8 research outputs found

    First Prismatic Building Model Reconstruction from TomoSAR Points Clouds

    Get PDF
    This paper demonstrates for the first time the potential of explicitly modelling the individual roof surfaces to reconstruct 3-D prismatic building models using spaceborne tomographic synthetic aperture radar (TomoSAR) point clouds. The proposed approach is modular and works as follows: it first extracts the buildings via DSM generation and cutting-off the ground terrain. The DSM is smoothed using BM3D denoising method proposed in (Dabov et al., 2007) and a gradient map of the smoothed DSM is generated based on height jumps. Watershed segmentation is then adopted to oversegment the DSM into different regions. Subsequently, height and polygon complexity constrained merging is employed to refine (i.e., to reduce) the retrieved number of roof segments. Coarse outline of each roof segment is then reconstructed and later refined using quadtree based regularization plus zig-zag line simplification scheme. Finally, height is associated to each refined roof segment to obtain the 3-D prismatic model of the building. The proposed approach is illustrated and validated over a large building (convention center) in the city of Las Vegas using TomoSAR point clouds generated from a stack of 25 images using Tomo-GENESIS software developed at DLR

    Non-convex regularization in remote sensing

    Get PDF
    In this paper, we study the effect of different regularizers and their implications in high dimensional image classification and sparse linear unmixing. Although kernelization or sparse methods are globally accepted solutions for processing data in high dimensions, we present here a study on the impact of the form of regularization used and its parametrization. We consider regularization via traditional squared (2) and sparsity-promoting (1) norms, as well as more unconventional nonconvex regularizers (p and Log Sum Penalty). We compare their properties and advantages on several classification and linear unmixing tasks and provide advices on the choice of the best regularizer for the problem at hand. Finally, we also provide a fully functional toolbox for the community.Comment: 11 pages, 11 figure

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une même zone acquises d'un point de vue légerement différent pour reconstruire la densité complexe de réflectivité au sol. Cette technique d'imagerie s'appuyant sur l'émission et la réception d'ondes électromagnétiques cohérentes, les données analysées sont complexes et l'information spatiale manquante (selon la verticale) est codée dans la phase. De nombreuse méthodes ont pu être proposées pour retrouver cette information. L'utilisation des redondances naturelles à certains milieux n'est toutefois généralement pas exploitée pour améliorer l'estimation tomographique. Cette thèse propose d'utiliser l'information structurelle propre aux structures urbaines pour régulariser les densités de réflecteurs obtenues par cette technique

    Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR

    No full text
    We address the problem of resolving two closely spaced complex-valued points from N irregular Fourier do- main samples. Although this is a generic super-resolution (SR) problem, our target application is SAR tomography (TomoSAR), where typically the number of acquisitions is N = 10 - 100 and SNR = 0-10 dB. As the TomoSAR algorithm, we introduce "Scale-down by LI norm Minimization, Model selection, and Estimation Reconstruction" (SL1MMER), which is a spectral estimation algorithm based on compressive sensing, model order selection, and final maximum likelihood parameter estimation. We investigate the limits of SLIMMER concerning the following questions. How accurately can the positions of two closely spaced scatterers be estimated? What is the closest distance of two scat- terers such that they can be separated with a detection rate of 50% by assuming a uniformly distributed phase difference? How many acquisitions N are required for a robust estimation (i.e., for separating two scatterers spaced by one Rayleigh resolution unit with a probability of 90%)? For all of these questions, we provide numerical results, simulations, and analytical approxima- tions. Although we take TomoSAR as the preferred application, the SLIMMER algorithm and our results on SR are generally applicable to sparse spectral estimation, including SR SAR focus- ing of point-like objects. Our results are approximately applicable to nonlinear least-squares estimation, and hence, although it is derived experimentally, they can be considered as a fundamental bound for SR of spectral estimators. We show that SR factors are in the range of 1.5-25 for the aforementioned parameter ranges of N and SNR

    Compressive Sensing Applied to MIMO Radar and Sparse Disjoint Scenes

    Get PDF
    The purpose of remote sensing is to acquire information about an object through the propagation of electromagnetic waves, specifically radio waves for radar systems. However, these systems are constrained by the costly Nyquist sampling rate required to guarantee efficient recovery of the signal. The recent advancements of compressive sensing offer a means of efficiently recovering such signals with fewer measurements. This thesis investigates the feasibility of employing techniques from compressive sensing in on-grid MIMO radar in order to identify targets and estimate their locations and velocities. We develop a mathematical framework to model this problem then devise numerical simulations to assess how various parameters, such as the choice of recovery algorithm, antenna positioning, signal to noise ratio, etc., impact performance. The experimental formulation of this project leads to further theoretical questions concerning the benefits of incorporating an underlying signal structure within the compressive sensing framework. We pursue these concerns for the case of sparse and disjoint vectors. Our computational and analytical treatments illustrate that knowledge of the simultaneity of these structures within a signal provides no benefit in reducing the minimal number of measurements needed to robustly recover such vectors from noninflating measurements, regardless of the reconstruction algorithm.Ph.D., Mathematics -- Drexel University, 201
    corecore