1,668 research outputs found

    Traveling Wave Solutions for Planar Lattice Differential Systems with Applications to Neural Networks

    Get PDF
    AbstractWe obtain some existence results for traveling wave fronts and slowly oscillatory spatially periodic traveling waves of planar lattice differential systems with delay. Our approach is via Schauder's fixed-point theorem for the existence of traveling wave fronts and via S1-degree and equivarant bifurcation theory for the existence of periodic traveling waves. As examples, the obtained abstract results will be applied to a model arising from neural networks and explicit conditions for traveling wave fronts and global continuation of periodic waves will be obtained

    Dynamics of Patterns

    Get PDF
    Patterns and nonlinear waves arise in many applications. Mathematical descriptions and analyses draw from a variety of fields such as partial differential equations of various types, differential and difference equations on networks and lattices, multi-particle systems, time-delayed systems, and numerical analysis. This workshop brought together researchers from these diverse areas to bridge existing gaps and to facilitate interaction

    The Kuramoto model: A simple paradigm for synchronization phenomena

    Get PDF
    Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Morse theory on spaces of braids and Lagrangian dynamics

    Get PDF
    In the first half of the paper we construct a Morse-type theory on certain spaces of braid diagrams. We define a topological invariant of closed positive braids which is correlated with the existence of invariant sets of parabolic flows defined on discretized braid spaces. Parabolic flows, a type of one-dimensional lattice dynamics, evolve singular braid diagrams in such a way as to decrease their topological complexity; algebraic lengths decrease monotonically. This topological invariant is derived from a Morse-Conley homotopy index and provides a gloablization of `lap number' techniques used in scalar parabolic PDEs. In the second half of the paper we apply this technology to second order Lagrangians via a discrete formulation of the variational problem. This culminates in a very general forcing theorem for the existence of infinitely many braid classes of closed orbits.Comment: Revised version: numerous changes in exposition. Slight modification of two proofs and one definition; 55 pages, 20 figure
    corecore