zero boundary condition on unit square Ω =

[0, 1]× [0, 1] and the exact solution is given by u = sin(πx) sin(πy).

We will use four different triangular mesh: regular pattern, chevron pattern, union-

jack pattern and criss-cross pattern. The weak Galerkin method with the element

(P0(K), P0(F ), RT0(K)) is employed to solve the problem. The convergence curves of

the L2 error of the recovered gradient and weak gradient are depicted in Fig 4.4.1 –

4.4.4. From the plots, we can clearly observe the optimal convergence rate for the weak

gradient at O(h), and superconvergence for the recovered gradient at approximately

O(h2) on these four different meshes. We also test the second approach on the same

mesh and superconvergence phenomenon is again observed for the recovered gradient

in all figures.

Next, we employ a uniform triangular mesh with regular pattern and (P1, P1, P0)

element is used in the weak Galerkin discretization.

In Table 4.4.1, we compare the L2 error of the weak gradient and the recovered gra-
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Figure 4.4.1: Regular mesh: ||∇u−Ghuh||L2(Ω) and ||∇u−∇wuh||L2(Ω)
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Figure 4.4.2: Chevron mesh: ||∇u−Ghuh||L2(Ω) and ||∇u−∇wuh||L2(Ω)

dient. The weak gradient converges at the rate of O(h) as expected while the recovered

gradient superconverges at the order of O(h2) which matches our theoretical results. In

order to track the behavor of PPR near boundary, we split the domain Ω into interior

domain and boundary domain, denote by Ω1 and Ω2 as defined in (2.3.1) and (2.3.2),

respectively. The nuemrical results are shown in Table 4.4.2, it is not suprise that we
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Figure 4.4.3: Unionjack mesh: ||∇u−Ghuh||L2(Ω) and ||∇u−∇wuh||L2(Ω)
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Figure 4.4.4: Criss-cross mesh: ||∇u−Ghuh||L2(Ω) and ||∇u−∇wuh||L2(Ω)

obtain superconvergent results in both interior domain and boundary domain which

again validates the effectiveness and robustness of our boundary strategies.
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Table 4.4.1: Poisson Problem: WG using (P1(T ), P1(e), P0(T ))

1/h ‖∇wuh −∇u‖Ω order ‖Ghuh −∇u‖Ω order

8 6.8908e-01 – 1.8434e-01 –

16 3.4608e-01 0.9935 4.9900e-02 1.8852

32 1.7323e-01 0.9984 1.2916e-02 1.9499

64 8.6641e-02 0.9996 3.2915e-03 1.9723

128 4.3323e-02 0.9999 8.3599e-04 1.9772

256 2.1662e-02 1.0000 2.1335e-04 1.9702

Table 4.4.2: Poisson Problem: Interior error vs Boundary error

1/h ‖Ghuh −∇u‖Ω1 order ‖Ghuh −∇u‖Ω2 order

8 1.4609e-01 – 1.1242e-01 –

16 3.7166e-02 1.9748 3.3297e-02 1.7555

32 9.3394e-03 1.9926 8.9215e-03 1.9000

64 2.4710e-03 1.9183 2.1744e-03 2.0366

128 6.3434e-04 1.9617 5.4452e-04 1.9976

256 1.5860e-04 1.9999 1.4271e-04 1.9319
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CHAPTER 5 WGPPR FOR INTERFACE PROB-

LEM

Let Ω be a bounded polygonal domain with Lipschitz boundary ∂Ω in R2. A curve

Γ ∈ C2 divides Ω into two disajoint subdomains Ω− and Ω+. The interface curve Γ is

often characterized by zero level set of some level set function φ [120, 121], therefore

we have Ω− = {z ∈ Ω|φ(z) ≤ 0} and Ω+ = {z ∈ Ω|φ(z) ≥ 0}. Consider the following

elliptic interface problem
−∇ · (β(z)∇u(z)) = f(z), z in Ω \ Γ,

u = g, z on ∂Ω;

(5.0.1)

where the diffusion coefficient β(z) ≥ β0 is a piecewise smooth function defined as

β(z) =


β−(z), if z ∈ Ω−,

β+(z), if z ∈ Ω+,

which has a finite jump of function value across the interface Γ. The source term f(z)

may be singular at the interface and is defined by

f(z) =


f−(z), if z ∈ Ω−,

f+(z), if z ∈ Ω+,

The dirichlet boundary condition is also defined by

g(z) =


g−(z), on ∂Ω− \ Γ,

g+(z), on ∂Ω+ \ Γ.

The elliptic interface problem is otherwise unsolvable unless it is supplemented

from the underlying physics with two jump conditions across the interface Γ: [u]Γ =

u+− u− = φ and [βun]Γ = β+u+
n − β−u−n = ψ where un denotes the normal flux ∇u ·n

with n being the unit outer normal vector of the interface Γ.
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5.1 The weak Galerkin scheme

Standard notations for Sobolev spaces and their associate norms given in chapter

3 are adopted again in this section. Furthermore, we denote W k,p(Ω− ∩ Ω+) as the

function space consisting of piecewise function w such that w|Ω− ∈ W k,p(Ω−) and

w|Ω+ ∈ W k,p(Ω+). For the function space W k,p(Ω− ∪ Ω+), the associated norm is

defined as ‖w‖k,p,Ω−∪Ω+ = (‖w‖pk,p,Ω− + ‖w‖pk,p,Ω+)1/p, and the seminorm is defined as

|w|k,p,Ω−∪Ω+ = (|w|pk,p,Ω− + |w|pk,p,Ω+)1/p.

Let Th be a body-fitted triangulation of Ω. For each triangle T ∈ Th, it can be

classified into the following three types:

1. T ⊂ Ω−;

2. T ⊂ Ω+;

3. T ∩ Ω− 6= ∅ and T ∩ Ω+ 6= ∅, then the two vertices of T lie on the interface Γ.

Denote Γh as an approximation of Γ which consists of the edges with both endpoints

lying on Γ. The domain Ω is now divided into two parts Ω1,h and Ω2,h, which are the

approximation of Ω1 and Ω2, respectively. We can now define

T−h := {T ∈ Th| all three vertices of T are in Ω−},

T+
h := {T ∈ Th| all three vertices of T are in Ω+},

T0
h := {T ∈ Th| T has two vertices on Γ}.

For simplicity, we denote (v, w)T :=
´
T
vwdT, < v, w >∂T=

´
∂T
vwds. For each

triangle T ∈ Th, let T 0 and ∂T denote the interior and boundary of T respectively.

Denote by Pj(T 0) the set of polynomials in T 0 with degree no more than j, and Pl(e)

the set of polynomials on each segment(edge of face) e, e ∈ ∂T with degree no more

than l. A discrete function w = {w0, wb} refers to a polynomial with two components
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in which the first component w0 is associated with the interior T 0 and wb is defined on

each edge or face e, e ∈ ∂T . Please note that wb may or may not equal to w0 on ∂T .

Now we introduce three trial finite element spaces as follows:

V −h := {w = {w0, wb} : {w0, wb}|T ∈ Pj(T 0)× Pl(e), e ∈ ∂T,∀T ∈ T−h },

V +
h := {ρ = {ρ0, ρb} : {ρ0, ρb}|T ∈ Pj(T 0)× Pl(e), e ∈ ∂T,∀T ∈ T+

h },

Λh := {µ : µ|e ∈ Pm(e), e ∈ Γh}.

Define two test spaces by

V 0,−
h = {w = {w0, wb} ∈ V −h : wb|e = 0, e ∈ ∂Ω− \ Γ},

V 0,+
h = {ρ = {ρ0, ρb} ∈ V +

h : ρb|e = 0, e ∈ ∂Ω+ \ Γ}.

For each w = {w0, wb} ∈ V −h or V +
h , the discrete gradient of w, denoted by∇dw ∈ Vr(T )

on each element T , is defined by the following equation:
ˆ
T

∇dw · qdT = −
ˆ
T

w0(∇ · q)dT +

ˆ
∂T

wb(q · n)ds,∀q ∈ Vr(T ),

where Vr(T ) is a subspace of the set of vector-valued polynomials of degree no more

than r on T .

The selection of the indices j, l, m, and r is critical in the design of weak Galerkin

finite element methods. Please refer to [104] for a detailed discussion on the selection

of those indices. In this part for interface problem, let j = l = m = k ≥ 0 and choose

the Raviart-Thomas element for Vr(T ) := RTk(T ). These elements are referred as

{Pk(T 0)2, Pk(e)
2, Pk(Γ)} element in the numercial test. Recall that the Raviart-Thomas

element RTk(K) of order k is of the following form RTk(T ) = Pk(T )2 + P̃k(T )x, where

P̃k(T ) is the set of homogeneous polynomials of degree k and x = (x1, x2).

A numerical approximation of the model problem can be obtained by seeking uh =
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{u0, ub} ∈ Vh = V −h ∪ V +
h satisfying ub = Qbg, and λh ∈ Λh such that

(A∇du
−
h ,∇dw)− < λh, wb >Γ = (f−, w0), ∀w ∈ V 0,−

h

(A∇du
+
h ,∇dρ)+ < λh, ρb >Γ = (f+, ρ0)+ < ψ, ρb >Γ, ∀ρ ∈ V 0,+

h

< u−b − u+
b , µ >Γ =< φ, µ >Γ, ∀µ ∈ Λh. (5.1.1)

Here Qbg is the standard L2 projection of the Dirichlet boundary data in Pk(e) for any

edge/face e ∈ ∂Ω.

Denote by Qh = {Q0, Qb} a local L2 projection operator where Q0 : H1(T 0) →

Pk(T
0), and Qb : H

1
2 (e) → Pk(e), e ∈ ∂T are the usual L2 projections into the corre-

sponding spaces. The following error estimates hold true [116].

Theorem 5.1.1. Let (uh, λh) ∈ Vh×Λh be the solution arising from the weak Galerkin

finite element scheme. Then,

||∇d(Qhu
− − u−h )||+ ||∇d(Qhu

+ − u+
h )|| . hk+1(||u−||k+2 + ||u+||k+2), (5.1.2)

||A∇u · n− λh||Γ . hk+ 1
2 (||u−||k+2 + ||u+||k+2). (5.1.3)

5.2 WGPPR for Interface Problems

The standard PPR process works as a smoothing operator since it provides con-

tinuous gradient approximation to ∇u. Due to the discontinuity of ∇u across the

interface, the original flavor of PPR will not work as expected for the elliptic interface

problem. In practice, the two components of u (u|Ω−h and u|Ω+
h

) are smooth in their

corresponding domain, even though u has low global regularity due to the effect of the

interface. This motivates us to recover u|Ω−h and u|Ω+
h

in Ω−h and Ω+
h separately and

consequently a piecewise continuous gradient approximation could be obtained and yet

a good approximation to ∇u.

Let G−h : V −h → S−h × S−h and G+
h : V +

h → S+
h × S+

h be the PPR gradient recovery

operator defined on S−h and S+
h , respectively. For any uh ∈ Sh, we define the global
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gradient recovery operator Gh : Vh → (S−h ∪ S+
h )× (S−h ∪ S+

h ) as

(Ghuh)(z) =


(G−h uh)(z), if z ∈ Ω−h ,

(G+
h uh)(z), if z ∈ Ω+

h ,

(5.2.1)

Remark. If z is away from the interface Γh, (Ghuh)(z) is the stardard WGPPR process

at z in its corresponding domain.

Remark. If z is near the interface Γh, (Ghuh)(z) is computed by fitting a quadratic

polynomial in the least-squares sense that only employs sampling points from either

T−h or T+
h .

Remark. If z is on the interface Γh, (Ghuh)(z) will be computed in T−h and T+
h seper-

ately, yet for all points on interface, there are two values of the gradient: (G−h uh)(z)

and (G+
h uh)(z).

Remark. Furthermore, if we perform the function recovery of z in a similar way, which

in fact can be recorded from PPR process, and denote the value of recovered function

by R−h uh and R+
h uh, respectively. The jump of u across interface Γ can be captured by

the difference between R−h uh and R+
h uh.

5.3 Numerical Examples

In this section, we present several numerical examples to verify the robustness

and superconvergence of the function recovery and gradient recovery algorithms. The

computational domain of our examples are chosen as Ω = [−1, 1] × [−1, 1]. Note that

all convergence rate will be computed against the degree of freedom (Dof), and since

Dof ≈ h−2 for a two-dimensional quasi-uniform mesh, the corresponding convergence

rate in mesh size h is twice as much as what we present in the tables.

Example 1. The interface problem is defined in a square [−1, 1] × [−1, 1] with

a circular interface r2 = x2 + y2 = 1
4
. The analytical solution to the equation, the
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coefficient β, and the inhomogeneous term of the equation are given as follows

u(x, y) =


x2 + y2 − 1, if r ≤ 0.5,

1
4
(1− 1

8b
− 1

b
) + ( r

4

2
+ r2)/b, otherwise

β(x, y) =


2, if r ≤ 0.5,

b, otherwise

f(x, y) =


8, if r ≤ 0.5,

8(x2 + y2) + 4, otherwise

(5.3.1)

By choosing b = 10, it can be checked that on the interface [u] = 1 and [βun] = −0.75.

The interface is shown in Fig 5.3.1 and a body-fitted initial mesh is given in Fig 5.3.1.

In Fig 5.3.2, the WG solution based on mesh level 2 is depicted. The function jump

is constant across the circular interface. However, the graph of the WG solution is

piecewise constant in each element since the function value at the vertices are absent.

Thus, we can obtain Rhuh at each vertex during the WGPPR process and the recovered

solution is displayed in Fig 5.3.3, the graph of the recovered gradient Gx
h(uh) and

Gy
h(uh) are presented in Fig 5.3.4 and Fig 5.3.5, respectively. We can see that the

recovery process is able to capture the jump information along the interface. It can

be seen that WGPPR works well on these two subdomains correspondingly and the

flux jump is captured. Furthermore, the numerical result is reported in Table 5.3.1.

Optimal convergence rate is achieved by WGFEM while we observed superconvergence

for WGPPR at the rate of O(h1.5). This validates the effectiveness and robustness of

our proposed algorithm.

Example 2. In this example, we consider the elliptic interface problem in the

square domain Ω = (−1, 1) × (−1, 1) with a circular interface of radius r0 = 0.5. The
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Figure 5.3.1: Example 1. (a) Shape of interface; (b) Body fitted initial mesh.

Table 5.3.1: Example 1: Comparison of H1 error of Gradient recovery

Dof ‖∇u−∇wuh‖ order ‖∇u−Ghuh‖ order

20608 1.83e-03 – 1.60e-03 –

82176 9.12e-04 0.50 5.67e-04 0.75

328192 4.55e-04 0.50 2.01e-04 0.75

1311744 2.28e-04 0.50 7.09e-05 0.75

exact solution is

u(x, y) =


r3

β−
, if z ∈ Ω−,

r3

β+ + ( 1
β−
− 1

β+ )r3
0, if z ∈ Ω+,

(5.3.2)

Here we choose β− = 1 and β+ = 10. The shape of interface is shown in Fig 5.3.6.

A body-fitted initial mesh is depicted in Fig 5.3.6. The WGFEM solution is plotted
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Figure 5.3.2: WG solution uh
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Figure 5.3.3: Recovered solution Rhuh
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Figure 5.3.4: Graph of Gx
h(uh) at Level 2

-0.8

1

-0.6

-0.4

-0.2

0.5 1

0

0.2

0.4

0.50

0.6

0.8

0
-0.5

-0.5

-1 -1

Figure 5.3.5: Graph of Gy
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Figure 5.3.6: Example 2. (a) Shape of interface; (b) Body fitted initial mesh.

in Fig 5.3.7 and the recovered solution Rhuh is presented in Fig 5.3.8. Since the WG

scheme uses piecewise constant on each element, the discontuity is obviously observed

in Fig 5.3.7. The recovered function Rhuh produces a continuous function in different

subdomains, therefore we can see a piecewise continuous function well presented in

Fig 5.3.8.The recovered gradient function Gx
huh and Gy

huh are plotted in Fig 5.3.9 and

5.3.10. The numerical errors are displayed in Table 5.3.2. An optimal convergence in

the H1-seminorm is observed. The recovered gradient Ghuh superconverges to ∇u at

the rate of O(h1.5).

Example 3. Cardioid Interface Problem In this example, we consider the interface

problem with a cardioid interface as in [53]. The interface Γ is the zero level of the



72

Table 5.3.2: Example 2: Comparison of H1 error of Gradient recovery

Dof ‖∇u−∇wuh‖ order ‖∇u−Ghuh‖ order

20608 3.14e-03 – 3.37e-03 –

82176 1.57e-03 0.50 1.06e-03 0.84

328192 7.85e-04 0.50 3.54e-04 0.79

1311744 3.93e-04 0.50 1.21e-04 0.78

5244928 1.96e-04 0.50 4.19e-05 0.76

function

φ(x, y) = (3(x2 + y2)− x)2 − x2 − y2, (5.3.3)

and the exact solution

u(x, y) = φ(x, y)/β(x, y), (5.3.4)

where

β(x, y) =


xy + 3, if (x, y) ∈ Ω−,

100, if (x, y) ∈ Ω+;

(5.3.5)

The contour of the interface is shown in Fig 5.3.11. The interface is not Lipschitz-

continuous and has singular point at the origin. A body-fitted initial mesh is given

in Fig 5.3.11. In Fig 5.3.12 and 5.3.13, we present the WGFEM solution uh and the

recovered solution Rhuh. The recovered gradient function Gx
huh and Gy

huh are shown in

Fig 5.3.14 and 5.3.15. The numerical result is reported in Table 5.3.3, we can observe

optimal convergence rate O(h) for WGFEM and superconvergence for WGPPR at the

rate of O(h1.6) even though the interface is not Lipschitz-continuous.

Example 4. In this example, we consider the interface problem with complex

geometrical structure as in [69], the arbitrarily shaped interface in polar coordinates is

given by

r = 0.40178(1 + cos(2θ) sin(6θ)) cos(θ), (5.3.6)
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Table 5.3.3: Example 3: Comparison of H1 error of Gradient recovery

Dof ‖∇u−∇wuh‖ order ‖∇u−Ghuh‖ order

1312 3.55e-02 – 9.22e-02 –

5184 1.70e-02 0.54 3.29e-02 0.75

20608 8.36e-03 0.51 1.03e-02 0.84

82176 4.17e-03 0.50 3.18e-03 0.85

328192 2.09e-03 0.50 1.02e-03 0.82

1311744 1.05e-03 0.50 3.46e-04 0.78

for θ ∈ [0, 2π]. The interface and subdomains are displayed in Fig (5.3). The coefficient

function is chosen as

β(x, y) =


(x2 − y2 + 3)/7, if (x, y) ∈ Ω−,

(xy + 2)/5, if (x, y) ∈ Ω+;

(5.3.7)

and the exact solution is

u(x, y) =


sin(x+ y) + cos(x+ y) + 1, if (x, y) ∈ Ω−,

x+ y + 1, if (x, y) ∈ Ω+;

(5.3.8)

Due to the complex geometrical structure of the interface shown in Fig 5.3.16, we

adopt the adaptive strategy to generate an initial body-fitteed mesh [51]. The initial

mesh is displayed in Fig 5.3.16. It is obvious that the mesh is refined around the

interface with high curvature. The WGFEM solution is shown in Fig 5.3.17 and the

recovered solution Rhuh is plotted in Fig 5.3.18. The visible discontinuities of WGFEM

solution is again observed while the recovered solution provides a piecewise continuous

function which better approximates the exact solution u. The recovered gradient func-

tion Gx
huh and Gy

huh are depicted in Fig (5.3.19) and Fig (5.3.20), respectively. We can

see clear continuity in both subdomains of the gradient function.

To track the convergence of our proposed algorithm, we perfom PPR on the other

four level finer meshes as well. The refinements are obtained by uniform refinement
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while keeping the mesh along the interface. The numerical result is shown in Table

5.3.4, the convergence rates are listed with respect to the degree of freedom (DOF).

While the mesh getting finer, the weak gradient of the WG solution tends to converge to

the exact gradient at the rate of O(h) while the convergence rate of recovered gradient

is increasing to O(h1.4) asymptotically. Since the gradient recovery technique is based

on the numerical solution, the recovered gradient Ghuh relies greatly on uh. When the

numerical solution captures the exact solution well, the gradient recovery algorithm

will generate good result. With a denser mesh, WG’s performance is getting better

and so does WGPPR. The phonomenon is clearly observed in Table (5.3.4).

Since Rhuh is obtained at each vertex, together with the given mesh information,

we can perform the original PPR to get the gradient information and denote it by

Gh(Rhuh). The numerical result is also shown in Table 5.3.4. To achieve the same level

of accuracy, this approaches requires 1
4

DOFs of Ghuh. This may introduce extra com-

puting time since a second level PPR is performed. However, the saving of computing

time in WGFEM solving and WGPPR gradient recovery process are significant.

Table 5.3.4: Example 4: Comparison of H1 error of Gradient recovery

Dof ‖∇u−∇wuh‖ order ‖∇u−Ghuh‖ order ‖∇u−Gh(Rhuh)‖ order

30452 2.67e-02 – 2.86e-02 – 1.18e-02 –

121784 1.69e-02 0.33 1.64e-02 0.40 4.83e-03 0.64

487088 9.22e-03 0.44 7.79e-03 0.54 2.68e-03 0.42

1948256 4.74e-03 0.48 3.26e-03 0.63 1.30e-03 0.52

7792832 2.39e-03 0.49 1.27e-03 0.68 5.50e-04 0.62

Example 5. In this example, we consider the interface problem as in [50][51]. The

interface Γ in parametric form is defined by
x(t) = r(θ) cos(θ) + xc,

y(t) = r(θ) sin(θ) + yc;
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where r(θ) = r0 + r1 sin(ωθ), 0 ≤ θ < 2π.

The exact solution is given by

u(x, y) =


r2

β−
, if (x, y) ∈ Ω−,

r4+C0 log(2r)
β+ + C1(

r20
β−
− r40+C0 log(2r0)

β+ ), if (x, y) ∈ Ω+;

(5.3.9)

where r =
√
x2 + y2. The source term is then determined accordingly:

f(x, y) =


4
β−
, if (x, y) ∈ Ω−,

16r2

β+ , if (x, y) ∈ Ω+;

(5.3.10)

In this example, we take r0 = 0.4, r1 = 0.2 and xc = yc = 0.02
√

5. The coefficient

β is a piecewise constant with β− = 1 and β+ = 10. To track the performance of WG

and WGPPR, we choose ω = 5, 10, 20 and the contour of the interface are shown in Fig

5.3.21, Fig 5.3.26 and Fig 5.3.31 respectively. Similar to previous example, adaptive

meshes are employed as the initial mesh to capture the interface, see Fig 5.3.21, Fig

5.3.26 and Fig 5.3.31 . In Fig 5.3.22, Fig 5.3.27 and Fig 5.3.32, we present the WGFEM

solution which is obviously piecewise constant in each element. Piecewise continuous

function Rhuh is shown in Fig 5.3.23, Fig 5.3.28 and Fig 5.3.33 for differnent ω. Their

corresponding gradient function Gx
huh and Gy

huh are plotted in Fig 5.3.24 - 5.3.25, Fig

5.3.29 - 5.3.30 and Fig 5.3.34 - 5.3.35.

With the refinement of the meshes, WGFEM solution uh provides a better approx-

imation to u and the convergence rate of the weak gradient is increased to O(h) while

the recovered gradient superconverges asymptotically at the rate of O(h1.6). The nu-

merical results are shown in Table 5.3.5, Table 5.3.6 and Table 5.3.7. Furthermore, we

compute Gh(Rhuh) for ω = 5, 10, 20 as well. The results are displayed in Table 5.3.5,

Table 5.3.6 and Table 5.3.7 as well. It is clear that Gh(Rhuh) not only reduces the error,

but also has a better convergence rate which is superconvergent at the rate of O(h1.8).

This again verifies the effectiveness and robustness for both PPR and WGPPR.



76

Table 5.3.5: Example 5: Comparison of H1 error of Gradient recovery, ω = 5

Dof ‖∇u−∇wuh‖ order ‖∇u−Ghuh‖ order ‖∇u−Gh(Rhuh)‖ order

9485 3.82e-02 – 1.20e-01 – 1.30e-01 –

37920 2.14e-02 0.42 4.54e-02 0.70 3.60e-02 0.92

151640 1.11e-02 0.48 1.55e-02 0.77 1.11e-02 0.85

606480 5.58e-03 0.49 5.10e-03 0.80 3.15e-03 0.91

2425760 2.80e-03 0.50 1.70e-03 0.79 9.18e-04 0.89

Table 5.3.6: Example 5: Comparison of H1 error of Gradient recovery, ω = 10

Dof ‖∇u−∇wuh‖ order ‖∇u−Ghuh‖ order ‖∇u−Gh(Rhuh)‖ order

31552 3.67e-02 – 9.96e-02 – 8.71e-02 –

126184 2.06e-02 0.42 3.90e-02 0.68 2.72e-02 0.84

504688 1.06e-02 0.48 1.37e-02 0.75 9.05e-03 0.79

2018656 5.34e-03 0.49 4.54e-03 0.80 2.63e-03 0.89

Table 5.3.7: Example 5: Comparison of H1 error of Gradient recovery, ω = 20

Dof ‖∇u−∇wuh‖ order ‖∇u−Ghuh‖ order ‖∇u−Gh(Rhuh)‖ order

78647 3.65e-02 – 9.80e-02 – 8.24e-02 –

314564 2.05e-02 0.42 3.87e-02 0.67 2.68e-02 0.81

1258208 1.05e-02 0.48 1.36e-02 0.75 8.96e-03 0.79

5032736 5.30e-03 0.49 4.52e-03 0.80 2.61e-03 0.89
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Figure 5.3.7: WG solution uh
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Figure 5.3.8: Recovered solution Rhuh
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Figure 5.3.9: Example 2: Gx
h(uh)
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Figure 5.3.10: Example 2: Gy
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Figure 5.3.11: Example 3. (a) Shape of interface; (b) Body fitted initial mesh.
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Figure 5.3.12: WG solution uh
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Figure 5.3.13: Recovered solution Rhuh
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Figure 5.3.14: Example 3: Gx
h(uh)
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Figure 5.3.15: Example 3: Gy
h(uh)
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Figure 5.3.16: Example 4. (a) Shape of interface; (b) Body fitted initial mesh.
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Figure 5.3.17: WG solution uh
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Figure 5.3.18: Recovered solution Rhuh
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Figure 5.3.19: Example 4: Gx
h(uh)
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Figure 5.3.20: Example 4: Gy
h(uh)
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Figure 5.3.21: ω = 5 (a) Shape of interface; (b) Body fitted initial mesh.
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Figure 5.3.22: WG solution uh
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Figure 5.3.23: Recovered solution Rhuh
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Figure 5.3.24: Gx
h(uh) when ω = 5
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Figure 5.3.25: Gy
h(uh) when ω = 5
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Figure 5.3.26: ω = 10 (a) Shape of interface; (b) Body fitted initial mesh.
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Figure 5.3.27: WG solution uh
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Figure 5.3.28: Recovered solution Rhuh
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Figure 5.3.29: Gx
h(uh) when ω = 10
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Figure 5.3.30: Gy
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Figure 5.3.31: ω = 20 (a) Shape of interface; (b) Body fitted initial mesh.
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Figure 5.3.32: WG solution uh Figure 5.3.33: Recovered solution Rhuh

Figure 5.3.34: Gx
h(uh) when ω = 20 Figure 5.3.35: Gy

h(uh) when ω = 20
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CHAPTER 6 APPLICATIONS OF WGPPR

6.1 Application to adaptive methods

Adaptive finite element method (AFEM) based on local mesh refinement can be

characterized in the loops of the form [10, 11]:

SOLVE→ ESTIMATE→MARK→ REFINE

In the ESTIMATE step, the a posteriori error estimators are of significant impor-

tance and are used to make local modifications. There are two types of a posteriori esti-

mators: residual type and recovery type. For conforming FEM, the residual type a pos-

teriori error estimators have been studies in [9, 123, 124, 125, 10, 126, 11, 127, 128]. For

WGFEMs, the residual type a posteriori error estimator is firstly proposed and analyzed

by Chen et. al. [109]. Later in [64], Zhang et. al. presented an a posteriori error estima-

tor for the modified WGFEMs. For conforming finite element method, recovery type a

posteriori error estimators have been studied in [9, 129, 18, 130, 38, 131, 132, 133]. In

particular, Zhang and Naga introduced PPR and proposed a recovery type a posteriori

error estimator in [18]. Since we have seen success in applying PPR to adaptive meth-

ods for standard Galerkin methods, it is natural for us to apply the same idea to the

adaptivity of weak Galerkin method. In this section, we apply the proposed WGPPR

to a recovery type a posteriori error estimator.

The local a posteriori error estimator on the element T as:

η(uh, T ) = ‖Ghuh −∇wuh‖0,T , (6.1.1)

where Ghuh is the recovered gradient using WGPPR and ∇wuh is the weak gradient

of the WG solution. The global error estimator is defined as

η(uh,Ω) = (
∑
T∈Th

η(uh, T ))
1
2 . (6.1.2)

The adaptive algorithm can be summarized as following:
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Given any initial mesh T0 and set k = 0:

• SOLVE. Compute the weak Galerkin solution uh and the weak gradient ∇wuh

of model problem (3.1.1) using proper WGFEM on the mesh Tk.

• ESTIMATE. Compute the recovery gradient Ghuh using WGPPR and then

compute the local error estimator η(uh, T ) on Tk.

• MARK. The marking set Mk ⊂ Tk is defined by a set of element satisfying bulk

marking strategy [8]:

η2(uh, T ) ≥ θη2(uh,Ω), (6.1.3)

for some θ ∈ (0, 1).

• REFINE Refine Tk into Tk+1 by using bisection method [126, 10, 11] which

guarantees Tk+1 is still a shape regular and conforming mesh. Set k = k + 1 and

iterate.

For measuring the quality of the proposed error estimator, we define the effectiv-

ity index κ [9, 125] as the ratio between the estimated error and the weak Galerkin

approximation error, that is

κ =
‖Ghuh −∇wuh‖0,Ω

‖∇u−∇wuh‖0,Ω

. (6.1.4)

To test the robustness of the error estimator (6.1.2), we use three examples as our

benchmark problems: L-shape problem, Crack problem and Kellogg problem.

L-shape Problem. Let Ω := (−1, 1)2 \ {[0, 1) × (−1, 0]} be a L-shaped domain

with a reentrant corner. Consider the Laplace equation on the L-shaped domain Ω

and u = g on ∂Ω. We choose the Dirichlet boundary condition g such that the exact

solution is u(r, θ) = r
2
3 sin(2

3
θ) in polar coordinates.



90

We use the lowest order WG method, i.e., (P0, P0, RT0) element, and expect the first

order convergence of the energy error ||∇u−∇wuh|| ≤ CN−
1
2 . The initial mesh is given

in Fig 6.1.1. The bulk marking strategy by Dörfler [8] with θ = 0.5 is adopted in our

simulation for marking. Marked elements are refined by the newest vertex bisection. We

present the adaptive grid genertated by our algorithm in Fig 6.1.2 and the error table

is displayed in Table 6.1.1. The decay of energy error is shown in Fig 6.1.3, it meets our

expectation. In Fig 6.1.3, we can observe ||Ghuh − ∇u||L2(Ω) is superconvergent with

order O(N−0.72). In Fig 6.1.4, we depict the curve of effectivity index versus number of

DOFs. It can be clearly seen that it converges to 1 quickly after the several iterations

which indicates the proposed a posteriori error estimator (6.1.2) is asymptotically exact.

Table 6.1.1: Error table of L-shape problem

N ||∇u−∇w,huh|| η κ N ||∇u−∇w,huh|| η κ

19 4.166218e-01 4.665876e-01 1.12 454 9.309483e-02 9.500979e-02 1.02

24 3.817037e-01 3.684954e-01 0.97 609 7.908910e-02 7.911142e-02 1.00

29 3.464294e-01 2.763590e-01 0.80 877 6.687090e-02 6.767188e-02 1.01

35 2.868965e-01 3.193751e-01 1.11 1240 5.440797e-02 5.456889e-02 1.00

50 2.612274e-01 2.683002e-01 1.03 1686 4.722625e-02 4.778079e-02 1.01

60 2.378536e-01 2.224138e-01 0.94 2364 3.955613e-02 3.965601e-02 1.00

76 2.228042e-01 2.252268e-01 1.01 3311 3.333611e-02 3.370858e-02 1.01

91 1.925436e-01 1.791509e-01 0.93 4506 2.792213e-02 2.786410e-02 1.00

136 1.713096e-01 1.705006e-01 1.00 6214 2.407998e-02 2.412359e-02 1.00

165 1.477008e-01 1.435043e-01 0.97 8402 2.026700e-02 2.012421e-02 0.99

251 1.272253e-01 1.291997e-01 1.02 11504 1.756064e-02 1.761035e-02 1.00

Crack Problem Let us now consider the elliptic problem (2.0.1) on the crack

domain Ω = {|x|+ |y| < 1}\{0 ≤ x ≤ 1, y = 0}. The right hand side function is chosen

as f = 1 and the exact solution u in polar coordinates is given as u(r, θ) = r
1
2 sin θ

2
− 1

4
r2.

The initial mesh is plotted in Fig 6.1.5. We employ the WGFEM with (P0, P0, RT0)
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element to solve the crack problem on the initial mesh and the bulking marking strategy

[8] with θ = 0.4 is adpoted. Marked elements are refined by the newest vertex bisection.

The adaptive refined mesh is displayed in Fig 6.1.6. Fig 6.1.7 shows that the L2 error

of weak derivatives is optimal while the recovery gradient error superconverges at rate

of O(h1.4). Again the effectivity index κ converges to 1 quickly which implies the error

estimator is asymptotically exact, see Fig 6.1.8. In Table 6.1.2, we display the error of

the crack problem.

Table 6.1.2: Error table of Crack problem

N ||∇u−∇w,huh|| η κ N ||∇u−∇w,huh|| η κ

13 5.591752e-01 8.136789e-01 1.46 285 1.815918e-01 1.913780e-01 1.05

25 4.637481e-01 7.373226e-01 1.59 348 1.606301e-01 1.665744e-01 1.04

28 4.519550e-01 6.711667e-01 1.49 452 1.457635e-01 1.525263e-01 1.05

54 4.171312e-01 5.216470e-01 1.25 553 1.294438e-01 1.345086e-01 1.04

59 3.809660e-01 4.334415e-01 1.14 724 1.194848e-01 1.248537e-01 1.04

62 3.671047e-01 4.386639e-01 1.19 931 1.040062e-01 1.063679e-01 1.02

77 3.325325e-01 3.765405e-01 1.13 1215 9.143555e-02 9.373127e-02 1.03

80 3.189069e-01 3.802232e-01 1.19 1548 8.075016e-02 8.168402e-02 1.01

95 2.940545e-01 3.292018e-01 1.12 2067 6.882329e-02 7.094008e-02 1.03

101 2.729706e-01 3.399531e-01 1.25 2724 6.048520e-02 6.097953e-02 1.01

136 2.501901e-01 2.703636e-01 1.08 3530 5.234802e-02 5.370433e-02 1.03

157 2.432314e-01 2.726219e-01 1.12 4555 4.637032e-02 4.677240e-02 1.01

177 2.220768e-01 2.334317e-01 1.05 5975 3.968880e-02 4.053908e-02 1.02

216 2.132452e-01 2.259377e-01 1.06 7764 3.511732e-02 3.528910e-02 1.00

234 1.991539e-01 2.038693e-01 1.02 10059 3.070675e-02 3.112878e-02 1.01
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6.2 3D Problem

Let us now consider a 3D example. The model problem is

−∆u = 3π2 sin πx sin πy sin πz,

in the domain Ω = (0, 1)3, and u = 0 on ∂Ω. The solution of this problem is u(x, y, z) =

sin πx sin πy sin πz. An initial mesh T0 is obtained by partitioning x − axis, y − axis

and z − axis into 4 equally distributed subintervals, then dividing one cube into six

tetrahedron. Here we employ WGFEM with (P0, P0, RT0) element. The numerical re-

sults are displayed in Table 6.2.1 and we can observe ‖∇u−Ghuh‖ is superconvergent

with order O(h−2/3). We define the interior domain Ωh,1 and boundary domain Ωh,2 in

a similar way as in (2.3.1) and (2.3.2). The numerical results indicate that WGPPR is

a second order approximation to ∇u.

Table 6.2.1: Poisson 3D
Dof ‖∇u−Ghuh‖Ω order ‖∇u−Ghuh‖Ω1

order ‖∇u−Ghuh‖Ω2
order

9600 1.51e-01 – 9.75e-02 – 1.15e-01 –

75264 4.25e-02 0.62 2.57e-02 0.65 3.38e-02 0.60

595968 1.12e-02 0.64 6.52e-03 0.66 9.13e-03 0.63

4743168 2.92e-03 0.65 1.77e-03 0.63 2.32e-03 0.66

6.3 Stokes Problem

Consider the Stokes problem which seeks unknown function u and p satisfying

−∆u+∇p = f in Ω (6.3.1)

∇ · u = 0 in Ω (6.3.2)

u = g on ∂Ω (6.3.3)

where Ω is a polygonal domain in R2.

For any integer k ≥ 1, we define a weak Galerkin finite element space for the
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velocity variable as Vh = {v = {v0, vb} : {v0, vb} ∈ [Pk(T )]2× [Pk(e)]
2, e ⊂ ∂T}. For the

pressure variable, we have the following finite element space Wh = {q : q ∈ L2
0(Ω), q|T ∈

Pk−1(T )}. Denote by V 0
h the subspace of Vh consisting of discrete weak functions with

vanishing boundary values; i.e., V 0
h = {v = {v0, vb} ∈ Vh, vb = 0 on ∂Ω}.

The discrete weak gradient operator, denoted by ∇w,K , is defined as the unique

polynomial ∇w,Kv ∈ [Pk−1(K)]2 satisfying the following equation,

(∇w,Kv, q)K = −(v0,∇ · q)K+ < vb, q · n >∂K , ∀q ∈ [Pk−1(K)]2. (6.3.4)

Similarly, the discrete weak divergence operator, denoted by ∇w,K ·, is defined as

the unique polynomial ∇w,K · v ∈ [Pk−1(K)]2 that satisfies the following equation

(∇w,K · v, φ)K = −(v0,∇φ)K+ < vb · n, φ >∂K , ∀φ ∈ Pk−1(K). (6.3.5)

The weak method for the Stokes problem is: find uh = {u0, ub} ∈ Vh and ph ∈ Wh

such that ub = Qbg on ∂Ω and

a(uh, v)− b(v, ph) = (f, v0), (6.3.6)

b(uh, q) = 0 (6.3.7)

for all v = {v0, vb} ∈ V 0
h and q ∈ Wh, where s(v, w) =

∑
T∈T h

−1
T < v0−vb, w0−wb >∂T ,

a(v, w) = (∇wv,∇ww) + s(v, w), and b(v, q) = (∇w · v, q).

In the test, the exact solution is

u(x, y) =


π sin2(πx) sin(2πy)

−π sin(2πx) sin2(πy)


and p(x, y) = cos(πx) cos(πy). We use the weak Galerkin method with (P0, P0, RT0)

element and (P1, P1, P0) element to solve the model problem. The numerical results

are reported in Table 6.3.1 and Table 6.3.3. Optimal convergence rate is achieved

by weak Galerkin methods for both elements. Then we use WGPPR for these two
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different WG scheme to recover the gradient information for uh, numerical results are

shown in Table 6.3.2 and Table 6.3.4, respetively. It is obviously that superconvergence

phenomenon is observed for (P0, P0, RT0) element at the rate of O(h2) in Table 6.3.2.

For the (P1, P1, P0) element, we can see a convergence rate of O(h1.8). To further explore

the superconvergence behavior, we split the domain to interior domain Ωh,1 and Ωh,2

as defined in (2.3.1) and (2.3.2). The H1 error of the gradient recovery in Ωh,1 and

Ωh,2 are displayed in Table 6.3.5. It clearly shows the error in the interior domain has

second order convergence rate which is superconvergent.

Table 6.3.1: Stokes Problem: WG using (P0(T ), P0(e), RT0(T ))

1/h ‖u− uh‖ order ‖ph − p‖Ω order

8 9.8624e-02 – 8.7513e-01 –

16 2.5276e-02 1.9642 4.1211e-01 1.0865

32 6.3793e-03 1.9863 2.0019e-01 1.0416

64 1.5992e-03 1.9960 9.9207e-02 1.0129

128 4.0009e-04 1.9990 4.9486e-02 1.0034

Table 6.3.2: Stokes Problem: WG using (P0(T ), P0(e), RT0(T ))

1/h ‖∇wuh −∇u‖Ω order ‖Ghuh −∇u‖Ω order

8 1.8723e+00 – 3.5219e+00 –

16 9.1907e-01 1.0266 1.0174e+00 1.7915

32 4.5785e-01 1.0053 2.6807e-01 1.9242

64 2.2874e-01 1.0012 6.9002e-02 1.9579

128 1.1435e-01 1.0003 1.7803e-02 1.9545
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Table 6.3.3: Stokes Problem: WG using (P1(T ), P1(e), P0(T ))

1/h ‖u− uh‖ order ‖ph − p‖Ω order

8 4.2921e-01 – 6.6931e-01 –

16 1.0944e-01 1.9716 3.3393e-01 1.0031

32 2.7497e-02 1.9928 1.6636e-01 1.0053

64 6.8828e-03 1.9982 8.3075e-02 1.0018

128 1.7213e-03 1.9995 4.1523e-02 1.0005

Table 6.3.4: Stokes Problem: WG using (P1(T ), P1(e), P0(T ))

1/h ‖∇wuh −∇u‖Ω order ‖Ghuh −∇u‖Ω order

8 7.4400e+00 – 3.2748e+00 –

16 3.7693e+00 0.9810 9.3912e-01 1.8020

32 1.8908e+00 0.9953 2.6406e-01 1.8304

64 9.4619e-01 0.9988 7.6686e-02 1.7838

128 4.7319e-01 0.9997 2.3460e-02 1.7088

Table 6.3.5: Stokes Problem: Interior error vs Boundary error

1/h ‖Ghuh −∇u‖Ω1 order ‖Ghuh −∇u‖Ω2 order

8 2.5992e+00 – 1.8760e+00 –

16 6.9950e-01 1.8937 6.0179e-01 1.6403

32 1.7811e-01 1.9735 1.8991e-01 1.6639

64 4.6152e-02 1.9483 6.0246e-02 1.6564

128 1.1725e-02 1.9768 2.0133e-02 1.5813
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Figure 6.1.1: L-shape problem: Initial mesh Figure 6.1.2: Adaptive mesh
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Figure 6.1.3: Decay of recovery error
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Figure 6.1.5: Crack Problem: Initial mesh Figure 6.1.6: Adaptive mesh
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Figure 6.1.7: Decay of gradient error
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Gradient recovery technique is widely used to reconstruct a better numerical gradi-

ent from a finite element solution, for mesh smoothing, a posteriori error estimate and

adaptive finite element methods. The PPR technique generates a higher order approx-

imation of the gradient on a patch of mesh elements around each mesh vertex. It can

be used for different finite element methods for different problems. This dissertation

presents recovery techniques for the weak Galerkin methods and as well as applica-

tions of gradient recovery on various of problems, including elliptic problems, interface

problems, and Stokes problems.

Our first target is to develop a boundary strategy for the current PPR algorithm.

The current accuracy of PPR near boundaries is not as good as that in the interior of

the domain. It might be even worse than without recovery. Some special treatments are

needed to improve the accuracy of PPR on the boundary. In this thesis, we present two

boundary recovery strategies to resolve the problem caused by boundaries. Numerical

experiments indicate that both of the newly proposed strategies made an improvement

to the original PPR.
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Our second target is to generalize PPR to the weak Galerkin methods. Different

from the standard finite element methods, the weak Galerkin methods use a different set

of degrees of freedom. Instead of the weak gradient information, we are able to obtain

the recovered gradient information for the numerical solution in the generalization of

PPR. In the PPR process, we are also able to recover the function value at the nodal

points which will produce a global continuous solution instead of piecewise continuous

function uh.

Our third target is to apply our proposed strategy and WGPPR to interface prob-

lems. We treat an interface as a boundary when performing gradient recovery, and the

jump condition on the interface can be well captured by the function recovery process.

In addition, adaptive methods based on WGPPR recovery type a posteriori error

estimator is proposed and numerically tested in this thesis. Application on the numer-

ical examples validate the effectiveness and robustness of our algorithm. Furthermore,

WGPPR has been applied to 3D problem and Stokes problem as well. Superconvergent

phenomenon is again observed.
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