12,654 research outputs found

    On the Enhanced Interstellar Scattering Toward B1849+005

    Full text link
    (Abridged) This paper reports new Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the extragalactic source B1849+005 at frequencies between 0.33 and 15 GHz and the re-analysis of archival VLA observations at 0.33, 1.5, and 4.9 GHz. The structure of this source is complex but interstellar scattering dominates the structure of the central component at least to 15 GHz. An analysis of the phase structure functions of the interferometric visibilities shows the density fluctuations along this line of sight to be anisotropic (axial ratio = 1.3) with a frequency-independent position angle, and having an inner scale of roughly a few hundred kilometers. The anisotropies occur on length scales of order 10^{15} cm (D/5 kpc), which within the context of certain magnetohydrodynamic turbulence theories indicates the length scale on which the kinetic and magnetic energy densities are comparable. A conservative upper limit on the velocity of the scattering material is 1800 km/s. In the 0.33 GHz field of view, there are a number of other sources that might also be heavily scattered. Both B1849+005 and PSR B1849+00 are highly scattered, and they are separated by only 13'. If the lines of sight are affected by the same ``clump'' of scattering material, it must be at least 2.3 kpc distant. However, a detailed attempt to account for the scattering observables toward these sources does not produce a self-consistent set of parameters for such a clump. A clump of H\alpha emission, possibly associated with the H II region G33.418-0.004, lies between these two lines of sight, but it seems unable to account for all of the required excess scattering.Comment: 23 pages, LaTeX2e AASTeX, 13 figures in 14 PostScript files, accepted for publication in Ap

    Scattering Center Extraction and Recognition Based on ESPRIT Algorithm

    Get PDF
    Inverse Synthetic Aperture Radar (ISAR) generates high quality radar images even in low visibility. And it provides important physical features for space target recognition and location. This thesis focuses on ISAR rapid imaging, scattering center information extraction, and target classification. Based on the principle of Fourier imaging, the backscattering field of radar target is obtained by physical optics (PO) algorithm, and the relation between scattering field and objective function is deduced. According to the resolution formula, the incident parameters of electromagnetic wave are set reasonably. The interpolation method is used to realize three-dimensional (3D) simulation of aircraft target, and the results are compared with direct imaging results. CLEAN algorithm extracts scattering center information effectively. But due to the limitation of resolution parameters, traditional imaging can’t meet the actual demand. Therefore, the super-resolution Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm is used to obtain spatial target location information. The signal subspace and noise subspace are orthogonal to each other. By combining spatial smoothing method with ESPRIT algorithm, the physical characteristics of geometric target scattering center are obtained accurately. In particular, the proposed method is validated on complex 3D aircraft targets and it proves that this method is applied to most scattering mechanisms. The distribution of scattering centers reflects the geometric information of the target. Therefore, the electromagnetic image to be recognized and ESPRIT image are matched by the domain matching method. And the classification results under different radii are obtained. In addition, because the neural network can extract rich image features, the improved ALEX network is used to classify and recognize target data processed by ESPRIT. It proves that ESPRIT algorithm can be used to expand the existing datasets and prepare for future identification of targets in real environments. Final a visual classification system is constructed to visually display the results

    Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction.

    Get PDF
    Changes in lattice structure across sub-regions of protein crystals are challenging to assess when relying on whole crystal measurements. Because of this difficulty, macromolecular structure determination from protein micro and nanocrystals requires assumptions of bulk crystallinity and domain block substructure. Here we map lattice structure across micron size areas of cryogenically preserved three-dimensional peptide crystals using a nano-focused electron beam. This approach produces diffraction from as few as 1500 molecules in a crystal, is sensitive to crystal thickness and three-dimensional lattice orientation. Real-space maps reconstructed from unsupervised classification of diffraction patterns across a crystal reveal regions of crystal order/disorder and three-dimensional lattice tilts on the sub-100nm scale. The nanoscale lattice reorientation observed in the micron-sized peptide crystal lattices studied here provides a direct view of their plasticity. Knowledge of these features facilitates an improved understanding of peptide assemblies that could aid in the determination of structures from nano- and microcrystals by single or serial crystal electron diffraction

    The extreme luminosity states of Sagittarius A*

    Full text link
    We discuss mm-wavelength radio, 2.2-11.8um NIR and 2-10 keV X-ray light curves of the super massive black hole (SMBH) counterpart of Sagittarius A* (SgrA*) near its lowest and highest observed luminosity states. The luminosity during the low state can be interpreted as synchrotron emission from a continuous or even spotted accretion disk. For the high luminosity state SSC emission from THz peaked source components can fully account for the flux density variations observed in the NIR and X-ray domain. We conclude that at near-infrared wavelengths the SSC mechanism is responsible for all emission from the lowest to the brightest flare from SgrA*. For the bright flare event of 4 April 2007 that was covered from the radio to the X-ray domain, the SSC model combined with adiabatic expansion can explain the related peak luminosities and different widths of the flare profiles obtained in the NIR and X-ray regime as well as the non detection in the radio domain.Comment: 18 pages, 13 figures, accepted by A&
    • …
    corecore