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Abstract

Compressive Sensing Applied to MIMO Radar and Sparse Disjoint Scenes

Michael Francis Minner

The purpose of remote sensing is to acquire information about an object through the propagation

of electromagnetic waves, specifically radio waves for radar systems. However, these systems are

constrained by the costly Nyquist sampling rate required to guarantee efficient recovery of the

signal. The recent advancements of compressive sensing offer a means of efficiently recovering such

signals with fewer measurements. This thesis investigates the feasibility of employing techniques

from compressive sensing in on-grid MIMO radar in order to identify targets and estimate their

locations and velocities. We develop a mathematical framework to model this problem then devise

numerical simulations to assess how various parameters, such as the choice of recovery algorithm,

antenna positioning, signal to noise ratio, etc., impact performance. The experimental formulation

of this project leads to further theoretical questions concerning the benefits of incorporating an

underlying signal structure within the compressive sensing framework. We pursue these concerns for

the case of sparse and disjoint vectors. Our computational and analytical treatments illustrate that

knowledge of the simultaneity of these structures within a signal provides no benefit in reducing

the minimal number of measurements needed to robustly recover such vectors from noninflating

measurements, regardless of the reconstruction algorithm.





1

Chapter 1: Introduction

Here we provide background information for the content of this dissertation. This includes a brief

history of the field of research and a short primer on the fundamental problems compressive sensing

seeks to resolve. We detail various applications of this mathematical framework to radar systems as

well as recent research into so-called structured compressive sensing before highlighting the results

presented in this thesis. We conclude by presenting an overview of the remaining chapters of this

document.

1.1 Background

As the capacity (and demand) to generate and store information continues to grow, so does the

need to effectively capture information, specifically the need to measure large real-world signals, be

they images, sounds, or other forms of data. While the challenges and advancements in this area

have gained widespread attention under the ubiquitous term “Big Data,” here we are concerned with

acquiring information in an efficient, stable and robust manner. Compressive sensing (or compressed

sensing) is a mathematical framework that has gained popularity since it emerged in 2004 due to its

surprising success at both measuring signals and compressing them. The crucial ingredient to this

paradigm is sparsity, that is, many real-world signals contain only a small amount of vital informa-

tion, relative to the signal’s size, when represented in an appropriate manner. Thus, by acquiring

these essential components, the signal can be captured with significantly fewer measurements than

anticipated while still retaining an excellent approximation of the signal.

Compressive sensing requires two additional factors to succeed in practice as sparsity alone does

not guarantee such results. The first is an appropriate measurement scheme, typically a random

under-sampling procedure to minimize the number of measurements, that preserves signal informa-

tion while reducing the dimension size for all sparse signals. The second is a reconstruction algorithm

to provide rapid, accurate approximations based on the measurements and knowledge of the sam-
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pling scheme. We stress the importance of these two factors. If the method of compression can not

effectively measure all appropriately sparse signals, then there are signals which we will always fail

to capture and instead obtain poor approximations in practice. Second, if the available algorithms

are sluggish, costly, and return estimations that are far from the true signal, then their utility is

impractical in comparison to alternative, currently available approaches. Although the demands of

compressive sensing are at times difficult to integrate in practice, this area of study offers a rich

overlapping field of research in mathematics, engineering, and the sciences.

Understandably, this capability to accurately and quickly compress large data sets has found

far-reaching applications. These include the single-pixel camera [Duarte et al. 2008], accelerated

MRIs [Lustig et al. 2007], and metagenomic analysis [Koslicki et al. 2013], to briefly name but a

few examples. Thanks in part to the overlapping nature of the foundations upon which compres-

sive sensing has been built, such as analysis, optimization and probability theory, researchers in

the field have made theoretical advancements in approximation theory [Foucart et al. 2010], matrix

completion [Candès et al. 2013] and graph theory [Foucart and Rauhut 2013 Chapter 13]. In addi-

tion to reducing costs and computational complexity by minimizing the number of measurements,

researchers have also explored the potential for achieving higher levels of resolution by incorporating

techniques from the literature into current systems and maintaining the typical number of measure-

ments. See [Candès and Fernandez-Granda 2014] and [Zhu and Bamler 2012] for examples of this

work in super-resolution. As more people learn of the tools and advantages offered by compressive

sensing, this field will continue to develop and expand in practice and influence.

1.2 Compressive Sensing

The achievements of compressive sensing have been attained by combining tools from many different

areas of mathematics including linear algebra, convex analysis, harmonic analysis and much more.

The earliest work in the area of sparse reconstruction is attributed to de Prony, in the late eighteenth

century. His method, known as the Prony method, estimated the parameters of a signal, e.g.

frequency, amplitude, etc., based on equidistant samples of the signal [Prony 1795]. In the 1960s

and 1970s, `1-minimization found early applications in the context of sparse frequency estimation

Chapter 1: Introduction 1.2 Compressive Sensing
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and through the work of geophysicists attempting to ascertain changes in subsurface layers [Taylor

et al. 1979]. The end of the twentieth century saw further developments in the use of `1-minimization

and greedy algorithms for the recovery of sparse solutions. Compressive sensing as it is now known,

came into its own with the seminal works by Candès, Romberg, and Tao [Candès et al. 2006]

and by Donoho [Donoho 2006]. Their works are credited for being the first to have combined

`1-minimization with randomness in the measurement matrix to successfully solve underdetermined

systems of equations. Since these early publications, the field has experienced wide-spread attention

and tremendous growth.

The essential problem of compressive sensing is to construct an accurate approximation to a

compressible vector x ∈ CN from a minimal number of linear measurements y = Ax, where y ∈ Cm

and A ∈ Cm×N , in a stable and robust manner. One would not expect such reconstruction to be

possible when m � N ; however, the additional a priori knowledge that x is sparse allows for such

recovery. A vector is called s-sparse if the number of non-zero entries is at most s. A key finding of

compressive sensing states that a measurement matrix A ∈ Cm×N of probabilistic construction with

m ≥ Cs ln(N/s), where C is a constant and s is the sparsity of the signal, will satisfy the Restricted

Isometry Property (RIP) with high probability. This result is a computationally significant improve-

ment over the hefty Nyquist-rate because the RIP guarantees that any s-sparse signal x ∈ CN can be

recovered exactly. An intuitive answer as to why this is possible is that the “important” information

of a sparse signal is stored within only a small number of locations; hence, one would expect the

number of measurements needed to be proportional to these “intrinsic” elements of the signal.

The practical applications of compressive sensing are far reaching, but one must keep in mind the

importance of both the design of the measurement matrix A and the method of reconstruction for

a given setting. The standard algorithms, such as greedy and iterative procedures, require different

input parameters upon initialization and may return their outputs at significantly different rates

depending on the problem size. At the same time, the conditions one seeks on the measurement

matrix to provide guarantees on the quality of the reconstructed approximation to the original

signal are often onerous to verify. In fact no known constructions exist which match the theoretically

Chapter 1: Introduction 1.2 Compressive Sensing
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optimal minimal number of measurements attainable via classes of random matrices; thus, if possible,

one must utilize random matrices in order to circumvent this difficulty and achieve the desired

guarantees with high probability. Accordingly, the application of compressive sensing requires a

sparse representation for the data of interest and an undersampling scheme to compress the data

while guaranteeing effective recovery via a prescribed method.

In practice, one may not possess a sparse representation for the data of interest or the physical

constraints of the problem may inhibit the design of the measurement matrix. If a method to

sparsify the data is available, this transformation may also cause conflict with the sampling scheme

and obstruct any attempts to provide theoretical guarantees on the efficacy of the reconstruction

algorithm. Hence, we find three areas of critical importance for the advancement of compressive

sensing. First, we must investigate the parameters under which compressive sensing can feasibly

be adopted to reduce the computational complexity of a given problem. Next, we must probe the

signals of interest for underlying structure then assess how such information may be leveraged to

further improve performance. Finally, we must explore how existing recovery methods compare in

practice and, depending on the previous pursuits, develop new methods of signal recovery, or modify

existing methods, to better serve a specific signal structure or better meet the conditions dictated

by the problem. Keeping these considerations in mind, we focus our attention on a specific class

of radar systems due to the increasing demand for improved resolution and performance from these

systems in various civilian, industrial and military applications.

1.3 Motivations

As an illustration of the remarkable success of compressive sensing, consider Figure 1.1, presented in

[Ender 2010]. Here, we see an application of compressive sensing to Inverse Synthetic Aperture Radar

(ISAR) with real data from the TIRA (Tracking and Imaging Radar) system located at the Fraun-

hofer Institute for High Frequency Physics and Radar Techniques FHR, in Wachtberg, Germany.

ISAR is an imaging method where a fixed antenna is used to image isolated rotating targets. The

image on the left displays a satellite obtained from TIRA using ISAR with 1024× 1697 = 1, 737, 728

samples in k-space. The data undergoes polar reformatting and interpolation to a rectangular grid in

Chapter 1: Introduction 1.3 Motivations
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a (kx, ky) plane and an inverse Fourier transform is applied to generate the image. In the center we

see the same satellite, but here 70 ky values are selected at random so that only 1024× 70 = 71, 680

samples are used with a matched filter. These same samples are taken to generate the image on

the right with a hybrid matched filter/compressive sensing technique. This yields a reduction in the

number of samples by a factor of about 25!

Figure 1.1: ISAR / Matched Filter with fewer samples / Hybrid Matched Filter & CS,
Fraunhofer TIRA [Ender 2010]. Reprinted from Signal Processing, 90/5, Ender, On compressive
sensing applied to radar / CS ISAR imaging applied to real data, Pages No. 1410, Copyright
(2010), with permission from Elsevier.

We highlight a few recent publications to further illustrate the wide range of applications being

investigated in this field. Although they are not the first to consider applying compressive sensing

to Multiple Input Multiple Output (MIMO) radar, the authors of [Yu et al. 2011] explore this ap-

plication further, with particular emphasis on analyzing the design matrix. More specifically, they

propose methods of designing the measurement matrix for a general MIMO radar setting which seek

to both decrease the coherence (See Chapter 2) of the matrix and improve the signal to interfer-

ence ratio. The results established in [Zhu and Bamler 2012], one of a series of papers, incorporate

compressive sensing in a reconstruction algorithm for Synthetic Aperture Radar Tomography. The

problem they consider is a more general super-resolution problem, but they demonstrate that their

compressive sensing based method is applicable and robust when recovering a ‘reasonable’ target

Chapter 1: Introduction 1.3 Motivations
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scene with few sample acquisitions and low SNR. The author of [Ender 2012] presents a method of

utilizing auto-focus, i.e. motion compensation, ISAR in reconstructing sparse scenes with compres-

sive sensing. An iterative approach is introduced which compares differences in phase information

from images captured over processing intervals to extrapolate other parameters of the target, such

as translational and rotational movement, and reduce error, improving image quality. These exam-

ples are only a small sample of the diverse projects applying compressive sensing to radar, but they

demonstrate the potential for further enhancements.

We also review additional publications to illustrate the recent work of incorporating structure

in compressive sensing. The authors of [Baraniuk et al. 2010] propose a model-based compressive

sensing framework as means to reduce the number measurements needed for robust signal recov-

ery. Their approach requires the specified model to obey a nested approximation property and an

associated Restricted Amplification Property, in analog to the standard RIP. They employ an adap-

tation of the CoSaMP (See Chapter 2) algorithm to further validate their theory with experimental

data for wavelet trees and block sparsity models. However, the nested approximation property is

highly restrictive and not valid for the specific structure we consider in Chapter 4. This work is

followed in [Hegde et al. 2015] which introduces a new framework dubbed approximation-tolerant

model-based compressive sensing. Their approach forgoes the requirement that the model-based

projection of [Baraniuk et al. 2010] be exact and instead requires “approximate solutions for the

model-projection.” The theory is then applied to the Constrained Earth Mover’s Distance struc-

tured sparsity model [Schmidt et al. 2013] to substantiate the analysis. The author of [Foucart

2011b] employs the hard thresholding pursuit (See Chapter 2) method in the recovery of jointly

sparse signals, i.e., signals which share a support, and highlights the significant improvement it pro-

vides over reconstructing such signals individually. [Hegde et al. 2009] examines the structure we call

sparse and disjointed in the context of representing neural spike trains under the model presented

in [Baraniuk et al. 2010]. They present a formal statement on the number of measurements that are

sufficient to guarantee robust recovery of sparse disjointed vectors. Lastly, though our brief review

is by no means exhaustive, the researchers of [Oymak et al. 2015] consider the impact combinations

Chapter 1: Introduction 1.3 Motivations
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of various norms possess in promoting distinct structures during recovery. They show that vectors

exhibiting multiple structures require at least as many Gaussian random measurements for their

recovery via combined convex relaxations as is possible through the convex relaxation associated

with just one of the structures.

1.4 Overview

This dissertation examines the applicability of compressive sensing to MIMO radar and further ex-

plores the theoretical consequences that result from considering the naturally arising structure found

in the aforementioned experimental work. The original motivation for this exposition resulted from

participation in an introductory radar summer school that not only provided an excellent intro-

duction into the fundamentals of radar systems but also an opportunity to discuss recent attempts

to incorporate the results of compressive sensing into various aspects of radar technologies. After

surveying the landscape of research in this field and discussing these findings with fellow researchers,

MIMO radar was deemed most suitable for improvement via the techniques of compressive sensing.

Thus, an experimental project was conceived to investigate the parameters under which various re-

construction algorithms would correctly detect point targets in a small, far-field scene. This endeavor

combined distinct elements from recent works in both radar and compressive sensing to produce an

original study, the formal results of which were published in [Minner 2015].

While conducting this investigation, a decision on how to formulate the problem within the

programming code lead to an interesting observation. The few targets within the scene can not

occupy the same locations; hence, when represented by a vector, their positions are separated from

one another. Given that the vector, or scene, is sparse and separated, can we leverage this information

to further reduce the minimal number of measurements needed to recover such vectors in a stable and

robust manner? We termed this structure sparse and disjointed and adapted standard reconstruction

algorithms to employ this additional knowledge in order to investigate the query computationally.

This analysis facilitated our theoretical conclusions which are in the negative, i.e., incorporating

information of this simultaneous structure when utilizing a noninflating measurement scheme does

not reduce the optimal number of measurements need for robust reconstruction, regardless of the

Chapter 1: Introduction 1.4 Overview
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recovery method, within the compressive sensing framework. We analytically justify these findings

which were also presented in [Foucart et al. 2015].

The remainder of this text proceeds as follows. First, in Chapter 2, we detail the fundamentals

of compressive sensing: notation, definitions, and basic theory. We present various recovery algo-

rithms, discuss pertinent properties of the measurement matrices, particularly random matrices, and

examine the theoretical guarantees these elements can produce in application. This exposition fol-

lows the presentation of [Foucart and Rauhut 2013]. Next, in Chapter 3 we provide an introduction

to radar and describe early applications of compressive sensing to radar systems. We mathemati-

cally formulate our problem of interest then design numerical simulations to investigate how various

parameters can improve performance, the results of which are detailed at length. Chapter 4 intro-

duces the notion of sparse and disjoint vectors, a specific structure found in the signals analyzed in

Chapter 3. We establish a method for finding the best sparse and disjoint approximation to a given

vector via dynamic programming. Furthermore, we determine the necessary and sufficient number

of noninflating measurements to recover such vectors in the presence of noise. Chapter 5 concludes

this dissertation with a brief summary and notes on the potential for future research. Appendix A

contains Matlab (The MathWorks, Inc., Natick, MA) files for our work in both MIMO radar and

in sparse and disjoint vectors.

Chapter 1: Introduction 1.4 Overview
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Chapter 2: Compressive Sensing

Here we provide an overview of compressive sensing, including notations, definitions and theorems.

We examine several standard recovery algorithms, including greedy and iterative methods, detail

measurement matrix properties, such as the Null Space Property and coherence, and highlight

the associated guarantees these tools can produce. Additionally we consider random matrices and

review their relationship to the Restricted Isometry Property in compressive sensing. This chapter

will establish the necessary groundwork for the experimental and theoretical results of the two

proceeding chapters.

2.1 Introduction

In classical sampling theory a continuous signal band limited to bandwidth B is completely deter-

mined from sampled measurements when the sampling frequency is greater than or equal to 2B.

The Nyquist-Shannon-Kotelnikov Theorem states this in precise terms:

Theorem 1. (Nyquist-Shannon-Kotelnikov) If the Fourier Transform f̂ of a function f is compactly

supported in [−B2 ,
B
2 ], then f can be reconstructed from measurements {f( 2πn

B ), n ∈ Z} via

f(t) =

∞∑
n=−∞

f

(
2πn

B

)
sinc

(
Bt

2
− πn

)
,

where

sinc(x) =


sin(x)

x
if x 6= 0,

1 if x = 0.

In other words, one must sample at a rate that is at least twice the highest frequency to guarantee

successful recovery of the signal. For high bandwidth systems, such as radar systems, sampling at

this rate can become prohibitively expensive. However, while this is a sufficient condition for perfect

reconstruction, it is not, as we shall see, a necessary condition.
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We now introduce definitions and notations essential to Compressive Sensing, and we follow the

same presentation as in [Foucart and Rauhut 2013]. We begin by denoting [N ] := {1, 2, ..., N}, i.e.,

the set of the first N integers, we also denote card(S) as the cardinality of a set S, and formally

define the previously mentioned notion of sparsity.

Definition 2. (See Definition 2.1 of [Foucart and Rauhut 2013]) The support of a vector x ∈ CN

is the index set of its non-zero entries, supp(x) := {j ∈ [N ] : xj 6= 0}. A vector x ∈ CN is called

s-sparse if at most s of its entries are nonzero, i.e.,

‖x‖0 := card(supp(x)) ≤ s.

In most practical settings a signal will not be perfectly s-sparse, but close to it; thus, we introduce

the notions of compressibility and the error of best s-term approximation.

Definition 3. (See Definition 2.2 of [Foucart and Rauhut 2013]) For p > 0, the `p-error of best

s-term approximation to a vector x ∈ CN is defined by

σs(x)p := inf{‖x− z‖p, z ∈ CN is s-sparse}.

We say that x ∈ CN is compressible if σs(x)p rapidly decays as s increases.

2.2 Recovery

Since we cannot take measurements with infinite precision and must often account for corruption

and errors in our data, we are highly interested in reconstruction algorithms which not only remain

stable and robust but also provide recovery in a reasonable amount of time. As an initial attempt

at algorithmically recovering the sparse vector x from y = Ax, one may consider the optimization

problem

min ‖z‖0 subject to Az = y. (2.1)

Chapter 2: Compressive Sensing 2.2 Recovery
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This problem is impractical to solve, though. Essentially, one would need to consider all possible

subsets of [N ] of size s. There are
(
N

s

)
such sets and even in small test cases, this number becomes

exponentially large. Since this problem is nonconvex and NP-hard, in its place one often considers

the convex optimization problem

min ‖z‖1 subject to Az = y. (2.2)

The method for recovering x from (2.2) is known as basis pursuit or `1-minimization and the

problem can be solved with reasonably fast algorithms from convex optimization, see for instance

[Chambolle and Pock 2011] and [Daubechies et al. 2010]. Under appropriate assumptions the solu-

tion of (2.2) will match the solution of (2.1). Additionally, under similar assumptions, greedy algo-

rithms, such as Orthogonal Matching Pursuit (OMP) and Compressive Sampling Matching Pursuit

(CoSaMP) [Needell and Tropp 2009], and thresholding algorithms, such as Iterative Hard Threshold-

ing (IHT) [Blumensath and Davies 2009b] and Hard Thresholding Pursuit (HTP) [Foucart 2011a],

will also obtain solutions to (2.1). The pseudocode provided below for each of these methods follows

the presentation of [Foucart and Rauhut 2013 See Chapter 3].

Highlighting the Orthogonal Matching Pursuit, this method builds the support of a target vec-

tor, xn, which best fits the measurements by adding one index to the support per iteration. The

additional index is chosen to reduce the `2-norm of the residual y−Axn. This algorithm is detailed

precisely below.

Chapter 2: Compressive Sensing 2.2 Recovery
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Orthogonal Matching Pursuit (OMP)

Input: measurement matrix A, measurements y.

Initialization: support S0 = ∅, target vector x0 = 0.

Iteration: repeat until a stopping criterion is met at n = n̄:

xn+1 = Sn ∪ {jn+1 := argmax{|(A∗(y −Axn))j |, j ∈ [N ]}}, (OMP1)

xn+1 = argmin{‖y −Az‖2, supp(z) ⊆ Sn+1}, (OMP2)

Output: the n̄-sparse vector x] = xn̄.

Closer analysis of (OMP2) reveals that xn+1 can be chosen by an alternate form xn+1 := A†Sn+1y,

where A†Sn+1 = (A∗Sn+1ASn+1)−1A∗Sn+1 . By definition, xn+1 is characterized by recognizing Az as

the orthogonal projection of y onto the space of {Az, supp(z) ⊆ Sn+1}. Thus, we have

〈y −Axn+1,Az〉 = 0, for all z ∈ CN with supp(z) ⊆ Sn+1,

〈A∗(y −Axn+1), z〉 = 0, for all z ∈ CN with supp(z) ⊆ Sn+1.

However, this necessitates

(A∗(y −Axn+1))Sn+1 = 0,

A∗Sn+1y = A∗Sn+1ASn+1xn+1,

xn+1 := A†Sn+1y.

CoSaMP proceeds by incorporating information about the support from previous iterations to

build a best fit for the data, then pruning the support of the approximation by retaining the s

largest absolute entries in magnitude before updating the estimate of the original signal x. This

algorithm incorporates two operators: Ls(x), which returns the index set of the s largest entries

Chapter 2: Compressive Sensing 2.2 Recovery
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of x in magnitude, and Hs(x), which is the hard thresholding operator of order s and returns the

vector x restricted to the support outputted by Ls(x). The hard thresholding operator will retain

the largest entries in magnitude of a vector and set all other entries to zero.

Compressive sampling matching pursuit (CoSaMP)

Input: measurement matrix A, measurement vector y, sparsity level s.

Initialization: s-sparse target vector x0, typically x0 = 0.

Iteration: repeat until a stopping criterion is met at n = n̄:

Sn+1 = supp(xn) ∪ L2s(A
∗(y −Axn)) (CoSaMP1)

un+1 = argmin
z∈CN

{‖y −Axn‖2, supp(z) ⊂ Sn+1}, (CoSaMP2)

xn+1 = Hs(u
n+1). (CoSaMP3)

Output: the s-sparse vector x] = xn̄.

IHT, as the name implies, employs the hard thresholding operator to iteratively build approxima-

tions to the target vector x. This method comes from attempting to solve the system A∗y = A∗Ax

and is based on a fixed point method.

Chapter 2: Compressive Sensing 2.2 Recovery
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Iterative hard thresholding (IHT)

Input: measurement matrix A, measurement vector y, sparsity level s.

Initialization: s-sparse target vector x0, typically x0 = 0.

Iteration: repeat until a stopping criterion is met at n = n̄:

xn+1 = Hs(x
n + A∗(y −Axn)). (IHT)

Output: the s-sparse vector x] = xn̄.

Since IHT does not perform an orthogonal projection to find a best s-term approximation,

modifying the algorithm to incorporate this step results in the HTP. This method determines a

candidate for the support of the vector x then finds the best approximation with this support to fit

the data.

Hard thresholding pursuit (HTP)

Input: measurement matrix A, measurement vector y, sparsity level s.

Initialization: s-sparse target vector x0, typically x0 = 0.

Iteration: repeat until a stopping criterion is met at n = n̄:

Sn+1 = Ls(x
n + A∗(y −Axn)), (HTP1)

xn+1 = argmin
z∈CN

{‖y −Axn‖2, supp(z) ⊂ Sn+1}. (HTP2)

Output: the s-sparse vector x] = xn̄.

Each of the aforementioned algorithms have straightforward implementations and work well in

practice; the choice of which is most effective will depend on the parameters of the given problem.

We note that Orthogonal Matching Pursuit and Basis Pursuit, which is not an algorithm itself and

Chapter 2: Compressive Sensing 2.2 Recovery
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may instead be solved via any number of existing methods, do not require an estimate of the sparsity

level as inputs while other algorithms do require this information. Empirical tests can provide insight

into which approach is most appropriate as the problem size alone can exhibit a profound effect on

the run time of these algorithms, e.g. OMP may slow down if the sparsity is not sufficiently small

due to the projection step. Researchers continue to produce an ever-growing library of additional

methods and variants designed with compressive sensing in mind but their details are beyond the

scope of this document.

2.3 Measurement Matrix Properties

As previously mentioned, the design of the sensing matrix is vital to compressive sensing, we are

therefore interested in analyzing properties of the matrix which will guarantee the exact recovery

of a sparse vector or nearly exact recovery of a compressible vector via the algorithms presented

above. Hence, we recall the following definitions and, associated lemmas, propositions, and theorems

beginning, with the null space property. We stress that the presentation of this section, including

the proofs, is adopted from [Foucart and Rauhut 2013] and not our own.

Definition 4. (See Definition 4.1 of [Foucart and Rauhut 2013]) A matrix A ∈ Cm×N is said to

satisfy the null space property relative to a set S ⊂ [N ] if

‖vS‖1 < ‖vS̄‖1 for all v ∈ ker A \ {0}. (2.3)

The matrix is said to satisfy the null space property of order s if it satisfies the null space property

relative to any set S ⊂ [N ] with card(s) ≤ s.

Here S̄ is the complement of the support S and vS is the vector v ∈ CN restricted to the elements

on the support of S with all other elements 0. This condition essentially requires that the vectors

in the kernel of A are far from being sparse. Intuitively, if this were not the case then a non-zero

sparse vector v ∈ ker A would yield y = Av = 0, so that the zero vector would be reconstructed

instead of v. The following theorem highlights the importance of this property.
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Theorem 5. (See Theorem 4.4 of [Foucart and Rauhut 2013]) Given a matrix A ∈ Cm×N , every

vector x ∈ CN supported on a set S is the unique solution of (2.2) with y = Ax if and only if A

satisfies the null space property of order s.

Proof. (⇒)We suppose that for a given index set S, every x ∈ CN supported on S is the unique

minimizer of (2.2). Then for all v ∈ ker A\{0} we have AvS = −AvS̄ ; thus, vS is unique minimizer

of (2.2) but with vS replacing x. Since −vS̄ 6= vS , else v = 0, we must have that ‖vS‖1 < ‖vS̄‖1.

(⇐) Supposing that (2.3) holds relative to a set S, we consider a vector x ∈ CN supported on S

and vector z ∈ CN , z 6= x, with Az = Ax. Defining v := x− z ∈ ker A \ {0}, we have

‖x‖1 ≤ ‖x− zS‖1 + ‖zS‖1 = ‖vS‖1 + ‖zS‖1

< ‖vS̄‖1 + ‖zS‖1 = ‖ − zS̄‖1 + ‖zS‖1 = ‖z‖1.

Hence (2.2) is satisfied.

Theorem 5 provides a necessary and sufficient condition for exact recovery via `1-minimization.

If we allow the set S to vary then the following theorem is a direct result of Theorem 5.

Theorem 6. (See Theorem 4.5 of [Foucart and Rauhut 2013]) Given a matrix A ∈ Cm×N , every

s-sparse vector x ∈ CN is the unique solution of (2.2) with y = Ax if and only if A satisfies the null

space property of order s.

Theorem 6 demonstrates that for every y = Ax, where x is s-sparse, `1-minimization (2.2)

actually solves the `0-minimization problem (2.1) when the null space property of order s holds.

This is due to the fact that, assuming every s-sparse vector x is recovered via `1-minimization from

y = Ax, if z is the solution of the `0-minimization problem (2.1) then ‖z‖0 ≤ ‖x‖0. However, by

Theorem 6, every s-sparse vector is the unique solution of (2.2); thus, x = z.

The issue of stability arises when the vector under consideration is not exactly s-sparse, but

rather close to s-sparse, i.e. compressible. If we enhance the restriction of Equation (2.3), we arrive

at the so-called stable null space property.

Chapter 2: Compressive Sensing 2.3 Measurement Matrix Properties
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Definition 7. (See Definition 4.11 of [Foucart and Rauhut 2013]) A matrix A ∈ Cm×N satisfies the

stable null space property with constant 0 < ρ < 1 relative to a set S ⊂ [N ] if

‖vS‖1 ≤ ρ‖vS̄‖1 for all v ∈ ker A. (2.4)

The matrix is said to satisfy the stable null space property of order s with constant 0 < ρ < 1 if

it satisfies the stable null space property with constant 0 < ρ < 1 relative to any set S ⊂ [N ] with

card(S) ≤ s.

This restriction leads to the following result, which we state without proof.

Theorem 8. (See Theorem 4.12 of [Foucart and Rauhut 2013]) Suppose a matrix A ∈ Cm×N

satisfies the stable null space property of order s with constant 0 < ρ < 1. Then, for any vector

x ∈ CN , a solution x] of (2.2) with y = Ax approximate the vector x with `1-error

‖x− x]‖1 ≤
2(1 + ρ)

(1− ρ)
σs(x)1. (2.5)

We highlight one of the differences between Theorem 6 and Theorem 8: although one can no

longer guarantee the exact recovery of x, the strengthening of Equation (2.3) to Equation (2.4)

allows for the recovery of any x, rather than just s-sparse x, and provides a bound on the quality

of the reconstruction in terms of the `1-error of the best s-term approximation. This result can be

strengthened further, see [Foucart and Rauhut 2013 Theorem 4.14].

As previously mentioned, we are limited in the precision to which we can measure signals; thus,

we seek measurement processes which are robust in order to still capture measurements that have

been corrupted with noise and other possible errors.

Chapter 2: Compressive Sensing 2.3 Measurement Matrix Properties
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Definition 9. (See Definition 4.21 of [Foucart and Rauhut 2013]) Given q ≥ 1, the matrix A ∈ Cm×N

is said to satisfy the `q-robust null space property of order s (with respect to ‖ · ‖) with constants

0 < ρ < 1 and τ > 0 if, for any set S ⊂ [N ] with card(S) ≤ s,

‖vS‖q ≤
ρ

s1−1/q
‖vS̄‖1 + τ‖Av‖ for all v ∈ CN . (2.6)

This enhancement of the null space property leads to the following guarantee, also presented

without proof, on the solution of the optimization problem, known as quadratically constrained

basis pursuit,

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η. (2.7)

Theorem 10. (See Theorem 4.22 of [Foucart and Rauhut 2013]) Suppose the matrix A ∈ Cm×N

satisfies the `2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0. Then, for

any vector x ∈ CN , a solution x] of (2.7) with ‖ · ‖ = ‖ · ‖2, y = Ax + e and ‖e‖2 ≤ η approximates

the vector x with `p-error

‖x− x]‖p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2η, 1 ≤ p ≤ 2, (2.8)

for some constants C,D > 0 depending only on ρ and τ .

Interpreting this result, we see that in return for putting an additional restriction on the measure-

ment matrix, one obtains a bound on the reconstruction error that depends on both the best s-term

approximation and the error in the measurements. Aside from the issue of the norms involved, this

is the best one could reasonably hope to achieve.

Next, we introduce the coherence, which provides a basic measure of the suitability of a mea-

surement matrix for compressive sensing.
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Definition 11. (See Definition 5.1 of [Foucart and Rauhut 2013]) Let the matrix A ∈ Cm×N have

`2-normalized columns a1, ...,aN . The coherence µ = µ(A) of the matrix A is defined as

µ := max
1≤i 6=j≤N

|〈ai,aj〉|. (2.9)

Notice that µ is always between 0 and 1. The coherence is often easier to calculate in place

of verifying whether or not a matrix satisfies the (stable or robust) null space property, which is

NP-hard. We will need the following proposition in order to prove the next theorem.

Proposition 12. (See Proposition 3.5 of [Foucart and Rauhut 2013]) Given a matrix A ∈ Cm×N ,

every non-zero vector x ∈ CN supported on a set S of size s is unequivocally recovered from y = Ax

after s steps of OMP if and only if the following two conditions both hold:

(1) AS is injective,

(2) maxj∈S |(A∗r)j)| > max`∈S̄ |(A∗r)`)| for all r ∈ {Az, supp(z) ⊆ S}{0}.

Proof. (⇒) Suppose that OMP recovers all s-sparse vectors with support S after at most s iterations.

Note that for two vectors x, z supported on S with x 6= z, we must have Ax 6= Az and ASx 6= ASz;

hence, AS is injective, which is condition (1). Now consider the vector x with support S. At the

first iteration of OMP, we choose j1 ∈ S. This means that for all ` ∈ S̄,

|A∗(y −Ax0)|j1 > |A∗(y −Ax0)|`,

but since Ax0 = 0, because x0 = 0, and since the first index j1 always stays in the target support,

this implies

max
j∈S
|(A∗y)j | > max

`∈S̄
|(A∗y)`|,

which is condition (2).

(⇐) Now we suppose (1) and (2) hold and that Ax1 6= y, ...,Axs−1 6= y, otherwise there is

nothing to do; we will show that for 0 ≤ n ≤ s, Sn is a subset of S of size n. This will imply that
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Ss = S, then (OMP2) will yield Axs = y and in turn, since AS is injective, xs = x. We proceed

as follows: Given 0 ≤ n ≤ s − 1, then Sn ⊆ S gives rn = y −Axn ∈ {Az, supp(z) ⊆ S} so that

(2) yields jn+1 ∈ S and Sn+1 = Sn ∪ {jn+1} ⊆ S by (OMP1). This inductively proves that Sn ⊆ S

for any 0 ≤ n ≤ s. Now, given 1 ≤ n ≤ s − 1, we recall the orthogonality characterization from

(OMP2),

〈y −Axn,Arn〉 = 0 whenever supp(rn) ⊆ Sn,

〈A∗(y −Axn), rn〉 = 0 whenever supp(rn) ⊆ Sn,

(A∗(y −Axn))Sn = (A∗rn)Sn = 0.

Thus, by (OMP1), the index jn+1 does not lie in Sn, otherwise A∗rn = 0 so that rn = 0 from (2).

Hence, we have inductively proven that Sn is a set of size |n|. The completes the proof.

An alternate way to formulate the necessary and sufficient condition of Proposition 12 is the

so-called exact recovery condition (See Remark 3.6 of [Foucart and Rauhut 2013]), which is

‖A†SAS̄‖1→1 < 1. (2.10)

The existence of A†S = (A∗SAS)−1A∗S is equivalent to the injectivity of AS , which is condition (1).

Additionally, condition (2) is equivalent to

‖A∗SASu‖∞ > ‖A∗S̄ASu‖∞ for all u ∈ Cs \ {0}.

Substituting v = A∗SASu into the above expression yields

‖v‖∞ > ‖A∗S̄AS(A∗SAS)−1v‖∞ = ‖A∗S̄(A†S)∗v‖∞ for all v ∈ Cs \ {0}.

Thus, we have ‖A∗
S̄

(A†S)∗‖∞→∞ < 1, i.e. ‖A†SAS̄‖1→1 < 1.

The following theorem illustrates the applicability of the coherence.
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Theorem 13. (See Corollary 5.4 and Theorem 5.14 of [Foucart and Rauhut 2013]) Given A ∈ Cm×N

with `2-normalized columns, if µ <
1

2s− 1
, then every s-sparse vector x ∈ CN is exactly recovered

from y = Ax after at most s iterations of OMP.

Proof. We need to prove that for any S with card(S) = s conditions (1) and (2) of Proposition 12

hold. We note that (A∗r)j = 〈A∗r, ej〉 = 〈r,Aej〉 = 〈r,aj〉, so that condition (2) can be expressed

as:

(2) max
j∈S
|〈r,aj〉| > max

`∈S̄
|〈r,a`〉| for all r ∈ {Az, supp(z) ⊆ S} \ {0}.

We prove condition (2) as follows: Let a1, ...,aN denote the `2-normalized columns of A, let

r :=
∑
i∈S

riai and choose k ∈ S so that |rk| = max
i∈S
|ri| > 0. Then for ` ∈ S̄ we have

|〈r,a`〉| =
∑
i∈S
|〈riai,a`〉| =

∑
i∈S
|ri| |〈ai,a`〉| ≤ µ

∑
i∈S
|ri|.

Additionally, we have

|〈r,ak〉| =
∣∣∣∑
i∈S

ri〈ai,ak〉
∣∣∣ =

∣∣∣rk +
∑

i∈S,i 6=k

ri〈ai,ak〉
∣∣∣

≥ |rk| −
∣∣∣ ∑
i∈S,i 6=k

ri〈ai,ak〉
∣∣∣ ≥ |rk| − ∑

i∈S,i 6=k

µ|ri|

= |rk| − µ
∑
i∈S
|ri|+ µ|rk| = |rk|(1 + µ)− µ

∑
i∈S
|ri|.

We note that we will have |〈r,a`〉| ≤ |〈r,ak〉| when

µ
∑
i∈S
|ri| ≤ |rk|(1 + µ)− µ

∑
i∈S
|ri|,

2µ
∑
i∈S
|ri| ≤ |rk|(1 + µ).

However,

2µ
∑
i∈S
|ri| ≤ 2µ|rk|s,
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so we need 2µs < 1 + µ, or equivalently µ(2s− 1) < 1, which yields µ <
1

2s− 1
as desired.

We omit the proof of condition (1) for the sake of brevity. One approach utilizes the introduction

of the `1-coherence function, µ1(s), and an additional theorem which bounds the eigenvalues of the

matrix A∗SAS by way of Gershgorin’s disc theorem in terms of this new function. The invertibility

follows from verifying that the smallest eigenvalue of A∗SAS satisfies λmin > 0 and the use of

inequalities relating µ, µ1(s), and µ1(s− 1).

We note that the successful recovery of all vectors supported on a set S via card(S) steps

of orthogonal matching pursuit also ensures the recovery of all vectors with support S via basis

pursuit. This is due in part to the fact that for v ∈ ker A\{0}, then ASvS = −AS̄vS̄ , where, again,

AS is the submatrix of A restricted to the columns indexed by the support S and vS is the vector

v ∈ Ccard(S) restricted to the elements on the support of S. Hence,

‖vS‖1 = ‖A†SASvS‖1 = ‖A†SAS̄vS̄‖1 ≤ ‖A
†
SAS̄‖1→1‖vS̄‖1 < ‖vS̄‖1.

Here we have used the exact recovery condition, ‖A†SAS̄‖1→1 < 1, of equation (2.10). Thus, the

null space property relative to S, equation (2.3), holds and, in turn, Theorem 5 applies.

Although not proven here, one limitation of the coherence is a lower bound known as the Welch

bound, see Theorem 5.7 of [Foucart and Rauhut 2013]: For a matrix A ∈ Cm×N with `2-normalized

columns, the coherence of A is bounded below by

µ ≥

√
N −m
m(N − 1)

.

Due to the requirement that m < N , the construction of matrices A ∈ Cm×N which meet the Welch

bound proves quite difficult. See Chapter 3 for one such construction which nearly matches this

bound in application to radar. Furthermore, if we consider the inequality of Theorem 13, which was

µ <
1

2s− 1
, and note that in the case of large N , the expression for the Welch bound behaves as

1√
m
, then, combining these inequalities and rearranging the terms leads to m ≥ Cs2, where C is a
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constant. This indicates that one can minimize the coherence of a matrix by taking m on the order

of the square of the sparsity. Hence, while the coherence is straightforward to calculate and matrix

constructions exist with near minimal coherence, as previously mentioned, and as we shall see, this

order of measurements is not optimal.

Finally, we present the Restricted Isometry Property.

Definition 14. (See Definition 6.1 of [Foucart and Rauhut 2013]) The sth restricted isometry

constant δs = δs(A) of a matrix A ∈ Cm×N is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (2.11)

holds for all s-sparse vectors x ∈ CN . An equivalent formulation is given by

δs = max
S⊆[N ],card(S)≤s

‖A∗SAS − Id‖2→2. (2.12)

The matrix A satisfies the restricted isometry property if δs is small for sufficiently large s.

From the definition, we observe that the restricted isometry constant of order s considers all

s-tuples of the columns of A and compare this to the coherence, which only involves pairs of columns

of A; thus, the restricted isometry constant is more general and better suited to assess the quality of

the measurement matrix. This transfer from pairs to s-tuples, however, bears an obvious trade-off

as the restricted isometry property can quickly become arduous to verify as this is an NP-hard

problem. We note that δ1 = 0 since ‖Aej‖22 = ‖ej‖22 for all j ∈ [N ] when A has `2-normalized

columns. Additionally, one can also show that δ2 = µ and δs ≤ (s− 1)µ. Equation (2.12) indicates

that each column submatrix AS with S ⊆ [N ] and card(S)≤ s has singular values close to 1, i.e.,

within the interval [1− δs, 1 + δs], and is therefore injective for δs < 1.

Unfortunately, deterministic constructions of matrices whose restricted isometry constants demon-

strably satisfy δs ≤ δ with a minimal number of measurements m are unknown. However, a collec-

tion of random matrices, to be introduced shortly, can be shown to satisfy such conditions with high

probability. The following theorem highlights the significance of the restricted isometry property.
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Theorem 15. (See Theorem 6.9 of [Foucart and Rauhut 2013]) Suppose that the 2sth restricted

isometry constant of the matrix A ∈ Cm×N satisfies

δ2s <
1

3
. (2.13)

Then every s-sparse vector x ∈ CN is the unique solution of

min
z∈CN

‖z‖1 subject to Az = Ax.

The proof of Theorem 15 will require the following two ingredients.

Lemma 16. (See Lemma 6.10 of [Foucart and Rauhut 2013]) For q > p > 0, if u ∈ Cs and v ∈ Ct

satisfy

max
i∈[s]
|ui| ≤ min

j∈[t]
|vj |, (2.14)

then

‖u‖q ≤
s
1/q

t1/p
‖v‖p, (2.15)

and in particular when p = 1, q = 2 and s = t,

‖u‖2 ≤
1√
s
‖v‖1. (2.16)

Proof. Simply observe

‖u‖q
s1/q

=

[
1

s

s∑
i=1

|ui|q
]1/q

≤ max
1≤i≤s

|ui|,

and

‖v‖p
t1/p

=

[
1

t

t∑
j=1

|vj |p
]1/p

≥ min
1≤j≤t

|vj |,

then with (2.14) the result of (2.15) is immediate.
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Proposition 17. (See Proposition 6.3 of [Foucart and Rauhut 2013]) Let u,v ∈ CN be vectors such

that ‖u‖0 ≤ s and ‖v‖0 ≤ t. If they have disjoint supports, i.e. supp(u) ∩ supp(v)= ∅, then

|〈Au,Av〉| ≤ δs+t‖u‖2‖v‖2. (2.17)

Proof. Let S := supp(u) ∪ supp(v), then since u and v have disjoint supports 〈uS ,vS〉 = 0. Hence,

we have

|〈Au,Av〉| = |〈ASuS ,ASvS〉 − 〈uS ,vS〉| = |〈(A∗SAS − Id)uS ,vS〉|

≤ ‖(A∗SAS − Id)uS‖2‖vS‖2 ≤ ‖A∗SAS − Id‖2→2‖uS‖2‖vS‖2.

Applying (2.12) and noting that ‖uS‖2 = ‖u‖2 and ‖vS‖2 = ‖v‖2 the proof is complete.

Now we prove Theorem 15.

Proof. We will prove that A satisfies the null space property of order s, but in a slightly alternate

form:

‖vS‖1 <
1

2
‖v‖1 for all v ∈ ker A \ {0} and all S ⊆ [N ] with card(S) = s.

This results from simply adding ‖vS‖1 to both sides of (2.3). We will actually show the following

stronger statement:

‖vS‖2 ≤
ρ

2
√
s
‖v‖1 for all v ∈ ker A \ {0} and all S ⊆ [N ] with card(S) = s,

where

ρ :=
2δ2s

1− δ2s

satisfies ρ < 1 when δ2s < 1/3. We note that this inequality results from the observation that

‖vS‖1 ≤
√
s‖vS‖2 and then requiring

√
s‖vS‖2 ≤

ρ

2
‖v‖1.

Take v ∈ ker A\{0}, and consider an index set S =: S0 of the s largest elements of v in modulus.
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We can then partition the complement S0 of S0 in [N] as S0 = S1 ∪ S2 ∪ ..., where

S1 : index set of s largest elements in modulus of v in S0,

S2 : index set of s largest elements in modulus of v in S0 ∪ S1,

etc. Note the last such Si may contain fewer than s elements, but this will not hinder the proof.

Since v ∈ kerA, we have A(vS0
) = A(−vS1

− vS2
− · · · ); thus,

‖vS0
‖22 ≤

1

1− δ2s
‖A(vS0

)‖22 =
1

1− δ2s
〈A(vS0

),A(−vS1
) + A(−vS2

) + · · ·〉

=
1

1− δ2s

∑
k≥1

〈A(vS0
),A(−vSk)〉.

Substituting (2.17) of Proposition 17 into this result gives

‖vS0‖2 ≤
δ2s

1− δ2s

∑
k≥1

‖vSk‖2 =
ρ

2

∑
k≥1

‖vSk‖2. (2.18)

When k ≥ 1, the elements of vSk do not exceed the elements of vSk−1
; hence, Lemma 16 gives

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1.

Therefore, we have

‖vS0
‖2 ≤

ρ

2
√
s

∑
k≥1

‖vSk−1
‖1 ≤

ρ

2
√
s
‖v‖1,

as desired.

Next we extend this result to incorporate stable and robust recovery via the quadratically con-

strained basis pursuit, see Equation (2.7).
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Theorem 18. Suppose that the 2sth restricted isometry constant of the matrix A ∈ Cm×N satisfies

δ2s <
1

3
.

Then for any x ∈ CN , a solution x∗ of Equation (2.7), with y = Ax+e and ‖e‖2 ≤ η, approximates

the vector x with `p error:

‖x− x∗‖p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2η, 1 ≤ p ≤ 2, (2.19)

where C and D are constants depending on ρ =
δ2s

(1− δ2s)
and τ =

√
1 + δ2s

1− δ2s
.1

Proof. Let A ∈ Cm×N with 2sth restricted isometry constant δ2s <
1

3
, let v ∈ CN , and consider a

partition of the set [N ] = S0 ∪ S1 ∪ S2 ∪ ... as defined in the previous proof. Thus, we must have

AvS0
= Av −

∑
k≥1

Avk. We expand ‖vS0
‖22 as follows via the RIP and Proposition 17:

‖vS0
‖22 ≤

1

1− δ2s
‖AvS0

‖22 =
1

1− δ2s
〈AvS0

,Av −AvS1
−AvS2

− · · ·〉

=
1

1− δ2s
〈AvS0 ,Av〉+

1

1− δ2s

∑
k≥1

〈AvS0 ,A(−vSk)〉

≤ 1

1− δ2s
‖AvS0‖2‖Av‖2 +

1

1− δ2s

∑
k≥1

δ2s‖vS0‖2‖vk‖2

=
δ2s

1− δ2s
‖vS0

‖2
∑
k≥1

‖vk‖2 +

√
1 + δ2s

1− δ2s
‖vS0

‖2‖Av‖2.

Now we may cancel a ‖vS0
‖2 from both sides, then recognize that by definition ‖vS1

‖2 ≤ ‖vS0
‖2

and by (2.16) of Lemma 16 ‖vSk‖2 ≤
1√
s
‖vSk−1

‖2 for k ≥ 2. After a rearrangement of terms we

arrive at

(
1− δ2s

1− δ2s

)
‖vS0

‖2 ≤
1√
s

(
δ2s

1− δ2s

)∑
k≥2

‖vk−1‖1 +

√
1 + δ2s

1− δ2s
‖Av‖2.

1This result and the proof are left as an exercise for the reader in [Foucart and Rauhut 2013], see Exercise 6.12.
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Setting ρ :=
δ2s

1− 2δ2s
< 1, so δ2s <

1

3
, and τ :=

√
1 + δ2s

1− 2δ2s
> 0, since δ2S <

1

3
, we now have

‖vS0
‖2 ≤

ρ√
s
‖vS0

‖1 + τ‖Av‖2,

which matches the `q-robust null space property of Definition 9 for q = 2. Therefore, we can

apply Theorem 10 to obtain the desired result. One may consult with [Foucart and Rauhut 2013

Theorem 4.25] for the derivation of the constants C =
(1 + ρ)2

1− ρ
and D =

(3 + ρ)τ

1− ρ
.

We note that the bound of Theorem 15 can be relaxed further to roughly δ2s <
1√
2
≈ 0.7071 and

additional bounds can be found for the thresholding and greedy algorithms, such as δ3s <
1√
3
≈ 0.5773

for IHT and HTP and δ13s <
1

6
for OMP. Furthermore, the 2sth restricted isometry constant of

Theorem 18 can also be relaxed to δ2s < .6247 while also ensuring stability and robustness. A

multitude of similar bounds can be derived for various recovery guarantees, see [Foucart and Rauhut

2013 Chapter 6].

2.4 Random Matrices

Random matrices are quite valuable to compressive sensing because under appropriate conditions

they can be shown to satisfy the Restricted Isometry Property with high probability. We define one

class of such random matrices below.

Definition 19. (See Definition 9.1 of [Foucart and Rauhut 2013]) Consider a matrix A ∈ Rm×N

whose elements are random variables. If all entries of A are independent mean-zero subgaussian

random variables with variance 1 and constants β, θ > 0 such that

P(|Aj,k| ≥ t) ≤ β exp(−θt2) for all t > 0, j ∈ [m], k ∈ [N ],

then A is called a subgaussian random matrix.

We can also define Guassian matrices matrices as those matrices whose entries are independent

standard Gaussian random variables, and similarly Bernoulli matrices are matrices whose entries are
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independent Rademacher variables. We note that Gaussian and Bernoulli matrices are subgaussian

matrices. Next we state, without proof, an essential theorem and a corollary which highlight the

importance of such matrices.

Theorem 20. (See Theorem 9.2 of [Foucart and Rauhut 2013]) Let A be an m × N subgaussian

random matrix. Then there exists a constant C > 0 (which only depends upon the subgaussian

parameters β, θ) such that the restricted isometry constant of 1√
m

A satisfies δs ≤ δ with probability

at least 1− ε provided

m ≥ Cδ−2(s ln(eN/s) + ln(2ε−1)).

Corollary 21. (See Corollary 9.3 of [Foucart and Rauhut 2013]) Let A be an m×N subgaussian

random matrix. Let s < N, ε ∈ (0, 1) such that

m ≥ C1s ln(eN/s) + C2 ln(2ε−1),

for some constants C1, C2 > 0 only depending on the subgaussian parameters β, θ. Then with

probability of at least 1− ε every s-sparse vector x is recovered from y = Ax via `1-minimization.

Notice that for ε = 2 exp(−m/(2C2)), Corollary 21 ensures recovery of all s-sparse vectors via

`1-minimization with probability at least 1− 2 exp(−m/(2C2)) using a subgaussian random matrix

provided

m ≥ 2C1s ln(eN/s).

This condition can be shown to be optimal using Gelfand Widths, in the following sense: Given

a matrix A ∈ Cm×N with 2sth restricted isometry constant δ2s < 1/3, say, then A must have a

number of rows m ≥ cs ln(eN/s), for some constant c > 0 depending only on δ2s, see [Foucart and

Rauhut 2013 Chapters 10 and 11]. We also observe that this result improves upon the number of

measurements needed when relying upon the coherence of the matrix to guarantee sparse recovery.

The proof for these results stems from combining a concentration inequality, a covering argument

for unit balls and an upper bound on
(
N

s

)
, see [Foucart and Rauhut 2013 Chapter 9]. Fortunately,
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as one may by now expect, these results maybe extended to guarantee stability and robustness in

the reconstruction.

Theorem 22. (See Theorem 9.13 of [Foucart and Rauhut 2013]) Let A be an m×N subgaussian

random matrix. Then there exists constants C1, C2 > 0 (which only depend upon the subgaussian

parameters β, θ) and universal constants D1, D2 > 0 such that if, for ε ∈ (0, 1),

m ≥ C1s ln(eN/s) + C2 ln(2ε−1),

then the following statement holds with probability at least 1− ε uniformly for all vectors x ∈ CN :

given y = Ax + e with ‖e‖2 ≤
√
mη for some η ≥ 0, a solution x] of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤
√
mη. (2.20)

satisfies

‖x− x]‖2 ≤
D1

s1/2
σs(x)1 +D2η,

‖x− x]‖1 ≤ D1σs(x)1 +D2

√
sη.

The proof of this theorem involves rearranging the optimization problem by dividing through by

√
m on both sides, then applying Theorem 18 with p = 1 and p = 2 and Theorem 20. We stress

that for the appropriate choice of ε = 2 exp(−m/(2C2)), this result guarantees the stable and robust

recovery of all s-sparse vectors via quadratically constrained basis pursuit with high probability

when employing an m×N subgaussian random matrix with

m ≥ 2C1s ln(eN/s).

This number of measurements cannot be improved upon, see [Foucart and Rauhut 2013 Chapter 10].

This result can also be expanded for the greedy and thresholding algorithms of Section 2.2.
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2.5 Conclusion

We have introduced much of the language, tools and concepts necessary to utilize compressive sensing

in practice and further develop the theory. We will rely upon the algorithms presented in this

chapter, and their modifications, in our radar experiments and our work in structured compressive

sensing, while the theoretical results will be echoed in our findings in Chapter 4. The guarantees

provided by coherence and the RIP are highly sought after in practice, but we must stress that such

assurances of stable and robust recovery are difficult to attain when the conditions of a physical

problem prevent the direct use of such random matrices as described above. For example, since

random matrices provide such guarantees with high (in fact often a very high) probability, when a

system is built according to such design, one has to hope the technology will perform as intended.

These considerations are not meant to impede progress in this field, but rather to recognize that

compressive sensing is not a panacea. This field requires a great attention to detail and careful

analysis to properly manifest growth and improvement over existing practices.
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Chapter 3: Application to Radar

We explore the feasibility of applying the framework of compressive sensing to MIMO radar systems.

We assess the landscape of recent work in this area of research and explain how our experiments

integrate elements from select publications. After providing a primer on radar systems, we mathe-

matically formulate our investigation via a three-fold azimuth-delay-Doppler discretization for target

detection and parameter estimation. We utilize a co-located random sensor array and transmit dis-

tinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field

and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining

the parameters of the scene through numerical simulations, with particular focus on the `1-squared

Nonnegative Regularization method. We detail the various specifications of our experiments and

breakdown the results.

3.1 Introduction

Multiple-input multiple-output (MIMO) radar systems have garnered significant interest in recent

years for the purpose of accurately detecting targets. These systems incorporate multiple antennas

to transmit signals to a target scene and receive and process the reflected echoes. Depending on the

positioning of the antennas, i.e., widely separated or co-located, they can provide enhanced target

detection and parameter estimation. In particular, a co-located MIMO radar system which transmits

waveforms with distinct frequencies can yield improved spatial resolution over similar setups, such

as phased-array radar systems. See [Li and Stoica 2009] for a detailed analysis of MIMO radar.

Figure 3.1 illustrates the basic setup of a MIMO radar system with a discretization of the target

scene in azimuth (angle) and radial range (time delay).

As discussed in Chapter 1, the advancements of compressive sensing have attracted wide-spread

attention as a means of efficiently recovering sparse (or compressible) signals. We previously il-

lustrated in Chapter 2 the key finding that a random measurement matrix A ∈ Cm×N with
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Figure 3.1: Simple diagram of a MIMO radar system setup. Each of the transmit antennas
sends a signal to the scene. These signals reflect off of each target and return to each of the
receiver antennas. In this example the scene has been discretized in azimuth (angle) and range
(delay).

m ≥ Cs ln(N/s), where C is a constant and s is the sparsity of the signal, will fulfill the Re-

stricted Isometry Property with high probability. Once more, we note the significance of this result

as it greatly reduces the minimal number of measurements needed to recover any s-sparse signal

x ∈ CN , particularly as compared to the Nyquist-rate. The signal x can be reconstructed by solving

the convex optimization problem called basis pursuit or `1-minimization, see Equation (2.2), or in

the more pertinent case of noisy measurements via the quadratically constrained basis pursuit, see

Equation (2.7).

The efficacy of compressive sensing hinges on the sparsity, or compressibility, of the signal one

seeks to recover. Fortunately the discretization of a target scene containing only a few point scatterers

in the desired domain, such as angle, time-delay and Doppler, leads to an advantageous sparsity

constraint since only a few of the bins in the domain, i.e. possible locations in the scene, contain a

target in comparison to the total number of bins. Thus, techniques from compressive sensing have

the potential to reduce costs without degrading resolution in detecting the reflectors. A great deal

of research has been carried out in investigating the applicability of compressive sensing to a wide

variety of radar systems and various aspects of radar signal processing. See Chapter 1 for such
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examples and [Ender 2010] and [Potter et al. 2010] for surveys of this field. We discuss two early

works in this area below.

Perhaps the earliest attempt to apply the results of compressive sensing to radar technologies

was presented in [Baraniuk and Steeghs 2007]. The authors highlight inefficiencies in current radar

systems to compress a sparse signal: the full signal must be captured at the Nyquist sampling

rate, then a complete set of coefficients must be calculated in order to represent the signal in an

appropriate sparsifying basis, e.g. x =
∑
i

θiψi where θi are coefficients for the basis vectors ψi.

Next, the s largest, when x is at most s-sparse, coefficients must be located and stored while the rest

of the coefficients are discarded. They note that for wideband signals, the Nyquist rate will demand

a large number of samples resulting in a heavier cost for computing the θi even though most of these

values will be thrown away. Furthermore, the locations of the s largest coefficients will change with

each signal; hence, they must be recalculated with each new signal. All of this results in a vast

amount of information to process, which is further limited by current Analog to Digital conversion

technologies and the need for a matched filter to correlate the received signals.

The method they propose to overcome these inefficiencies is as follows: Find a representa-

tion to express the received signal in a sparse or compressible manner, e.g. delta functions for

a set of point targets or a wavelet expansion for smooth targets. Thus, the signal takes the form

x =
∑
i

θiψi = Ψθ, where Ψ ∈ CN×N is a matrix of the set of basis vectors ψi, and the vector

θ ∈ CN gives information about the target or scene, such as range, velocity, etc. When considering

a simplified 1D range problem they choose the basis vectors to be delta spikes and information about

the range of target is stored in θ. Next, compute measurements of the signal via y = Φx, where

Φ ∈ Cm×N is a suitable measurement matrix and m is taken such that the new matrix ΦΨ will

satisfy the RIP with high probability. Since time-translated and frequency-modulated versions of

the transmitted chirp signals form a dictionary that is incoherent with many of the representation

bases, i.e., the product of the matrices will have a small coherence, they serve as good candidates for

the rows of the sampling matrix. They also note the applicability of random matrices, in particular

a quasi-Toeplitz matrix whose entries are a pseudorandom noise sequence of independent and iden-
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tically distributed (i.i.d.) Bernoulli or i.i.d. Gaussian measurements, to satisfy the RIP for different

transmitted radar waveforms, as opposed to just chirp signals. By incorporating both of these steps,

they propose the design of new radar technology without a matched filter and with an Analog to

Digital conversion which operates at a sub-Nyquist rate proportional to the target’s compressibility.

They demonstrate the feasibility of their approach with a test case by recovering a sparse scene of

point targets via OMP while sampling at only half the Nyquist rate.

A separate proposal for a new ‘stylized’ compressive sensing radar was described in [Strohmer

and Friedlander 2009]. Whereas [Baraniuk and Steeghs 2007] stressed the details of implementation

and hardware in the case of stationary targets, the authors of [Herman and Strohmer 2009] not only

consider moving targets but also provide a rigorous treatment of the mathematics needed to increase

the resolution of radar imaging systems via compressive sensing. The central component of their

analysis hinges upon the use of the Alltop vector, defined for prime m ≥ 5 as

f` = e2πi`3/m, ` ∈ [m],

as appropriate waveforms to exploit the sparsity of a scene in the time-frequency domain. They

combine this approach with a collection of m×m matrices, known as the translation and modulation

operators,

T =



0 1

1 0

. . . . . .

0 1 0


and M =



ω0
m 0

ω1
m

. . .

0 ωm−1
m


,

where ωm = e2πi/m is the m-th root of unity, to form a Gabor frame Φ ∈ Cm×m2

. This explicit

construction leads to a matrix with coherence µ = 1√
m
, which is only slightly above the Welch

bound, see Chapter 2; hence, they are able to present guarantees on the recovery of a sparse (or

compressible) target vector x from y = Φx.

The authors go on to note that classical radar systems are limited in their capacity to resolve
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distinct targets which are close together when represented on a discretized time-frequency grid due

to the radar uncertainty principle. A simplified form of this principle is as follows: a waveform with

good range (time-delay) resolution will have poor Doppler (frequency) resolution and a waveform

with good Doppler resolution will have poor range resolution. If a classical radar system utilized

the Alltop vector to reconstruct such a scene, a matched filter would be employed to correlate the

received signal; however, even in the case of no noise, a great deal of interference will arise due to

the uncertainty principle. The presented ‘stylized’ compressive sensing radar improves resolution by

discarding the need for a matched filter while still sampling at the Nyquist rate.

Next, we highlight two recent publications which serve as the basis for this work. The researchers

of [Strohmer and Wang 2013] provide an excellent mathematical framework which incorporates

Compressive Sensing for the recovery of on-grid targets in azimuth-range-Doppler via a MIMO

radar system. They employ random sensor arrays and special waveforms, namely the so-called

Kerdock waveforms, in their setup and present a detailed mathematical analysis on the accurate

detection of targets in such a setting. The target vector representing the scene is recovered via the

Debiased LASSO, which is a variation of the well-known LASSO, from a number of measurements

corresponding to the product of the number of receivers and the number of time samples taken.

The authors of [He et al. 2013] devise an adaptive procedure to detect off-grid targets in azimuth

and range with a MIMO radar system which features a uniform linear array (ULA), i.e., the transmit

and receive antennas are placed on an axis so that the distance between antennas is uniform and

based on the reference carrier frequency, and transmits linear chirps with distinct frequencies. They

highlight the performance of their algorithm with numerical simulations and compare the results

to alternative recovery methods. These authors rely upon the orthogonality of their waveforms to

obtain a number of measurements equal to the product of the number of transmitters, the number

of receivers and the number of samples taken.

Our approach incorporates elements from both of these works. Namely, we utilize a random

array MIMO radar system which transmits linear chirps and obtains a number of measurements

equal to the product of the number of transmitters, the number of receivers and the number of time
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samples in order to detect on-grid targets in the azimuth, time-delay and Doppler domain. Various

numerical simulations are performed in this framework for a small target scene containing only a

few slowly moving point scatterers. We initially utilize several different algorithms for recovery, then

focus solely on the `1-squared Nonnegative Regularization (L1SQNN) from [Foucart and Koslicki

2014] due to its superior performance in comparison to the other selected methods. The choice

of the random sensor array in place of a ULA is justified by a set of results directly comparing

the two setups. We further analyze how changes in the sparsity level, signal-to-noise ratio (SNR),

problem size, regularization parameters and bandwidth can impact the reconstruction. A collection

of selected Matlab files for this work has been included in Appendix A.1.

3.2 Radar Background

Radar (short for RAdio Detection And Ranging) is a technology that was originally designed for

target detection via radio waves. The basic concept central to radar is the following: generate a

pulse at time t = 0 with speed c, the pulse will travel until it reflects from an object at range R

and return at time τ . Hence, since the pulse travelled a total distance of 2R, we can determine the

location of the target from R = cτ/2.

Since radio waves are able to pass through clouds and rain and in some cases penetrate through

foliage and debris, radar systems can operate in all weather. Radar systems do not require light;

thus, they can be used during the day or at night, a major advantage over most optical systems.

Additionally, since radar waves mostly scatter from objects whose size is on the same order of

magnitude as the wavelength, radar imaging can resolve targets whose length scales range from

centimeters to meters.

One of the earliest developments in the history of radar occurred on 18th May 1904 at the Ho-

henzollern Bridge, in Cologne, Germany, with one of Christian Hülsmeyer’s earliest public demon-

strations of his patented “Telemobiloscope.” Designed with collision avoidance in mind, the device

alerted observers to the presence of an approaching ship by sounding a bell, but the device did not

calculate distance and only had limited range. (People could hear the ships coming before the de-

vice detected them!) Further developments in radar technologies were made throughout the 1900s,
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especially during wartimes with advances later adopted for civilian use. Today, radar technologies

have been greatly expanded to numerous applications throughout society, including high resolution

imaging, weather forecasts and navigation.

Currently there are numerous types of radar systems depending upon the configuration of trans-

mitting and receiving arrays, the design of the antenna, the chosen scanning method, etc. The basic

setup, however, is as follows (Our presentation and notation are adopted from [Cheney and Borden

2009]). An incident signal sinc(t), typically a pulse in fielded systems, is multiplied by a rapidly

varying carrier wave with angular frequency ω0. Thus, the signal acts as an envelope for the carrier

wave and the product, called the modulated signal, takes the form

p(t) = sinc(t) cos(ω0t) = Re{sinc(t)e−iω0t}.

The modulated signal is often amplified by a transmitter and used to excite currents on the antenna,

which then radiates electromagnetic waves. These waves scatter off targets in the scene and return,

exciting currents on the antenna once again. Since these new currents generate low time-varying

voltages that are often below the threshold of thermal noise in the system, a low-noise amplifier

amplifies the signal, which is then filtered to remove the high-frequency of the carrier wave. The

demodulated received signal srec(t) is then processed.

Filtering is done via convolution of the signal with the inverse Fourier transform of a transfer

function, in other words, by taking the inverse Fourier transform of the signal, multiplying this with

the transfer function and finally taking the Fourier transform of this product. The transfer function

is used to filter undesired frequencies, e.g. a low-pass filter is given below

Hb(ν) =


1 if |ν| < b,

0 else.

(3.1)

In this case, the filter removes all frequencies outside the band of (−b, b). The inverse Fourier

transform of Hb, denoted h(t), is called the impulse response of the filter.
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In an idealized setting, the received signal srec(t) that is reflected from a fixed point target is a

time-delayed version of the transmitted signal with noise, which is typically represented by a random

process. For example,

srec(t) = ρs(t− τ) + n(t). (3.2)

Here τ is the ‘location’ of the target from the radar system, i.e., we can convert the physical radial

range distance, R, to the time-delay quantity, τ via τ = 2R/c. The factor ρ results from the fact

that the radar waves produced by the antenna experience a decay in power proportional to 1/R2

and upon scattering suffer another decay in power proportional to 1/R2; hence, the received signals

have a total power decay that is proportional to 1/R4. We note that ρ gives information about

the ‘reflectivity’ of the target and will depend on its position, velocity and other properties in a

non-idealized setting. Due to the loss of power, these signals are often subsumed by thermal noise.

A technique to overcome this difficulty, known as pulse compression, utilizes coded pulses and a

matched filter to recover the signal. A common choice of waveforms for the pulse is the chirp, that

is a pulse with constant amplitude but whose instantaneous frequency is a linear function of time.

The instantaneous frequency is the time derivative of the pulse’s angular frequency. An example is

given below:

s(t) = ei(ω0t+αt
2/2)IT (t), so that

d

dt
(ω0t+ αt2/2) = ω0 + αt.

Here IT (t) is the characteristic function on [0, T ], and T is the duration of the pulse. In order to

maximize the Signal to Noise Ratio (SNR), which is the ratio of the power of the signal to the power

of the noise, one must choose an appropriate filter. This is achieved by taking the impulse response

to be h(t) = s∗(−t), which is the matched filter.

The essential concept of pulse compression is as follows: As the pulse is transmitted, different

parts are coded with different instantaneous frequencies. When the pulses are received, a matched

filter is applied so that different frequencies are delayed by different amounts of time. This concen-

trates all of the energy so that it is released at the same time and the signal is properly received.

Lastly, we note that when the target is moving, the received signal will exhibit a Doppler shift,
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so that Equation (3.2) becomes

srec(t) = ρs(t− τ)e−iωD(t−τ) + n(t).

When accounting for multiple stationary targets, Equation (3.2) will become a summation of separate

signals

srec(t) =
∑
τ ′

ρ(τ ′)s(t− τ ′) + n(t),

and in the case of moving targets, combining this with the previous equation yields

srec(t) =
∑
τ ′

∑
ω′

ρ(τ ′, ω′)s(t− τ ′)e−iω
′(t−τ ′) + n(t).

3.3 Problem Formulation

Consider a co-located MIMO radar system with M randomly positioned transmit antennas and

N randomly positioned receive antennas in the sensor array. Each of the transmitters repeatedly

sends a waveform sm(t), for m = 1, ...,M, which are orthogonal to each other and narrowband, to

reflect off P point targets in a far-field scene and return to the N receive antennas. These returning

signals are observed over a duration Td. We discretize the scene in azimuth, delay (radial range)

and Doppler (radial velocity) with U angle bins, V delay bins and W Doppler bins and associated

discretization steps ∆θ,∆τ , and ∆υ. Hence, targets located exactly on the grid correspond to a lo-

cation (θk, τk, υk) = (θref +u(k)∆θ, τref +v(k)∆τ , υref +w(k)∆υ), where k = 1, ...,K, with K = UVW ,

θref, τref, and υref are reference values in the respective domains, and where (u(k), v(k),w(k)) repre-

sents the k-th bin in the discretization of the scene. Figure 3.2 provides a representative visual

for this setup. These point targets possess nonzero complex reflectivity coefficients xk and are as-

sumed to be (slow) moving with constant velocities. If there is no target at grid point (θk, τk, υk),

then the associated xk = 0. We let S ⊂ {1, 2, . . . ,K} denote the locations of the targets, i.e.,

S := {k ∈ [K] : xk 6= 0} and |S| = P .
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Figure 3.2: Visualization of a representative target scene discretized in range, azimuth and
velocity (Doppler). Please note that while this depiction is a rectangular box, in actuality the
azimuth axis would curve slightly.

We introduce the array manifolds for the small target scene:

a(θk) =
[
1, ei

2π
λ dt2θk , ..., ei

2π
λ dtMθk

]T
, and (3.3)

b(θk) =
[
1, ei

2π
λ dr2θk , ..., ei

2π
λ drNθk

]T
, (3.4)

where λ is the reference carrier wavelength, dtm, for m = 2, ...,M , is the distance from the m-th

transmitter to the first transmitter, and drn, for n = 2, ..., N , is the distance from the n-th receiver

to the first receiver. (We are using the approximation sin(θk) ≈ θk since we will only consider small

angles, i.e. |θk| < 0.1 radians.) Hence, under the narrowband assumption and after orthogonal
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separation, the signal received from the m-th transmitter at the n-th receiver at time t is given by

zmn(t) =
∑
k∈S

xkbn(θk)am(θk)sm(t− τk) exp [−i2πυkt] + emn(t), (3.5)

where bn(θk) is the n-th entry of b(θk) and am(θk) is the m-th entry of a(θk) and emn(t) is noise.

We employ Linear Frequency Modulated (LFM) chirps of the form

sm(t) = exp
[
i2π

(α
2
t2 + fmt

)]
IT (t), (3.6)

where α is the chirp rate, T is the pulse duration, fm = fref + mαT is the carrier frequency for a

specified reference carrier frequency fref, and IT (t) is the characteristic function on [0, T ]. Comparing

this expression to the equation presented in the previous section, we note that we have transformed

from the angular frequency ω via ω = 2πf . We suppose that the reference range for the scene is

Rref , i.e., the distance from the radar system where the target scene begins; thus, the reference time

delay is τref = 2Rref/c and for LFM chirps we obtain the following:

sm(t− τk)s∗m(t− τref) = IT (t− τref)IT (t− τk)

× exp [−i2π(fm + αt′)(τk − τref)]

× exp
[
iπα(τk − τref)2

]
(3.7)

where t′ = t− τref and t′ ∈ [0, Td]. The quadratic term is known as the residual video phase and can

be removed according to [Carrara et al. 1995]. Thus, after dechirping, the measurements we obtain

between the m-th transmitter and the n-th receiver at time t′ take the form:

ymn(t′) =

K∑
k=1

xkbn(θk)am(θk)

× exp [−i2π(fm + αt′)(τk − τref)]

× exp [−i2πυk(t′ + τref)] + emn(t). (3.8)
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Note that contributions to the summation only result from the P point targets, however, since it

is unknown a priori which xk are nonzero, we sum over all K possible locations. We consider the

measurements at times t′q for q = 1, ..., Q. After substituting the appropriate expressions into (3.8),

we have

ymn(t′q) =

K∑
k=1

xk exp

[
i2π

λ
(dtm + drn)θk

]

× exp
[
−i2π(fm + αt′q)(τk − τref)

]
× exp

[
−i2πυk(t′q + τref)

]
+ emn(t′q). (3.9)

Our objective now is to recover {xk, θk, τk, υk}Kk=1 from the set of {ymn(t′q)}, where m = 1, ...,M ,

n = 1, ..., N, and q = 1, ..., Q. Hence, we introduce the vectorization operation vec(·) and define

y := vec
(
ymn(t′q)

)
, e := vec (emn(tq)), and

Ak := vec
(

exp

[
i2π

(
dtm + drn

λ
θk − υk(t′q + τref)

)]
× exp

[
−i2π(fm + αt′q)(τk − τref)

])
, (3.10)

which are all vectors of size MNQ× 1. We store the Ak’s via:

A =
(
A1 |A2 | · · · |AK

)
. (3.11)

Letting x = [x1, x2, . . . , xK ]
T , we arrive at the standard Compressive Sensing framework

y = Ax + e. (3.12)

Here y is the set of measurements we obtain from our measurement matrix A, the P -sparse target

scene x and the noise vector e. Thus, our goal is to recover x from y and A and in turn estimate

θk, τk, and υk associated with each nonzero xk.
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3.4 Numerical Simulations

We are unable to establish the RIP for the measurement matrix A; thus, we perform simulations

in Matlab to investigate the efficacy of various reconstruction algorithms in recovering sparse

vectors from Equation (3.12) since we lack any theoretical guarantees provided by the RIP. The

following parameters remain unchanged throughout the simulations: the reference carrier frequency

is fref = 10 GHz, the bandwidth of each transmitted signal is B = 15 MHz, the pulse duration is

T = 2 µs (hence the chirp rate is α = 7.5× 10−12 Hz/s), the azimuth angle ranges (in radians) from

−0.1 to 0.1, the radial range values are between 990 m and 1010 m, and the target velocities range

from 0 m/s to 30 m/s. We consider M = 5 transmitters, N = 5 receivers, Q = 20 time samples,

U = 10 azimuth bins, V = 10 time-delay bins, W = 10 Doppler bins, (thus K = 1000 bins all

together) for the majority of the simulations, but we also double all of these values to explore how

increasing the problem size impacts the recovery. We also investigate how the bandwidth affects

the reconstruction in the final experiment. For each simulation set the sparsity level of the target

varies over some fixed collection of values, a number of measurement matrices are generated for each

sparsity level and a specified number of random target vectors are generated for each matrix.

The transmit and receive antenna positions are generated independently according to the uni-

form distribution on [0, MN
2 ] as in [Strohmer and Wang 2013], while the locations of the point

targets in the scene are chosen iteratively. A location in the azimuth-delay grid is selected at ran-

dom; if the bin does not already contain a target then a Doppler value is selected at random and

the new azimuth-delay-Doppler location is added to the support of the target scene. Otherwise,

a new azimuth-delay location is chosen at random and the process repeats until the target vector

contains the correct number of point scatterers. (See section 3.6 for further remarks on this and

its implications for structured compressive sensing.) The targets are each given a unit reflectivity

coefficient. After the measurements are taken, they are corrupted by complex, circularly symmetric

Gaussian noise, for a designated SNR level. Recovery is then performed with Orthogonal Matching

Pursuit (OMP), Adaptive Inverse Scale Space (AISS) [Burger et al. 2013], `1-squared Nonnegative

Regularization (L1SQNN) [Foucart and Koslicki 2014] and/or `1/`2 Constrained Nonnegative Reg-
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ularization (L1L2CNN) from the YALL1 software package [Zhang et al. 2011]. In the case of no

noise, basis pursuit with a nonnegativity constraint is selected from YALL1 in place of L1L2CNN.

The Orthogonal Matching Pursuit was previously presented in Chapter 2. The other methods are

variants on basis pursuit denoising [Chen et al. 1998]:

minimize
z∈RN

‖z‖1 + ν‖Az− y‖22. (3.13)

Specifically, the L1SQNN method solves

minimize
z∈RN

‖z‖21 + β2‖Az− y‖22 subject to z ≥ 0, (3.14)

while the L1L2CNN method solves

minimize
z∈RN

‖z‖1 subject to ‖Az− y‖2 ≤ δ

and z ≥ 0, (3.15)

where ‖e‖ ≤ δ. As the name implies, the AISS approach relies on Inverse Scale Space methods

and Bregman Iterations to iteratively solve lower dimension problems in seeking a solution to (2.2).

Since we have assumed the point scatterers possess a unit reflectivity, we utilize the nonnegativity

constraints in L1SQNN and L1L2CNN; however, for scatterers with complex reflectivity coefficients,

variants of these two methods can be employed which drop the nonnegative constraint. While this

collection is by no means exhaustive, we selected these algorithms for the following reasons: OMP is

commonly used and easy to implement, the YALL1 package is readily available online, and L1SQNN

and AISS are both more recently developed methods.

A set of threshold levels is used to zero out the entries of the recovered vector which fall below the

specified threshold in magnitude so that all nonzero entries after thresholding are classified as targets

in the scene. Throughout the simulations, the following quantities are calculated and averaged for

each sparsity level: the probability of detection, the probability of false alarm, the relative error,

Chapter 3: Application to Radar 3.4 Numerical Simulations



46

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity Level

A
v
g
 P

ro
b
 o

f 
D

e
te

c
ti
o
n

Average Probability of Detection
Random Arrays, SNR = 30 dB, Threshold = 0.001

 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sparsity Level

A
v
g
 P

ro
b
 o

f 
F

a
ls

e
 A

la
rm

Average Probability of False Alarm
Random Arrays, SNR = 30 dB, Threshold = 0.001

 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sparsity Level

A
v
g
 R

e
la

ti
v
e
 E

rr
o
r

Average Relative Error
Random Arrays, SNR = 30 dB, Threshold = 0.001

 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

10

20

30

40

50

60

70

Sparsity Level

A
v
g
 R

e
c
o
v
e
ry

 T
im

e
 (

s
e
c
o
n
d
s
)

Average Recovery Time
Random Arrays, SNR = 30 dB, Threshold = 0.001

 

 

L1SQNN

YALL1

AISS

OMP

YALL1

AISS

OMP

L1SQNN

AISS

OMP

YALL1

L1SQNN

YALL1

AISS

L1SQNN

OMP

Figure 3.3: Comparison of OMP, AISS, L1SQNN, and L1L2CNN algorithms with fixed
SNR = 30 dB and a threshold of 0.001.

and the number of iterations and amount of time required for the algorithms to terminate. The

probability of detection is calculated by dividing the number of correctly identified targets, after

thresholding, by the number of true targets present in the scene. Similarly, the probability of

false alarm is calculated by dividing the number of falsely identified targets, after thresholding,

by the number of vacant locations in the scene. The relative error for a recovered vector post-

thresholding, denoted x̃, is simply ‖x̃ − x‖2/‖x‖2. For several simulation sets we plot Receiver

Operating Characteristic (ROC) curves [Richards 2005], i.e., the probability of detection plotted

against the probability of false alarm, which illustrate how lowering the threshold level increases

both the probability of detection and probability of false alarm.

3.5 Results

The initial set of simulations were designed to provide a rough comparison of the performance of the

previously discussed recovery algorithms. The SNR is fixed at 30 dB, a low threshold level of 0.001
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Figure 3.4: Comparison of ROC curves for L1SQNN with random arrays and ULA,
SNR = 20 dB.

is selected, and β = 30 is chosen as the parameter for L1SQNN, while the noise level is used in the

L1L2CNN method from YALL1. A total of 100 simulations, i.e., 10 matrices applied to 10 random

target vectors, are performed for each sparsity level, which ranged from 2 to 28 with increments of

2. As shown in Fig. 3.3, the L1SQNN algorithm offers superior recovery in comparison to the other

three methods in all categories. Although the L1L2CNN algorithm provides a better probability of

detection and lower relative error for higher sparsity counts, this benefit comes at the cost of a higher

probability of false alarm, by an order of magnitude, and much longer run times on average. Also,

while not shown here, separate simulations reveal that the AISS method outperforms the L1SQNN

method in the case of no noise, though it also requires a longer run time. Thus, due to the enhanced

performance, we focus on the L1SQNN algorithm for the remaining simulations.

Next we consider both the random array and uniform linear array MIMO radar setups to justify

the use of the random sensor arrays. The ULA system has receiver antennas positioned in a line
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Figure 3.5: ROC curves for L1SQNN with random arrays, SNR = 15 dB and various sparsity
levels.

with a uniform separation distance of λref, i.e., the reference carrier wavelength λref = c/fref, and

transmit antennas similarly positioned but with a uniform separation distance of 2Nλref. Here the

SNR is fixed at 20 dB, β = 9 is chosen as the parameter for L1SQNN and a set of threshold values

is taken from [0.0001, 0.999]. The ULA-based matrix, which never changes since it is completely

deterministic, and a random array-based matrix are each used to separately measure and recover

the same vector at each step of the simulations. A total of 500 simulations, i.e., 20 random array

matrices (and 1 ULA matrix) applied to 25 target vectors, are performed for each sparsity level,

which ranges from 5 to 15. As highlighted by the ROC curves in Fig. 3.4, the random sensor array

systems provide superior performance over the ULA system.

Focusing on random sensor arrays, we examine how L1SQNN performs as the sparsity level

increases. The SNR is decreased to 15 dB but remains fixed throughout the experiment, while β = 5

is chosen as regularization parameter. We perform 1000 simulations, i.e., 25 matrices applied to
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40 vectors, at each sparsity level, which now ranges from 2 to 15. The ROC curves in Fig. 3.5

demonstrate a graceful decay in performance as the number of targets increases. Additionally,

comparing the random array ROC curves from Fig. 3.4, where the SNR was 20 dB, to the curves in

Fig. 3.5 with the same respective sparsity counts also illustrates a reasonable decline in performance

as the SNR decreases. This decline is clearly highlighted in Fig. 3.6 which presents the performance

of L1SQNN at three different levels of SNR for three distinct sparsity levels.

For the next set of simulations, we investigate how changing the parameter of L1SQNN impacts

its performance with random sensor arrays. As before, we run 400 simulations for each sparsity

level with a set of threshold values taken from [0.0001, 0.999]; however, we consider different levels

of SNR separately. For each SNR, we perform the recovery with distinct values of the regularization

parameter β. The results are displayed in Fig. 3.7 and 3.8. Each subplot in Fig. 3.7 contains separate

families of ROC curves which correspond to the sparsity levels of 5 (dots), 8 (circles) and 12 (stars),
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Figure 3.7: ROC curves for L1SQNN with random arrays at various levels of SNR and different
values of the regularization parameter. The upper set of curves in each graph corresponds to
a sparsity of 5 (dots), the middle set corresponds to a sparsity of 8 (circles) and the lower set
corresponds to a sparsity of 12 (stars). The figures for the noiseless case and for SNR = 50 dB
each feature a magnified view of a portion of the ROC curves when the sparsity is 5.
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Figure 3.8: The average number of iterations versus the sparsity at distinct SNR levels and
with different values of the regularization parameter for L1SQNN with random arrays.

respectively. Since the curves within each family represent a different value of the parameter β,

these figures indicate that, for a fixed SNR, the value of β should increase to enhance performance

as the sparsity increases. Furthermore, one can observe from Fig. 3.7 that as the SNR rises, the

regularization parameter should increase to improve performance overall. Comparing the plots in

Fig. 3.8 reveals, for select parameter values, a sharp increase in the average number of iterations

needed for the method to terminate while moving from the noise-free scenario to the case where

a small amount of noise corrupts the measurements, particularly at low sparsity levels. As the

SNR continues to deteriorate, these apparent differences diminish. Fig. 3.7 and 3.8 highlight the

importance of fine-tuning the regularization parameter to attain the desired probability of detection

or probability of false alarm. However, if the SNR and sparsity level are a priori unknown, then more

advanced techniques may be used to estimate these quantities and update the parameter accordingly,

if, for example, using a constant false alarm rate (CFAR) system [Skolnik 2001].

Chapter 3: Application to Radar 3.5 Results



52

Probability of False Alarm ×10
-3

0 0.5 1 1.5 2 2.5 3 3.5

P
ro

b
a

b
ili

ty
 o

f 
D

e
te

c
ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curves for L1SQNN with Random Arrays, No Noise

β  = 1.9

β  = 1.7
β  = 1.5

β  = 1.3
β  = 1.1

Figure 3.9: Comparison of various parameter values, β, in L1SQNN for the larger random array
measurement matrices of size 4000 × 8000 with no noise. The upper set of curves corresponds
to a sparsity of 5 (dots), the middle set corresponds to a sparsity of 8 (circles) and the lower
set corresponds to a sparsity of 12 (stars).

The previous simulations are repeated on a smaller scale but for a larger problem: the number of

transmitters, receivers, sample times, and bins in each domain are doubled, hence, the dimensions

of the measurement matrix have increased from 500 × 1000 to 4000 × 8000. However, only 100

simulations are performed, i.e., 10 random sensor array measurement matrices are applied to 10

random target vectors. The results for the noise-free scenario are presented in Fig. 3.9. The most

noticeable difference between the ROC curves of Fig. 3.9 and those in the noise-free plot from Fig. 3.7

is the order of magnitude decrease in the probability of false alarm for the larger problem. This is

appropriate given the increase in the number of bins from 1000 to 8000. Comparing these figures

also exposes a heightened sensitivity to the regularization parameter since smaller variations in β

lead to more pronounced changes in the ROC curves, as displayed in Fig. 3.9. Although not shown

here, the number of iterations is consistent with previous simulations, but the average amount of
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Figure 3.10: Comparison of various bandwidth values, B, in L1SQNN with random arrays,
SNR = 30 dB and various sparsity levels.

time needed for the algorithm to terminate is significantly longer, by at least an order of magnitude,

depending on the sparsity level, and increases for greater values of β.

As a final experiment, we explore how changing the bandwidth impacts the performance. We

select a set of values for the bandwidth, B, and at each value run 800 simulations for a predetermined

collection of sparsity levels. The reconstruction is performed with a fixed regularization parameter,

β = 15, along with a set of threshold values taken from [0.0001, 0.999] and a constant SNR of 30 dB.

The results are displayed in Fig. 3.10. The subplots in Fig. 3.10 correspond to the bandwidth values

of 10, 15, 20, and 25 MHz, respectively, while the curves within each subplot represent a different

sparsity level. Noting how each ROC curve for a fixed sparsity changes across the subplots, one can

observe that as the bandwidth rises, the performance improves then decays. Further simulations

indicate that the performance improves again briefly as the bandwidth continues to increase but
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then drops off sharply.

The results from each of these sets of simulations indicate the following: for the specified physical

parameters, this sparse vector recovery problem requires a significantly low sparsity level to achieve

meaningful performance. As the sparsity level increases from just a few scatterers and as the SNR

decreases from the noiseless setting, the performance consistently decays, though typically in a

graceful manner. Although increasing the number of bins in each domain does not greatly inhibit

the results, it does lead to a significant increase in the run time. This is due to the high computational

complexity which results from discretizing in azimuth, delay and Doppler instead of simply one or

two of these domains.

3.6 Conclusion

We have combined elements from recent work in [Strohmer and Wang 2013] and [He et al. 2013] to

further investigate the applicability of Compressive Sensing to a MIMO radar system. Specifically,

we have considered a random array MIMO radar system which transmits linear chirps and utilizes

orthogonal separation and dechirping to acquire additional measurements while probing a small

target scene in the azimuth-delay-Doppler domain. The various simulations, some of which are

included in Appendix A.1 , demonstrate superior performance when only a few point scatterers are

present in the scene. The `1-squared Nonnegative Regularization method from [Foucart and Koslicki

2014] provides enhanced recovery in the presence of noise over the other algorithms considered,

however, as is always the case, the regularization parameter must be finely tuned to achieve a

desired false alarm rate.

This work is intended as an initial step in exploring the feasibility of applying techniques from

Compressive Sensing to the off-grid MIMO radar problem in the azimuth, time-delay and Doppler

domain. However, when programming the vectorized target scene for our experiments we noted an

interesting observation: due to the fact that targets could not occupy the same range and azimuth

location simultaneously they were often separated from each other due to the additional Doppler

domain. This is not surprising because we made the reasonable assumption that the targets would

not be colliding into one another in our setup. Yet, our experiments consistently generated sparse
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vectors whose nonzero entries were disjoint from one another due to the presence of a large number

of zeros between any two pairs of targets. In keeping with the considerations laid out in Section 1.2,

we investigate this underlying structure from a general perspective, i.e., outside of the context of

radar system, in the proceeding chapter.
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Chapter 4: Sparse Disjoint Structure

We investigate the minimal number of linear measurements needed to recover sparse disjointed

vectors robustly in the presence of measurement error. We discuss basic facts about sparse disjointed

vectors and detail how projections onto the set of sparse disjointed vectors can be computed by

dynamic programming. The ability to compute these projections would allow for the modification

of virtually all sparse recovery iterative greedy algorithms to fit the sparse disjointed framework,

but we focus only on iterative hard thresholding (IHT)—arguably the simplest of these algorithms.

We provide a justification that robust uniform recovery can be carried out efficiently based on

random measurements (which are noninflating, see Section 4.4) provided their number has order at

least mspa&dis, see Theorem 23. Finally, we present the crucial result that robust uniform recovery

schemes for sparse disjointed vectors cannot exist if the number of noninflating measurements has

order less than mspa&dis.

4.1 Introduction

As previously introduced in Chapter 1 and in following the observation made in Section 3.6, here

we study vectors that are simultaneously s-sparse and d-disjointed. A vector x ∈ CN is said to be

d-disjointed if there are always at least d zero entries between two nonzero entries, i.e., if |j−i| > d for

all distinct i, j ∈ supp(x). Sparse disjointed vectors also serve as a pertinent model for neural spike

trains, see [Hegde et al. 2009] which already established recovery results similar to those presented

in Section 4.3. However, we consider the question of the minimal number of measurements needed

for robust uniform recovery of sparse disjointed vectors. As presented in Section 2.4, the uniform

recovery of s-sparse vectors is achievable from

m � mspa := s ln

(
e
N

s

)
(4.1)
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random linear measurements. This can be carried out efficiently via convex optimization or iterative

greedy algorithms and the recovery is both robust with respect to measurement error and stable

with respect to sparsity defect. The number of measurements in (4.1) is optimal when stability is

required. The uniform recovery of d-disjointed vectors is achievable from

m � mdis :=
N

d
(4.2)

deterministic Fourier measurements and it can be carried out efficiently using convex optimization

(see [Candès and Fernandez-Granda 2014 Corollary 1.4]). The number of measurements (4.2) is

easily seen to be optimal, even without requiring stability. We give an informal statement of our

main result regarding simultaneously sparse and disjointed vectors below.

Theorem 23. The minimal number of noninflating measurements needed to achieve robust uniform

recovery of s-sparse d-disjointed vectors is of the order of

mspa&dis := s ln

(
e
N − d(s− 1)

s

)
. (4.3)

The significance of this result lies in the interpretation: for mspa&dis to be of smaller order than

mspa, we need t := (N −d(s−1))/s ≤ N/(2s); but then d = (N − st)/(s−1) ≥ (N −N/2)/(s−1) ≥

N/(2s), i.e., N/d ≤ 2s, which implies that mdis is of smaller order than mspa&dis. In short, we have

arrived at

mspa&dis � min {mspa,mdis} . (4.4)

Expressed differently, there is no benefit in knowing the simultaneity of sparsity and disjointness as

far as the number of noniflating measurements is concerned. This recalls the message of [Oymak

et al. 2015], which showed that vectors possessing certain structures simultaneously require at least

as many Gaussian random measurements for their recovery via combined convex relaxations as what

could have been achieved via the convex relaxation associated to one of the structures. Our result

is narrower since it focuses on a particular simultaneity of structures, but no limitation is placed
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on the nature of the recovery algorithm and the measurements are only assumed to be noninflating

instead of Gaussian. Finally, restricting to `1-minimization and Gaussian measurements would have

been irrelevant here, because even nonuniform recovery, i.e., the recovery of a single sparse vector—

a fortiori of a disjointed one—already requires a number of measurements of order at least mspa,

as inferred from known results on phase transition (see [Donoho and Tanner 2009] for the original

arguments and [Amelunxen et al. 2014] for recent arguments).

4.2 Sparse Disjointed Vectors

We note first that sparsity and disjointness are not totally independent structures, since a highly

disjointed vector is automatically quite sparse when its length N is fixed. Alternatively, an exactly

s-sparse vector that is d-disjointed cannot have too small a length, i.e. N ≥ s + d(s − 1), because

there must be s nonzero entries and at least d zero entries in each of the s− 1 spaces between them.

In connection with (4.3), we re-express this inequality as N − d(s − 1) ≥ s to highlight that the

logarithmic factor is at least equal to 1. Figure 4.1 depicts a useful, alternative way to think of

an s-sparse d-disjointed vector. Namely, we artificially insert d zero entries at the right end, hence

forming a vector of length N+d containing s blocks of size d+1. Each block consists of one nonzero

entry followed by d zero entries. Then, identifying every block with a condensed object of length 1

reveals a one-to-one correspondence between s-sparse d-disjointed vectors of length N and s-sparse

vectors of length N − d(s− 1). This correspondence will be used again in Section 4.4, but for now it

explains the following fact already employed in [Hegde et al. 2009], which is based on the well-known

number of ways to distribute n identical objects amongst k groups.

≥  d1 2 ≥  d 3   s
Length  N  

Length  N+d
d+1 d+1

Length  N-‐d(s-‐1)

insert  d
Length  N+d

d+1

Figure 4.1: Pictorial representation of sparse disjointed vectors (hollow circles represent zero
values).
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Fact 24. The number of d-disjointed subsets of J1 : NK with size s is
(
N − d(s− 1)

s

)
.

This formula could instead be justified by the inductive process at the basis of Fact 25 be-

low, which concerns the computation of best approximations by s-sparse d-disjointed vectors in

`p for p ∈ (0,∞). This task is not immediate, unlike the computation of the best approximations

by s-sparse vectors (called hard thresholding), which simply consists of keeping the s largest abso-

lute entries and setting the other entries to zero. Perhaps counterintuitively, the largest absolute

entry need not be part of the support of the best approximation in the sparse disjointed case1, as

illustrated by the example x = (1, 0, 1, 21/4, 1, 0, 2−1/2) whose best 3-sparse 1-separated approxima-

tion is (1, 0, 1, 0, 1, 0, 0) for p = 2. Note that the best approximation is (1, 0, 0, 21/4, 0, 0, 2−1/2) for

p = 4, highlighting another difference with the sparse case, namely the possible dependence on p

of the best approximation. The strategy adopted in [Hegde et al. 2009] for computing best sparse

disjointed approximations consisted in recasting the problem as an integer program and relaxing it

to a linear program proved to yield the same solution. We propose a different approach here. The

corresponding Matlab implementation, along with an illustrative set of experiments, are included

in Appendix A.2.

Fact 25. The best `p-approximation of a vector x ∈ CN from the set of s-sparse d-disjointed vectors

can be efficiently computed by dynamic programming for any p ∈ (0,∞).

Dynamic programming in general refers to methods for solving optimization problems by breaking

them into smaller subproblems. The solutions of these smaller optimization problems are then

synthesized in an orderly fashion to solve the original optimization problem. See [Isaev 2006] for

examples of dynamic programming in applications to computational gene sequence alignment. The

program of Fact 25 determines the error of best approximation F (N, s), where F (n, r) is defined for

n ∈ J1 : NK and r ∈ J0 : sK by

F (n, r) := min


n∑
j=1

|xj − zj |p : z ∈ Cn is r-sparse d-disjointed

 . (4.5)

1In particular, the nested approximation property of [Baraniuk et al. 2010], as mentioned in Section 1.3 does not
hold in this case.
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We claim that, for n ∈ Jd+ 2, NK and r ∈ J1, sK,

F (n, r) = min


F (n− 1, r) + |xn|p,

F (n− d− 1, r − 1) +
n−1∑
j=n−d

|xj |p.
(4.6)

This relation simply distinguishes between a zero and a nonzero value at the last entry of the

minimizer for F (n, r).

We establish first the lower estimate on F (n, r) by considering a minimizer x̂ ∈ Cn for F (n, r):

if x̂n = 0, then

F (n, r) =

n−1∑
j=1

|xj − x̂j |p + |xn|p ≥ F (n− 1, r) + |xn|p,

since x̂J1:n−1K ∈ Cn−1 is r-sparse d-disjointed; if x̂n 6= 0, so that x̂n−d = x̂n−d+1 = · · · = x̂n−1 = 0

by d-disjointedness, then

F (n, r) =

n−d−1∑
j=1

|xj − x̂j |p +

n−1∑
j=n−d

|xj |p + |xn − x̂n|p ≥ F (n− d− 1, r − 1) +

n−1∑
j=n−d

|xj |p,

since x̂J1:n−d−1K ∈ Cn−d−1 is (r − 1)-sparse d-disjointed. Next, we establish the upper estimate on

F (n, r) by separating cases for the minimum in (4.6): if F (n − 1, r) + |xn|p is the smallest value,

selecting a minimizer x̃ ∈ Cn−1 for F (n − 1, r) and considering the r-sparse d-disjointed vector

x̂ := (x̃, 0) ∈ Cn yields

F (n, r) ≤
n∑
j=1

|xj − x̂j |p =

n−1∑
j=1

|xj − x̃j |p + |xn|p = F (n− 1, r) + |xn|p;

if F (n − d − 1, r − 1) +
∑n−1
j=n−d |xj |p is the smallest value, selecting a minimizer x̃ ∈ Cn−d−1 for

F (n− d− 1, r− 1) and considering the r-sparse d-separated vector x̂ := (x̃, 0, . . . , 0, xn) ∈ Cn yields

F (n, r) ≤
n∑
j=1

|xj − x̂j |p =

n−d−1∑
j=1

|xj − x̃j |p +

n−1∑
j=n−d

|xj |p = F (n− d− 1, r − 1) +

n−1∑
j=n−d

|xj |p.

The relation (4.6) is now fully justified; thus, we can fill in a table of values for F (n, r) from the
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initial values

F (n, 0) = ‖xJ1:nK‖pp, n ∈ J1 : NK,

F (n, r) = ‖xJ1:nK‖pp − max
j∈J1:nK

|xj |p, n ∈ J1 : d+ 1K, r ∈ J1 : sK.

The latter relation reflects the absence of exactly r-sparse d-disjointed vectors in Cn when r ≥ 2

and n ≤ d+ 1. Let us observe that, according to (4.6), determining one entry of the table generated

by (4.5) requires O(d) arithmetic operations and that there are O(sN) entries in F , so computing

the error of best approximation by s-sparse d-disjointed vectors requires a total of O(dsN) = O(N2)

arithmetic operations (to compare with O(N3.5) for the linear programming strategy of [Hegde

et al. 2009]). As for the best approximation itself, we need to keep track of the cases producing the

minima in (4.6)2. Using arrows as in Figure 4.2, an arrow pointing northwest from the (n, r)th box

indicates that the index n is part of the support of the best approximation, while an arrow pointing

north indicates that the index is not part of the support. Once the support is determined, the best

approximation is the vector equal to x on this support.

Figure 4.2: Sketch of the dynamic program computing the best s-sparse d-disjointed approx-
imations to x = (1, 0, 1, 21/4, 1, 0, 2−1/2) with s = 3 and d = 1 for p = 2 (left) and p = 4
(right). The italicized numbers in each table indicate values that are computed as part of the
initialization of the algorithm. Observe that according to the tables, the output for the best
3-sparse 1-disjointed approximation to x for p = 2 is xp=2 = (1, 0, 1, 0, 1, 0, 0), while the output
for p = 4 is xp=4 = (1, 0, 0, 21/4, 0, 0, 2−1/2).

The example highlighted in Figure 4.2 is included in Appendix A.2, as previously mentioned,

along with an additional experiment to highlight a situation in which the iterative hard thresholding

2we break possible ties arbitrarily by choosing preferentially the second case
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algorithm adapted for sparse and disjoint approximations outperforms the original IHT method. See

Section 4.3 for the pseudocode and Appendix A.2 for the implementation of this algorithm. Figure

4.3 presents the difference in the outputs of each method by plotting the value associated with

each index of the original vector in blue and the returned value in red. Additionally, a collection

of simulations were performed to investigate how these algorithms perform with a fixed value of

N = 1000, two different values of d = 10 and d = 20, and sparsity levels ranging from 1 to

20. For this experiment, one hundred s-sparse and d-disjointed vectors and one hundred random

measurement matrices, with m = 200, were generated. The vectors were measured precisely, i.e.,

without noise, then IHT and the modified IHT methods were called to approximate the original

signals. A comparison of the percentage of successful recoveries as the sparsity increases is displayed

in Figure 4.4. Notice that although the modified IHT slightly outperforms the classical IHT, both

algorithms perform roughly the same overall and exhibit a similar graceful decay.
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IHT adapted to the sparse disjointed case
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Figure 4.3: Comparison of the classical IHT and IHT adapted to the sparse disjointed struc-
ture. Here one random 12-sparse 65-disjointed vector in R1000 is generated, then recovered by
each method using the same random measurement matrix with m = 200. The values of entries
of the original vector and the recovered vector are plotted together for each method.
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Figure 4.4: Comparison of the efficacy of the classical IHT and IHT adapted to the sparse
disjointed structure. Here N = 1000, d = 10 and d = 20, and the sparsity varies from 1
to 20. One hundred s-sparse and d-disjointed vectors and one hundred random measurement
matrices, withm = 200, are generated combination of parameters. The `2-errors of the recovered
vectors are compared with a fixed tolerance level to assess whether a particular simulation was
successful. The percentage of successful recoveries for each method at each value of d are plotted
together.
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4.3 Sufficient Number of Measurements

Here we show that a number of measurements proportional to mspa&dis is enough to guarantee

robust recovery of sparse disjointed vectors. Such a result was already stated in [Hegde et al. 2009

Theorem 3], see [Baraniuk et al. 2010] for the proof. However, the algorithm considered in these

articles is an adaptation of CoSaMP, whereas we analyze a natural adaptation of IHT. Our approach

also simplifies the existing arguments. The main tool we employ is a restricted-isometry-like property

valid in the general context of union of subspaces, see [Blumensath and Davies 2009a Theorem 3.3].

The slight difference with the theorem stated below is that the scaling in δ has been reduced from

ln(1/δ)/δ2 to the optimal 1/δ2.

Theorem 26. Let δ ∈ (0, 1) and let A ∈ Cm×N be populated by independent identically distributed

subgaussian random variables with variance 1/m. Then, with probability at least 1−2 exp(−cδ2m),

(1− δ)‖z + z′ + z′′‖22 ≤ ‖A(z + z′ + z′′)‖22 ≤ (1 + δ)‖z + z′ + z′′‖22 (4.7)

for all s-sparse d-disjointed z, z′, z′′ ∈ CN , provided

m ≥ C

δ2
s ln

(
e
N − d(s− 1)

s

)
.

The constants c, C > 0 depend only on the subgaussian distribution.

We note that the need for z, z′, and z′′ will be made clear in the proof of the upcoming Propo-

sition 27.

Proof. We prove the equivalent statement that, with probability at least 1− 2 exp(−cδ2m),

‖A∗TAT − I‖2→2 ≤ δ

for all sets T ⊆ J1 : NK of the form S ∪ S′ ∪ S′′ where S, S′, S′′ are d-disjointed subsets of J1 : NK

with size s. Notice this echoes the alternate form of the RIP as presented in (2.12). Such sets are
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of size at most 3s and their number is upper-bounded by the cube of the number of d-disjointed

subsets with size s, i.e., by

(
N − d(s− 1)

s

)3

≤
(
e
N − d(s− 1)

s

)3s

.

This is a straightforward estimate, confer with Lemma C.5 of [Foucart and Rauhut 2013] for a proof.

Now, if T is fixed, the following inequality holds (see e.g. [Foucart and Rauhut 2013 Theorem 9.9

and Equation (9.12)])

P (‖A∗TAT − I‖2→2 > δ) ≤ 2 exp
(
−c′δ2m+ c′′s

)

with constants c′, c′′ > 0 depending only on the subgaussian distribution, confer with Definition 19.

Taking a union bound over all possible T , we see that the desired result holds with failure probability

at most

(
e
N − d(s− 1)

s

)3s

2 exp
(
−c′δ2m+ c′′s

)
≤ 2 exp

(
−c′δ2m+ (c′′ + 3)s ln

(
e
N − d(s− 1)

s

))
≤ 2 exp(−c′δ2m/2),

where the last inequality holds if one imposes m ≥ [2(c′′ + 3)/c′]δ−2s ln(e(N − d(s− 1))/s).

The restricted-isometry-like property will not be used directly in the form (4.7), but rather

through its two consequences below.

Proposition 27. Suppose that A satisfies (4.7). Then, for all s-sparse d-disjointed x,x′,x′′ ∈ CN ,

|〈x− x′, (A∗A− I)(x− x′′)〉| ≤ δ‖x− x′‖2‖x− x′′‖2, (4.8)

and, for all e ∈ Cm and all d-disjointed subsets S, S′ of J1 : NK with size s,

‖(A∗e)S∪S′‖2 ≤
√

1 + δ ‖e‖2. (4.9)
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Proof. Setting u = eiθ(x − x′)/‖x − x′‖2 and v = eiυ(x − x′′)/‖x − x′′‖22 for properly chosen

θ, υ ∈ [−π, π], we have

|〈x− x′, (A∗A− I)(x− x′′)〉|
‖x− x′‖2‖x− x′′‖2

= Re〈u, (A∗A− I)v〉 = Re〈Au,Av〉 − Re〈u,v〉

=
1

4

(
‖A(u + v)‖22 − ‖A(u− v)‖22

)
− 1

4

(
‖u + v‖22 − ‖u− v‖22

)
≤ 1

4
|‖A(u + v)‖22 − ‖u + v‖22|+

1

4
|‖A(u− v)‖22 − ‖u− v‖22|.

Noticing that both u + v and u − v take the form z + z′ + z′′ for some s-sparse d-disjointed

z, z′, z′′ ∈ CN , we apply (4.7) to deduce

|〈x− x′, (A∗A− I)(x− x′′)〉|
‖x− x′‖2‖x− x′′‖2

≤ δ

4

(
‖u + v‖22 + ‖u− v‖22

)
=
δ

2

(
‖u‖22 + ‖v‖22

)
= δ.

This shows the desired inequality (4.8). To prove inequality (4.9), we write

‖(A∗e)S∪S′‖22 = 〈(A∗e)S∪S′ ,A
∗e〉 = 〈A((A∗e)S∪S′), e〉 ≤ ‖A((A∗e)S∪S′)‖2‖e‖2.

It now suffices to notice that (A∗e)S∪S′ takes the form z + z′ + z′′ for some s-sparse d-disjointed

z, z′, z′′ ∈ CN (with z′′ = 0) to derive ‖A((A∗e)S∪S′)‖2 ≤
√

1 + δ ‖(A∗e)S∪S′‖2 from (4.7). The

inequality (4.9) follows after simplifying by ‖(A∗e)S∪S′‖2.

With Proposition 27 at hand, robust uniform recovery is quickly established for the iterative hard

thresholding algorithm adapted to the framework of s-sparse d-disjointed vectors. In the description

of this algorithm below, Ps,d represents the projection onto (i.e., best `2-approximation by) s-sparse

d-disjointed vectors discussed in Section 4.1. An implementation of this algorithm is included in

Appendix A.2
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Sparse disjointed iterative hard thresholding (SDIHT)

Input: measurement matrix A, measurement vector y, sparsity level s, disjointedness level d.

Initialization: s-sparse d-disjointed vector x0, typically x0 = 0.

Iteration: repeat until a stopping criterion is met at n = n̄:

xn+1 = Ps,d(x
n + A∗(y −Axn)). (SDIHT)

Output: the s-sparse d-disjointed vector x] = xn̄.

Theorem 28. Suppose that A ∈ Cm×N satisfies (4.7) with δ < 1/2. Then for every s-sparse

d-disjointed vector x ∈ CN acquired via y = Ax + e ∈ Cm with an adversarial error e ∈ Cm, the

output x] := lim
n→∞

xn of IHT approximates x with `2-error

‖x− x]‖2 ≤ D‖e‖2, (4.10)

where D > 0 is a constant depending only on δ. In particular, this conclusion is valid with high

probability on the draw of a matrix populated by independent zero-mean Gaussian entries with

variance 1/m provided

m ≥ Cmspa&dis

for some absolute constant C > 0.

Proof. We observe that xn+1 is a better s-sparse d-disjointed `2-approximation to the vector xn +

A∗(y −Axn) = xn + A∗A(x− xn) + A∗e than x is to derive

‖(xn + A∗A(x− xn) + A∗e)− xn+1‖22 ≤ ‖(xn + A∗A(x− xn) + A∗e)− x‖22,

i.e.,

‖x− xn+1 + (A∗A− I)(x− xn) + A∗e‖22 ≤ ‖(A∗A− I)(x− xn) + A∗e‖22.
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After expanding the squares and rearranging, we deduce

‖x− xn+1‖22 ≤ −2〈x− xn+1, (A∗A− I)(x− xn) + A∗e〉

≤ 2|〈x− xn+1, (A∗A− I)(x− xn)〉|+ 2‖x− xn+1‖2‖(A∗e)S∪Sn+1‖2,

where S and Sn+1 denote the supports of x and xn+1, respectively. Applying (4.8) and (4.9) and

simplifying by ‖x− xn+1‖2 gives

‖x− xn+1‖2 ≤ 2δ‖x− xn‖2 + 2
√

1 + δ ‖e‖2.

With δ < 1/2, this inequality readily implies the desired result (4.10) with D := 2
√

1 + δ/(1− 2δ).

Combining it with Theorem 26 yields the rest of the statement.

4.4 Necessary Number of Measurements

We now show that a number of noninflating measurements at least proportional to mspa&dis is

necessary to ensure robust recovery of sparse disjointed vectors. By noninflating measurements with

constant c, relative to the s-sparse d-disjointed model, we mean that the matrix A associated with

the measurement process satisfies,

‖Az‖2 ≤ c‖z‖2 whenever z ∈ CN is s-sparse d-disjointed.

Figuratively, the energy of a signal with the targeted structure is not inflated by the measurement

process. According to Theorems 26 and 28, a random measurement process is likely to be noninflating

(with constant c ≤ 1 + δ) and it enables robust uniform recovery of s-sparse d-disjointed vectors

when the number of measurements obeys m ≥ Cmspa&dis. We show below that this is optimal. The

key to the argument is a generalization of a lemma used in [Foucart et al. 2010] (see also [Foucart

and Rauhut 2013 Lemma 10.12]).
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Lemma 29. There exist

n ≥
(
N − d(s− 1)

c1s

)c2s
(4.11)

d-disjointed subsets S1, . . . , Sn of J1 : NK such that

card(Si) = s for all i and card(Si ∩ Sj) <
s

2
for all i 6= j.

The constant c1, c2 > 0 are universal—precisely, one can take c1 = 12e and c2 = 1/2.

Proof. Let A be the collection of all d-disjointed subsets of J1 : NK with size s. Let us fix an arbitrary

S1 ∈ A. We then consider the collection A1 of sets in A whose intersection with S1 has size s/2 or

more, i.e.,

A1 =

s⋃
j=ds/2e

Aj1, where Aj1 := {S ∈ A : card(S1 ∩ S) = j} .

We claim that, for any j ∈ Jds/2e : sK,

card(Aj1) ≤
(
s

j

)(
N − d(s− 1)

s− j

)
≤
(
s

j

)(
N − d(s− 1)

bs/2c

)
. (4.12)

The first factor upper-bounds the possible choices of the intersection J := S1∩S. The second factor

Length  N  

Length  N+d
d+1

insert  d
Length  N+d

Fixed  Intersection  Set  J

Length  N+d-‐(d+1)j

d+1

remove

d+1

remove

Figure 4.5: Illustration of the counting argument in the proof of Lemma 29.

upper-bounds the number of d-disjointed subsets of J1 : NK with size s whose intersection with S1

is a fixed set J of size j: indeed, by thinking of s-sparse d-disjointed vectors of length N as s blocks

with size d + 1 inside a set with size N + d, as we did in Figure 4.1, we observe in Figure 4.5 that

the d-disjointed subsets of J1 : NK with size s whose intersection with S1 equals J inject into the
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d-disjointed subsets of J1 : N − (d + 1)jK with size s − j by the process of removing the blocks

attached to J , so the desired number is at most

(
N − (d+ 1)j − d(s− j − 1)

s− j

)
=

(
N − d(s− 1)− j

s− j

)
≤
(
N − d(s− 1)

s− j

)
.

This finishes the justification of the first inequality in (4.12). The second inequality holds because

s− j ≤ bs/2c ≤ d(N − d(s− 1))/2e. It then follows from (4.12) that

card(A1) ≤
s∑

j=ds/2e

(
s

j

)(
N − d(s− 1)

bs/2c

)
≤ 2s

(
N − d(s− 1)

bs/2c

)
.

Let us now fix an arbitrary set S2 ∈ A \ A1, provided the latter is nonempty. We consider the

collection A2 of sets in A \ A1 whose intersection with S2 has size s/2 or more, i.e.,

A2 =

s⋃
j=ds/2e

Aj2, where Aj2 := {S ∈ A \ A1 : card(S2 ∩ S) = j} .

The same reasoning as before yields

card(A2) ≤ 2s
(
N − d(s− 1)

bs/2c

)
.

We repeat the procedure of selecting sets S1, . . . , Sn until A \ (A1 ∪ · · · ∪ An) becomes empty. In

this way, for any i < j, the condition card(Si ∩ Sj) < s/2 is automatically fulfilled by virtue of

Sj ∈ A \ (A1 ∪ · · · ∪ Aj−1) ⊆ A \ (A1 ∪ · · · ∪ Ai). Finally, the number n of subsets satisfies

n ≥ card(A)

max
i∈J1:nK

card(Ai)
≥

(
N − d(s− 1)

s

)
2s
(
N − d(s− 1)

bs/2c

) ≥
(
N − d(s− 1)

s

)s
2s
(
e
N − d(s− 1)

bs/2c

)bs/2c ≥
(
N − d(s− 1)

s

)s
2s
(
e
N − d(s− 1)

s/3

)s/2
=

(
N − d(s− 1)

12es

)s/2
.

We can now turn to the main result of this section.
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Theorem 30. Let A ∈ Cm×N be the matrix of a noninflating measurement process with constant c

relative to the s-sparse d-disjointed model and let ∆ : Cm → CN be a reconstruction map providing

a robustness estimate

‖x−∆(Ax + e)‖2 ≤ D‖e‖2 (4.13)

which is valid for all s-sparse d-disjointed vectors x ∈ CN and all measurement error e ∈ Cm. Then

the number m of measurements is lower-bounded as

m ≥ Cs ln

(
e
N − d(s− 1)

s

)
.

The constant C > 0 depends only on c and D.

Proof. With each Si of Lemma 29, we associate an s-sparse d-disjointed vector xi ∈ CN defined by

xi` =


1/
√
s, if ` ∈ Si,

0, if ` 6∈ Si.

We notice that each xi satisfies ‖xi‖2 = 1. We also notice that each xi − xj , i 6= j, is supported

on the symmetric difference (Si ∪ Sj) \ (Si ∩ Sj), which has size larger than s, and since its nonzero

entries are ±1/
√
s, we have

‖xi − xj‖2 > 1, i 6= j.

Setting ρ := 1/(2D), let us consider the balls in Cm ≡ R2m with radius ρ and centered at the Axi,

i.e.,

Bi := Axi + ρBm2 .

Using the noninflating property, we easily see that each ball Bi is contained in (c + ρ)Bm2 . This

implies that

Vol

(
n⋃
i=1

Bi

)
≤ Vol ((c+ ρ)Bm2 ) = (c+ ρ)2mVol(Bm2 ). (4.14)

Moreover, we claim that the balls Bi are disjoint. Indeed, if Bi ∩ Bj 6= ∅ for some i 6= j, then there

Chapter 4: Sparse Disjoint Structure 4.4 Necessary Number of Measurements



72

would exist ei, ej ∈ Bm2 such that Axi + ρei = Axj + ρej =: y. Exploiting (4.13), we could then

write

1 < ‖xi − xj‖2 ≤ ‖xi −∆(y)‖2 + ‖xj −∆(y)‖2 ≤ D‖ρei‖2 +D‖ρej‖2 ≤ 2Dρ = 1,

which is absurd. It follows that

Vol

(
n⋃
i=1

Bi

)
=

n∑
i=1

Vol(Bi) = nVol(ρBm2 ) = nρ2mVol(Bm2 ). (4.15)

Putting (4.14) and (4.15) together before making use of (4.11), we obtain

(
1 +

c

ρ

)2m

≥ n, hence 2m ln

(
1 +

c

ρ

)
≥ ln(n) ≥ c2s ln

(
N − d(s− 1)

c1s

)
.

In view of ρ = 1/(2D), we have arrived at

m

s
≥ c3 ln

(
N − d(s− 1)

c1s

)
, c3 :=

c2
2 ln(1 + 2cD)

.

To conclude, we take the obvious lower bound m/s ≥ 1 into account to derive

(
1

c3
+ ln(ec1)

)
m

s
≥ ln

(
N − d(s− 1)

c1s

)
+ ln(ec1) = ln

(
e
N − d(s− 1)

s

)
.

This is the desired result with C := c3/(1 + c3 ln(ec1)).

4.5 Conclusion

We have found that simultaneous knowledge of both sparsity and disjointedness within a signal

provides no benefit in reducing the optimal number of measurements needed for uniform robust

recovery as compared to knowledge of only one such structure when employing noninflating mea-

surements. Although this result is in the negative, we have still expanded the theory of structured

compressive sensing as our class of measurement matrices is more general than the standard Gaus-

Chapter 4: Sparse Disjoint Structure 4.5 Conclusion



73

sian random matrices and we place no restriction on the method of recovery. Our findings have been

rigorously proven by naturally extending the proofs for the result concerning the standard sparse

model of Chapter 2 to the case of sparse and disjoint vectors. Additionally, we have developed an

effective algorithm for calculating the best s-sparse d-disjoint approximation to a vector via dynamic

programming and supplied the associated code for our work in Appendix A.2.
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Chapter 5: Conclusion

We have explored the feasibility of applying the techniques of compressive sensing to on-grid MIMO

radar and incorporating disjointedness and sparsity together within the compressive sensing frame-

work. While our findings are in the negative, these analyses have highlighted several considerations

for future work in these research areas.

For the specific physical problem we established in Chapter 3, we found that our approach per-

formed well when only a few targets were present in the scene. As the signal-to-noise ratio decreased,

the reconstruction decayed considerably. Although this method used far fewer measurements than

required via the Nyquist rate, more measurements should be taken to improve performance and

offset these two impediments. Our data not only reinforce the notion that random positioning of the

antennas in MIMO radar enhances the efficacy of the compressive sensing framework but also empha-

size the crucial need for fine-tuning of the parameters of the selected reconstruction algorithms and

the benefit this can provide. Alternative recovery methods should also be explored as the `1-squared

Nonnegative Regularization method method provided surprisingly superior performance over other

approaches.

This research was intended as a first step towards the case of off-grid MIMO radar in azimuth,

delay, and Doppler domains, however, all attempts to account for discrepancies between a target’s

true location and the closest grid location were unsuccessful. Further work is vital in this area for

compressive sensing-based MIMO radar systems, and any other adapted radar system, to succeed

in practice, even if the number of considered domains is reduced from the three presented here.

Depending on the system design, alternative signals may outperform linear chirps, improve target

parameter estimation, and enhance the suitability of the resulting measurement matrix for compres-

sive sensing. Additionally, establishing restricted isometry property guarantees for the matrices that

result from the various combinations of the previously mentioned parameters is of critical importance

for this field.
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The experimental investigation of MIMO radar lead to a natural question concerning the struc-

ture of the vectors we were attempting to recover. We termed this structure sparse and disjoint

and provided a complete treatment of its viability within compressive sensing. After discussing the

essential details of this structure, we devised a method for projecting onto the set of sparse and

disjoint vectors through dynamic programming. This procedure and its adaptation into the classical

iterative hard thresholding algorithm were utilized in our experiments probing whether or not this

structural knowledge can be leveraged to reduce the minimal number of measurements needed to

robustly recover sparse disjointed vectors uniformly. Unfortunately, our findings were in the neg-

ative, i.e., simultaneous knowledge of these two structures does not reduce the optimal number of

measurements for uniform robust recovery, as compared to knowing just one of these structures,

when using a noninflating measurement scheme regardless of the recovery algorithm.

We arrived at the theoretical justifications for this claim by separately examining the sufficient

and necessary number of measurements needed for robust recovery. Our results echo the standard

theory for sparse vectors. We note that there is still an open question as to whether or not algorithms

adapted to sparse and disjoint vectors can provide a significant reduction in the computational com-

plexity of a problem in application. Furthermore, the theoretical implications for non-uniform sparse

disjoint robust recovery are still to be explored. Other structures also warrant similar considerations.

Deriving theoretical results as presented here will further expand the field of compressive sensing as

such developments have the potential to increase its utility in practice. As technological advance-

ments continue to necessitate more efficient methods of data compression that reduce computational

complexity and provide higher levels of resolution, i.e., more for less, compressive sensing is poised

to play a significant role in addressing these demands.

Chapter 5: Conclusion
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Appendix A: Code

This appendix includes reproductions of the Matlab code associated with the presentation of Chap-

ters 3 and 4. Much of the code is already documented in-line but brief explanations are provided to

supplement the material.

A.1 Compressive Sensing MIMO Radar

The first experiment detailed in Section 3.5 compares different algorithms at different sparsity levels

with a fixed SNR and a fixed threshold value. However, only the L1SQNN method is included

to save space. The code may be easily modified to incorporate other algorithms aside from those

mentioned in the experiment.

1 %% Experiment 1

2 % Compressed Sens ing in On−Grid MIMO Radar

3 % Test Simulat ions , SNR = 30dB, random array

4 % Only L1 Square Non Negative Regu l a r i z a t i on d i sp layed

5 % Michael F Minner

6

7 %% Simulat ion in fo rmat ion

8

9 % For each s p a r s i t y l e v e l , generate N_S s i gna l s , N_M matr i ce s

10 Spars i ty_Leve l s =2 :2 : 28 ;

11

12 N_S=10;N_A=10;N_ss=s i z e ( Spars i ty_Levels , 2 ) ; % Number o f s i gna l s , random arrays ,

s p a r s i t y l e v e l s

13 N_Sim=N_S∗N_A; % Number o f s imu la t i on s f o r each s p a r s i t y

l e v e l

14

15 th r e sho ld = [ . 0 0 1 , . 0 1 , . 1 ] ; % Consider d i f f e r e n t th r e sho ld l e v e l s f o r

d e t e c t i on

16 N_thresh=s i z e ( thresho ld , 2 ) ; % Number o f th r e sho ld s cons ide r ed
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17

18 SNR=30; % S igna l to no i s e r a t i o in dB

19

20 L1SQNN. AvgProbD=ze ro s (N_ss , N_thresh ) ;

21 L1SQNN. AvgProbFA=ze ro s (N_ss , N_thresh ) ;

22 L1SQNN. AvgRelErr=ze ro s (N_ss , N_thresh ) ;

23 L1SQNN. AvgRelErrNT=ze ro s (N_ss , 1 ) ;

24 L1SQNN. AvgTime=ze ro s (N_ss , 1 ) ;

25 L1SQNN. AvgNbrItr=ze ro s (N_ss , 1 ) ;

26

27 L1SQNN_ProbD=ze ro s (N_Sim, N_thresh ) ;

28 L1SQNN_ProbFA=ze ro s (N_Sim, N_thresh ) ;

29 L1SQNN_RelErr=ze ro s (N_Sim, N_thresh ) ;

30 L1SQNN_RelErrNT=ze ro s (N_Sim, 1 ) ;

31 L1SQNN_Time=ze ro s (N_Sim, 1 ) ;

32 L1SQNN_NbrItr=ze ro s (N_Sim, 1 ) ;

33

34 %% I n i t i a l i z a t i o n

35

36 M=5; % # of Transmitters

37 N=5; % # of Rece ive r s .

38 Q=15; % # of samples

39

40 U=10; % # of Azimuth Bins

41 V=10; % # of Range Bins

42 W=10; % # of Doppler Bins

43

44 K=U∗V∗W; % to t a l # o f Bins

45

46 P=10; % spa r s i t y o f the t a r g e t scene

47

48 c=3e8 ; % speed o f l i g h t

49

50 B=15e6 ; % Bandwidth o f each transmit ted s i g n a l 15MHz
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51 T=2e−6; % Waveform pu l s e durat ion

52 f_c=1e10 ; % Car r i e r f requency o f the f i r s t t r an smi t t e r 10GHz

53 lambda=c/f_c ; % Reference c a r r i e r wavelength , lambda = c/f_c

54 alpha=B/T; % Chirp rate , alpha=B/T

55

56 Range_U=[ − . 1 , . 1 ] ; % range o f ang l e s (−.1 to . 1 ) in rad ians

57 Range_V=[990 ,1010 ] ; % range o f d i s t an c e s in meters (980 to 1020 meters )

58 Range_W=[0 , 30 ] ; % range o f speeds (0 to 30 meters per second )

59

60 Range_tau=2.∗Range_V./ c ; % range o f time de lays

61 Range_upsilon=2/lambda .∗Range_W; % range o f Doppler s h i f t s

62

63 Delta_U=(Range_U(2)−Range_U(1) ) /U; % step s i z e in each domain

64 Delta_V=(Range_V(2)−Range_V(1) ) /V;

65 Delta_W=(Range_W(2)−Range_W(1) ) /W;

66

67 Delta_tau=(Range_tau (2)−Range_tau (1 ) ) /V;

68 Delta_upsi lon=(Range_upsilon (2 )−Range_upsilon (1 ) ) /W;

69

70 Values_U=Range_U(1) : Delta_U :Range_U(2)−Delta_U ; % va lues f o r each bin

71 Values_V=Range_V(1) : Delta_V :Range_V(2)−Delta_V ; % remove add i t i o na l f i n a l bin

72 Values_W=Range_W(1) :Delta_W:Range_W(2)−Delta_W;

73

74 Values_tau=Range_tau (1) : Delta_tau : Range_tau (2 )−Delta_tau ;

75 Values_upsi lon=Range_upsilon (1 ) : Delta_upsi lon : Range_upsilon (2 )−Delta_upsi lon ;

76

77 % Sample in time only f o r t a r g e t s in the scene . . .

78 T_d=Range_tau (2)−Range_tau (1 ) ; % Sample time durat ion

79 Delta_Q=T_d/Q; % Sample t imes

80 Values_T_d=Range_tau (1 ) : Delta_Q : Range_tau (2 )−Delta_Q ;

81

82 %% Simulat ions

83

84 t imeStart=t i c ;

Appendix A: Code A.1 Compressive Sensing MIMO Radar



82

85 index1=1; % Index f o r the t o t a l number o f s imu la t i on s performed

86

87 index4=1; % Index f o r s p a r s i t y

88 f o r s s=Spars i ty_Leve l s % Vary the s p a r s i t y l e v e l

89

90 index2=1; % Index f o r number o f s imu la t i on s per s p a r s i t y

91

92 % Ca l cu l a t i on s f o r measurement matr i ce s

93 [~ , weight ,A_F, A_G, A_H] = LinearChirp ( M,Q,V,W, alpha ,T, f_c , Values_tau ,

Values_upsi lon , Values_T_d ) ;

94

95 f o r i i =1:N_A % The number o f s i g n a l s to generate

96

97 % Random Antenna Locat ions

98 [ p , q ] = AntennaPositionRandom (M,N) ;

99

100 % Build Antenna Arrays

101 [A_T,A_R] = AntennaArray ( p , q , lambda , M,N,U, Values_U) ;

102

103 % Measurement Matrix

104 [ A ] = MeasurementMatrixVectorized (A_R, A_T, A_F, A_G, A_H, weight ,M,N,Q,U,V

,W,K) ;

105

106 f o r kk=1:N_S

107

108 [ s i gna l , gr id , supp ] = TargetScene ( ss ,U,V,W,K) ;

109

110 % Al l ones on the support

111 s i g n a l ( supp )=ones ( ss , 1 ) ;

112

113 % Take Measurements

114 y=A∗ s i g n a l ;

115

116 % Complex s epa ra t i on
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117 x=[ r e a l ( s i g n a l ) ; imag ( s i g n a l ) ] ;

118 B=[ r e a l (A) ,− imag (A) ; imag (A) , r e a l (A) ] ;

119 z=B∗x ;

120

121 % Generate Noise

122 PowerSignal=norm( s i g n a l ( supp ) ) . ^2 ;

123 NoiseStdDev=sq r t ( PowerSignal /(2∗M∗N∗Q∗power (10 ,SNR/10) ) ) ; %

Standard dev i a t i on o f the no i s e

124 no i s e=NoiseStdDev .∗ randn (M∗N∗Q, 1 )+NoiseStdDev∗1 i .∗ randn (M∗N∗Q, 1 ) ; %

Complex Gaussian no i s e

125

126 %noi sey measurments

127 y=y+no i s e ;

128 z=[ r e a l ( y ) ; imag (y ) ] ;

129

130 % RECOVERY

131

132 % L1SQNN

133 tStartL1SQNN=t i c ;

134 [ xL1SQNN,~ ,~ ,NbrItrL1SQNN ] = l1sqnnreg ( z ,B, 3 0 ) ;

135 L1SQNN_Time( index2 , 1 )=toc ( tStartL1SQNN) ;

136 L1SQNN_NbrItr ( index2 , 1 )=NbrItrL1SQNN ;

137 xL1SQNN=xL1SQNN(1 :K)+1 i .∗xL1SQNN(K+1,end ) ;

138 L1SQNN_RelErrNT( index2 , 1 )=norm(xL1SQNN−s i g n a l ) / sq r t ( PowerSignal ) ;

139 xL1SQNN_Abs=abs (xL1SQNN) ;

140

141 index3=1;

142 f o r t=thre sho ld

143

144 Removed_L1SQNN=f ind (xL1SQNN_Abs<t ) ;

145 xL1SQNN(Removed_L1SQNN)=0;

146 xL1SQNN_Abs(Removed_L1SQNN)=0;

147 SuppL1SQNN=f ind (xL1SQNN_Abs>=t ) ;

148 L1SQNN_RelErr( index2 , index3 )=norm(xL1SQNN−s i g n a l ) / sq r t ( PowerSignal ) ;
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149 L1SQNN_ProbD( index2 , index3 )=sum(xL1SQNN_Abs( supp , 1 )>=t ) / s s ;

150 L1SQNN_ProbFA( index2 , index3 )=sum(xL1SQNN_Abs( s e t d i f f (SuppL1SQNN, supp )

,1 )>=t ) /(K−s s ) ;

151 index3=index3+1;

152

153 end

154 d i sp l ay ( [ ’ cu r rent s p a r s i t y : ’ num2str ( s s ) ’ cur r ent s imu la t i on : ’ num2str

( index2 ) ] )

155 index2=index2+1;

156 index1=index1+1;

157 end

158 end

159

160 index4=index4+1;

161

162 end

163 timeStop=toc ( t imeStart )

The second experiment compares a random array and uniform linear array setup in the MIMO

radar system.

1 %% Experiment 2

2 % Compressed Sens ing in On−Grid MIMO Radar

3 % Test Simulat ions , SNR = 15 , 20 , 30 , I n f dB

4 % Compare Random Array and Uniform Linear Array (ULA)

5 % L1 Square Non Negative Regu l a r i z a t i on

6 % L1SQNN parameter lambda va r i e s [ depends on SNR l e v e l ]

7 % Size o f the problem i s 500∗1000

8 % Spar s i ty : 3 ,5 ,6 ,9 , 10 ,15 ,20

9

10 % Analyze d i f f e r e n t th r e sho ld l e v e l s

11 % [ 0 . 0 , 0 . 0 0 0 1 , 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , . 8 , 0 . 9 , . 9 9 , . 9 9 9 ]

12

13 % Michael F Minner

14
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15 %% Simulat ion in fo rmat ion

16

17 % For each s p a r s i t y l e v e l , generate N_S s i gna l s , N_M matr i ce s

18 Spars i ty_Leve l s = [3 , 5 , 6 , 9 , 10 , 15 , 20 ] ;

19

20 N_S=25;N_A=20;N_ss=s i z e ( Spars i ty_Levels , 2 ) ; % Number o f s i gna l s , random arrays ,

s p a r s i t y l e v e l s

21 N_Sim=N_S∗N_A; % Number o f s imu la t i on s f o r each

s p a r s i t y l e v e l

22

23 th r e sho ld = [ 0 . 0 , 0 . 0 0 0 1 , 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , . 8 , 0 . 9 , . 9 9 , . 9 9 9 ] ;

24 % Consider d i f f e r e n t th r e sho ld l e v e l s f o r d e t e c t i on

25

26 N_thresh=s i z e ( thresho ld , 2 ) ; % Number o f th r e sho ld s cons ide r ed

27

28 SNR=[ Inf , 3 0 , 2 0 , 1 5 ] ; % S igna l to Noise Ratio in

dB

29 N_snr=s i z e (SNR, 2 ) ; % Number o f S i gna l to Noise Rat ios

30

31

32 Par_L1SQ=[24 , 15 , 9 , 5 ] ; % Consider d i f f e r e n t parameter va lue s

f o r lambda

33 N_par=s i z e (Par_L1SQ , 2 ) ; % Number o f Parameter va lue s

34

35 % Average o f the p r o b a b i l i t i e s o f d e t e c t i on

36 % and f a l s e alarms f o r each th r e sho ld l e v e l

37 % Average r e l a t i v e e r r o r with th r e sho ld ing

38 % Average r e l a t i v e e r r o r without th r e sho ld ing

39 % Average time to eva luate OMP

40 % Average number o f i t e r a t i o n s f o r OMP

41

42 L1SQNNR. AvgProbD=ze ro s (N_ss , N_thresh , N_snr) ; % Random Array

43 L1SQNNR. AvgProbFA=ze ro s (N_ss , N_thresh , N_snr) ;

44 L1SQNNR. AvgRelErr=ze ro s (N_ss , N_thresh , N_snr) ;
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45 L1SQNNR. AvgRelErrS=ze ro s (N_ss , N_thresh , N_snr) ;

46 L1SQNNR. AvgTime=ze ro s (N_ss , 1 , N_snr) ;

47 L1SQNNR. AvgNbrItr=ze ro s (N_ss , 1 , N_snr) ;

48

49 L1SQNNR_ProbD=ze ro s (N_Sim, N_thresh , N_snr) ;

50 L1SQNNR_ProbFA=ze ro s (N_Sim, N_thresh , N_snr) ;

51 L1SQNNR_RelErr=ze ro s (N_Sim, N_thresh , N_snr) ;

52 L1SQNNR_RelErrS=ze ro s (N_Sim, N_thresh , N_snr) ;

53 L1SQNNR_Time=ze ro s (N_Sim, 1 , N_snr) ;

54 L1SQNNR_NbrItr=ze ro s (N_Sim, 1 , N_snr) ;

55

56 L1SQNNU. AvgProbD=ze ro s (N_ss , N_thresh , N_snr) ; % ULA

57 L1SQNNU. AvgProbFA=ze ro s (N_ss , N_thresh , N_snr) ;

58 L1SQNNU. AvgRelErr=ze ro s (N_ss , N_thresh , N_snr) ;

59 L1SQNNU. AvgRelErrS=ze ro s (N_ss , N_thresh , N_snr) ;

60 L1SQNNU. AvgTime=ze ro s (N_ss , 1 , N_snr) ;

61 L1SQNNU. AvgNbrItr=ze ro s (N_ss , 1 , N_snr) ;

62

63 L1SQNNU_ProbD=ze ro s (N_Sim, N_thresh , N_snr) ;

64 L1SQNNU_ProbFA=ze ro s (N_Sim, N_thresh , N_snr) ;

65 L1SQNNU_RelErr=ze ro s (N_Sim, N_thresh , N_snr) ;

66 L1SQNNU_RelErrS=ze ro s (N_Sim, N_thresh , N_snr) ;

67 L1SQNNU_Time=ze ro s (N_Sim, 1 , N_snr) ;

68 L1SQNNU_NbrItr=ze ro s (N_Sim, 1 , N_snr) ;

69

70 % each row i s a s epara te s imulat ion ,

71 % each column i s a d i f f e r e n t th r e sho ld

72 % each s e t o f rows and columns corresponds to a d i f f e r e n t SNR l e v e l .

73

74 %% I n i t i a l i z a t i o n

75

76 M=5; % # of Transmitters

77 N=5; % # of Rece ive r s .

78 Q=20; % # of samples
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79

80 U=10; % # of Azimuth Bins

81 V=10; % # of Range Bins

82 W=10; % # of Doppler Bins

83

84 K=U∗V∗W; % to t a l # o f Bins

85

86 c=3e8 ; % speed o f l i g h t

87

88 B=15e6 ; % Bandwidth o f each transmit ted s i g n a l 15MHz

89 T=2e−6; % Waveform pu l s e durat ion

90 f_c=1e10 ; % Car r i e r f requency o f the f i r s t t r an smi t t e r 10GHz

91 lambda=c/f_c ; % Reference c a r r i e r wavelength , lambda = c/f_c

92 alpha=B/T; % Chirp rate , alpha=B/T

93

94 Range_U=[ − . 1 , . 1 ] ; % range o f ang l e s (−.1 to . 1 ) in rad ians

95 Range_V=[990 ,1010 ] ; % range o f d i s t an c e s in meters (980 to 1020 meters )

96 Range_W=[0 , 30 ] ; % range o f speeds (0 to 30 meters per second )

97

98 Range_tau=2.∗Range_V./ c ; % range o f time de lays

99 Range_upsilon=2/lambda .∗Range_W; % range o f Doppler s h i f t s

100

101 Delta_U=(Range_U(2)−Range_U(1) ) /U; % step s i z e in each domain

102 Delta_V=(Range_V(2)−Range_V(1) ) /V;

103 Delta_W=(Range_W(2)−Range_W(1) ) /W;

104

105 Delta_tau=(Range_tau (2)−Range_tau (1 ) ) /V;

106 Delta_upsi lon=(Range_upsilon (2 )−Range_upsilon (1 ) ) /W;

107

108 Values_U=Range_U(1) : Delta_U :Range_U(2)−Delta_U ; % va lues f o r each bin

109 Values_V=Range_V(1) : Delta_V :Range_V(2)−Delta_V ; % remove add i t i o na l f i n a l bin

110 Values_W=Range_W(1) :Delta_W:Range_W(2)−Delta_W;

111

112 Values_tau=Range_tau (1) : Delta_tau : Range_tau (2 )−Delta_tau ;
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113 Values_upsi lon=Range_upsilon (1 ) : Delta_upsi lon : Range_upsilon (2 )−Delta_upsi lon ;

114

115 % Sample in time only f o r t a r g e t s in the scene . . .

116 T_d=Range_tau (2)−Range_tau (1 ) ; % Sample time durat ion

117 Delta_Q=T_d/Q; % Sample t imes

118 Values_T_d=Range_tau (1 ) : Delta_Q : Range_tau (2 )−Delta_Q ;

119

120 %% Simulat ions

121

122 t imeStart=t i c ;

123 index1=1; % Index f o r the t o t a l number o f s imu la t i on s performed

124

125 index4=1; % Index f o r s p a r s i t y

126

127 f o r s s=Spars i ty_Leve l s % Vary the s p a r s i t y l e v e l

128

129 index2=1; % Index f o r number o f s imu la t i on s per s p a r s i t y

130

131 % Ca l cu l a t i on s f o r measurement matr i ce s

132 [~ , weight ,A_F, A_G, A_H] = LinearChirp ( M,Q,V,W, alpha ,T, f_c , Values_tau ,

Values_upsi lon , Values_T_d ) ;

133

134 f o r i i =1:N_A % The number o f matr i ce s to generate

135

136 % Random Antenna Locat ions

137 [ p1 , q1 ] = AntennaPositionRandom (M,N) ;

138

139 % ULA po s i t i o n s

140 [ p2 , q2 ] = AntennaPositionUniform (M,N, lambda ) ;

141

142 % Build Antenna Arrays

143 [A_T1,A_R1] = AntennaArray ( p1 , q1 , lambda , M,N,U, Values_U) ;

144 [A_T2,A_R2] = AntennaArray ( p2 , q2 , lambda , M,N,U, Values_U) ;

145
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146 % Measurement Matr ices

147 [ A1 ] = MeasurementMatrixVectorized (A_R1, A_T1, A_F, A_G, A_H, weight ,M,N,Q,

U,V,W,K) ;

148 [ A2 ] = MeasurementMatrixVectorized (A_R2, A_T2, A_F, A_G, A_H, weight ,M,N,Q,

U,V,W,K) ;

149

150 f o r kk=1:N_S % The number o f s i g n a l s to generate

151

152 %Mag=2; % Magnitude o f t a r g e t r e f l e c t i v i t i e s

153 [ s i gna l , gr id , supp ] = TargetScene ( ss ,U,V,W,K) ;

154

155 % Al l ones on the support

156 s i g n a l ( supp )=ones ( ss , 1 ) ;

157

158 % Take Measurements

159 y1=A1∗ s i g n a l ;

160 y2=A2∗ s i g n a l ;

161

162 % Complex s epa ra t i on

163 x=[ r e a l ( s i g n a l ) ; imag ( s i g n a l ) ] ;

164 B1=[ r e a l (A1) ,− imag (A1) ; imag (A1) , r e a l (A1) ] ;

165 z1=B1∗x ;

166

167 B2=[ r e a l (A2) ,− imag (A2) ; imag (A2) , r e a l (A2) ] ;

168 z2=B2∗x ;

169

170 % Signa l Power

171 PowerSignal=norm( s i g n a l ( supp ) ) . ^2 ;

172 snr=SNR;

173

174 index5=1;

175 f o r snr=SNR

176

177 i f snr==In f
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178

179 tStartL1SQNNR=t i c ;

180 d i sp l ay ( [ ’ cu r rent SNR: ’ num2str ( snr ) ] )

181 [xL1SQNNR,~ ,~ ,NbrItrL1SQNNR ] = l1sqnnreg ( z1 ,B1 ,Par_L1SQ( index5 ) ) ;

182 L1SQNNR_Time( index2 , 1 , index5 )=toc ( tStartL1SQNNR) ;

183 L1SQNNR_NbrItr( index2 , 1 , index5 )=NbrItrL1SQNNR ;

184 xL1SQNNR=xL1SQNNR( 1 :K)+1 i .∗xL1SQNNR(K+1,end ) ;

185 xL1SQNNR_Abs=abs (xL1SQNNR) ;

186

187 tStartL1SQNNU=t i c ;

188 d i sp l ay ( [ ’ cu r rent SNR: ’ num2str ( snr ) ] )

189 [xL1SQNNU,~ ,~ ,NbrItrL1SQNNU ] = l1sqnnreg ( z2 ,B2 ,Par_L1SQ( index5 ) ) ;

190 L1SQNNU_Time( index2 , 1 , index5 )=toc ( tStartL1SQNNU) ;

191 L1SQNNU_NbrItr( index2 , 1 , index5 )=NbrItrL1SQNNU ;

192 xL1SQNNU=xL1SQNNU(1 :K)+1 i .∗xL1SQNNU(K+1,end ) ;

193 xL1SQNNU_Abs=abs (xL1SQNNU) ;

194

195 e l s e

196 % Generate Noise

197

198 NoiseStdDev=sq r t ( PowerSignal /(2∗M∗N∗Q∗power (10 , snr /10) ) ) ;

199 % Standard dev i a t i on o f the no i s e

200 no i s e=NoiseStdDev .∗ randn (M∗N∗Q, 1 )+NoiseStdDev∗1 i .∗ randn (M∗N∗Q, 1 ) ;

201 % Complex Gaussian no i s e

202

203 %noi sey measurments

204 y1N=y1+no i s e ;

205 z1N=[ r e a l (y1N) ; imag (y1N) ] ;

206

207 y2N=y2+no i s e ;

208 z2N=[ r e a l (y2N) ; imag (y2N) ] ;

209

210 % Recovery

211
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212 % L1SQNN

213 tStartL1SQNNR=t i c ;

214 d i sp l ay ( [ ’ cu r rent SNR: ’ num2str ( snr ) ] )

215 [xL1SQNNR,~ ,~ ,NbrItrL1SQNNR ] = l1sqnnreg (z1N ,B1 ,Par_L1SQ( index5 ) )

;

216 L1SQNNR_Time( index2 , 1 , index5 )=toc ( tStartL1SQNNR) ;

217 L1SQNNR_NbrItr( index2 , 1 , index5 )=NbrItrL1SQNNR ;

218 xL1SQNNR=xL1SQNNR( 1 :K)+1 i .∗xL1SQNNR(K+1,end ) ;

219 xL1SQNNR_Abs=abs (xL1SQNNR) ;

220

221 tStartL1SQNNU=t i c ;

222 d i sp l ay ( [ ’ cu r rent SNR: ’ num2str ( snr ) ] )

223 [xL1SQNNU,~ ,~ ,NbrItrL1SQNNU ] = l1sqnnreg (z2N ,B2 ,Par_L1SQ( index5 ) )

;

224 L1SQNNU_Time( index2 , 1 , index5 )=toc ( tStartL1SQNNU) ;

225 L1SQNNU_NbrItr( index2 , 1 , index5 )=NbrItrL1SQNNU ;

226 xL1SQNNU=xL1SQNNU(1 :K)+1 i .∗xL1SQNNU(K+1,end ) ;

227 xL1SQNNU_Abs=abs (xL1SQNNU) ;

228

229 end

230

231 index3=1;

232 f o r t=thre sho ld

233

234 Removed_L1SQNNR=f ind (xL1SQNNR_Abs<=t ) ;

235 xL1SQNNR(Removed_L1SQNNR)=0;

236 xL1SQNNR_Abs(Removed_L1SQNNR)=0;

237 SuppL1SQNNR=f ind (xL1SQNNR_Abs>t ) ;

238 L1SQNNR_RelErr( index2 , index3 , index5 )=norm(xL1SQNNR−s i g n a l ) / sq r t (

PowerSignal ) ;

239 L1SQNNR_ProbD( index2 , index3 , index5 )=sum(xL1SQNNR_Abs( supp , 1 )>=t ) /

s s ;

240 L1SQNNR_ProbFA( index2 , index3 , index5 )=sum(xL1SQNNR_Abs( s e t d i f f (

SuppL1SQNNR, supp ) ,1 )>=t ) /(K−s s ) ;
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241 L1SQNNR_RelErrS( index2 , index3 , index5 )=norm(xL1SQNNR( supp )−s i g n a l (

supp ) ) / sq r t ( PowerSignal ) ;

242

243

244 Removed_L1SQNNU=f ind (xL1SQNNU_Abs<=t ) ;

245 xL1SQNNU(Removed_L1SQNNU)=0;

246 xL1SQNNU_Abs(Removed_L1SQNNU)=0;

247 SuppL1SQNNU=f ind (xL1SQNNU_Abs>t ) ;

248 L1SQNNU_RelErr( index2 , index3 , index5 )=norm(xL1SQNNU−s i g n a l ) / sq r t (

PowerSignal ) ;

249 L1SQNNU_ProbD( index2 , index3 , index5 )=sum(xL1SQNNU_Abs( supp , 1 )>=t ) /

s s ;

250 L1SQNNU_ProbFA( index2 , index3 , index5 )=sum(xL1SQNNU_Abs( s e t d i f f (

SuppL1SQNNU, supp ) ,1 )>=t ) /(K−s s ) ;

251 L1SQNNU_RelErrS( index2 , index3 , index5 )=norm(xL1SQNNU( supp )−s i g n a l (

supp ) ) / sq r t ( PowerSignal ) ;

252 index3=index3+1;

253 end

254

255 index5=index5+1;

256

257 end

258 d i sp l ay ( [ ’ cu r rent s p a r s i t y : ’ num2str ( s s ) ’ cur r ent s imu la t i on : ’ num2str

( index2 ) ] )

259 index2=index2+1;

260 index1=index1+1;

261 end

262 end

263

264 L1SQNNR. AvgProbD( index4 , : , : )=mean(L1SQNNR_ProbD, 1 ) ;

265 L1SQNNR. AvgProbFA( index4 , : , : )=mean(L1SQNNR_ProbFA, 1 ) ;

266 L1SQNNR. AvgRelErr ( index4 , : , : )=mean(L1SQNNR_RelErr , 1 ) ;

267 L1SQNNR. AvgRelErrS ( index4 , : , : )=mean(L1SQNNR_RelErrS , 1 ) ;

268 L1SQNNR. AvgTime( index4 , 1 , : )=mean(L1SQNNR_Time, 1 ) ;
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269 L1SQNNR. AvgNbrItr ( index4 , 1 , : )=mean(L1SQNNR_NbrItr , 1 ) ;

270

271 L1SQNNU. AvgProbD( index4 , : , : )=mean(L1SQNNU_ProbD, 1 ) ;

272 L1SQNNU. AvgProbFA( index4 , : , : )=mean(L1SQNNU_ProbFA, 1 ) ;

273 L1SQNNU. AvgRelErr ( index4 , : , : )=mean(L1SQNNU_RelErr , 1 ) ;

274 L1SQNNU. AvgRelErrS ( index4 , : , : )=mean(L1SQNNU_RelErrS , 1 ) ;

275 L1SQNNU. AvgTime( index4 , 1 , : )=mean(L1SQNNU_Time, 1 ) ;

276 L1SQNNU. AvgNbrItr ( index4 , 1 , : )=mean(L1SQNNU_NbrItr , 1 ) ;

277

278 index4=index4+1;

279 end

280

281 timeStop=toc ( t imeStart )

Please note that to avoid redundancy and save space, we do not include the third, fifth or sixth

experiments. The code included here can be adapted to reproduce these experiments, as detailed in

Section 3.5. The final experiment included here, and the fourth experiment described in Section 3.5,

generates families of ROC Curves for L1SQNN as the parameter of β varies at different values of

SNR and separate sparsity levels.

1 %% Experiment 4

2

3 % Compressed Sens ing in On−Grid MIMO Radar

4 % Test Simulat ions , SNR = varying Leve l s (15 ,20 ,25 ,30 ,50 , I n f dB)

5 % Random array

6 % L1 Square Non Negative Regu l a r i z a t i on

7 % Fami l i e s o f ROC Curves f o r L1SQNN as parameter lambda va r i e s [ depends on SNR l e v e l ]

8 % Size o f the problem i s 500∗1000

9

10 % Michael F Minner

11

12 %% Clear

13 c l e a r a l l ;

14
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15 %% Simulat ion in fo rmat ion

16

17 % For each s p a r s i t y l e v e l , generate N_S s i gna l s , N_M matr i ce s

18 Spars i ty_Leve l s =1:15;

19

20 N_S=20;N_A=20;N_ss=s i z e ( Spars i ty_Levels , 2 ) ;

21 % Number o f s i gna l s , random arrays , s p a r s i t y l e v e l s

22 N_Sim=N_S∗N_A;

23 % Number o f s imu la t i on s f o r each s p a r s i t y l e v e l

24

25 th r e sho ld = [ 0 . 0 , 0 . 0 0 0 1 , 0 . 0 0 1 , 0 . 0 1 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , . 8 , 0 . 9 , . 9 9 , . 9 9 9 ] ;

26 % Consider d i f f e r e n t th r e sho ld l e v e l s f o r d e t e c t i on

27 N_thresh=s i z e ( thresho ld , 2 ) ; % Number o f th r e sho ld s cons ide r ed

28

29 SNR=In f ; % S igna l to Noise Ratio in dB

30 N_snr=s i z e (SNR, 2 ) ; % Number o f S i gna l to Noise Rat ios

31

32 % Consider d i f f e r e n t parameter va lue s f o r lambda

33 Par_L1SQ=[10 , 15 , 20 , 25 , 30 ] ;

34 N_par=s i z e (Par_L1SQ , 2 ) ; % Number o f Parameter va lue s

35

36 % Average o f the p r o b a b i l i t i e s o f d e t e c t i on

37 % and f a l s e alarms f o r each th r e sho ld l e v e l

38 % Average r e l a t i v e e r r o r with th r e sho ld ing

39 % Average r e l a t i v e e r r o r without th r e sho ld ing

40 % Average time to eva luate OMP

41 % Average number o f i t e r a t i o n s f o r OMP

42

43 L1SQNNR. AvgProbD=ze ro s (N_ss , N_thresh , N_par) ; % Random Array

44 L1SQNNR. AvgProbFA=ze ro s (N_ss , N_thresh , N_par) ;

45 L1SQNNR. AvgRelErr=ze ro s (N_ss , N_thresh , N_par) ;

46 L1SQNNR. AvgRelErrS=ze ro s (N_ss , N_thresh , N_par) ;

47 L1SQNNR. AvgTime=ze ro s (N_ss , 1 , N_par) ;

48 L1SQNNR. AvgNbrItr=ze ro s (N_ss , 1 , N_par) ;
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49

50 L1SQNNR_ProbD=ze ro s (N_Sim, N_thresh , N_par) ;

51 L1SQNNR_ProbFA=ze ro s (N_Sim, N_thresh , N_par) ;

52 L1SQNNR_RelErr=ze ro s (N_Sim, N_thresh , N_par) ;

53 L1SQNNR_RelErrS=ze ro s (N_Sim, N_thresh , N_par) ;

54 L1SQNNR_Time=ze ro s (N_Sim, 1 , N_par) ;

55 L1SQNNR_NbrItr=ze ro s (N_Sim, 1 , N_par) ;

56

57 % each row i s a s epara te s imulat ion ,

58 % each column i s a d i f f e r e n t th r e sho ld

59 % each s e t o f rows and columns corresponds to a d i f f e r e n t SNR l e v e l .

60

61 %% I n i t i a l i z a t i o n

62

63 M=5; % # of Transmitters

64 N=5; % # of Rece ive r s .

65 Q=20; % # of samples

66

67 U=10; % # of Azimuth Bins

68 V=10; % # of Range Bins

69 W=10; % # of Doppler Bins

70

71 K=U∗V∗W; % to t a l # o f Bins

72

73 c=3e8 ; % speed o f l i g h t

74

75 B=15e6 ; % Bandwidth o f each transmit ted s i g n a l 15MHz

76 T=2e−6; % Waveform pu l s e durat ion

77 f_c=1e10 ; % Car r i e r f requency o f the f i r s t t r an smi t t e r 10GHz

78 lambda=c/f_c ; % Reference c a r r i e r wavelength , lambda = c/f_c

79 alpha=B/T; % Chirp rate , alpha=B/T

80

81 Range_U=[ − . 1 , . 1 ] ; % range o f ang l e s (−.1 to . 1 ) in rad ians

82 Range_V=[990 ,1010 ] ; % range o f d i s t an c e s in meters (980 to 1020 meters )
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83 Range_W=[0 , 30 ] ; % range o f speeds (0 to 30 meters per second )

84

85 Range_tau=2.∗Range_V./ c ; % range o f time de lays

86 Range_upsilon=2/lambda .∗Range_W; % range o f Doppler s h i f t s

87

88 Delta_U=(Range_U(2)−Range_U(1) ) /U; % step s i z e in each domain

89 Delta_V=(Range_V(2)−Range_V(1) ) /V;

90 Delta_W=(Range_W(2)−Range_W(1) ) /W;

91

92 Delta_tau=(Range_tau (2)−Range_tau (1 ) ) /V;

93 Delta_upsi lon=(Range_upsilon (2 )−Range_upsilon (1 ) ) /W;

94

95 Values_U=Range_U(1) : Delta_U :Range_U(2)−Delta_U ; % va lues f o r each bin

96 Values_V=Range_V(1) : Delta_V :Range_V(2)−Delta_V ; % remove add i t i o na l f i n a l bin

97 Values_W=Range_W(1) :Delta_W:Range_W(2)−Delta_W;

98

99 Values_tau=Range_tau (1) : Delta_tau : Range_tau (2 )−Delta_tau ;

100 Values_upsi lon=Range_upsilon (1 ) : Delta_upsi lon : Range_upsilon (2 )−Delta_upsi lon ;

101

102 % Sample in time only f o r t a r g e t s in the scene . . .

103 T_d=Range_tau (2)−Range_tau (1 ) ; % Sample time durat ion

104 Delta_Q=T_d/Q; % Sample t imes

105 Values_T_d=Range_tau (1 ) : Delta_Q : Range_tau (2 )−Delta_Q ;

106

107 %% Simulat ions

108

109 t imeStart=t i c ;

110 index1=1; % Index f o r the t o t a l number o f s imu la t i on s performed

111

112 index4=1; % Index f o r s p a r s i t y

113

114 f o r s s=Spars i ty_Leve l s % Vary the s p a r s i t y l e v e l

115

116 index2=1; % Index f o r number o f s imu la t i on s per s p a r s i t y

Appendix A: Code A.1 Compressive Sensing MIMO Radar



97

117

118 % Ca l cu l a t i on s f o r measurement matr i ce s

119 [~ , weight ,A_F, A_G, A_H] = LinearChirp ( M,Q,V,W, alpha ,T, f_c , Values_tau ,

Values_upsi lon , Values_T_d ) ;

120

121 f o r i i =1:N_A % The number o f matr i ce s to generate

122

123 % Random Antenna Locat ions

124 [ p1 , q1 ] = AntennaPositionRandom (M,N) ;

125

126 % Build Antenna Arrays

127 [A_T1,A_R1] = AntennaArray ( p1 , q1 , lambda , M,N,U, Values_U) ;

128

129 % Measurement Matr ices

130 [ A1 ] = MeasurementMatrixVectorized (A_R1, A_T1, A_F, A_G, A_H, weight ,M,N,Q,

U,V,W,K) ;

131

132 f o r kk=1:N_S % The number o f s i g n a l s to generate

133

134 [ s i gna l , gr id , supp ] = TargetScene ( ss ,U,V,W,K) ;

135

136 % Al l ones on the support

137 s i g n a l ( supp )=ones ( ss , 1 ) ;

138

139 % Take Measurements

140 y1=A1∗ s i g n a l ;

141

142 % Complex s epa ra t i on

143 x=[ r e a l ( s i g n a l ) ; imag ( s i g n a l ) ] ;

144 B1=[ r e a l (A1) ,− imag (A1) ; imag (A1) , r e a l (A1) ] ;

145 z1=B1∗x ;

146

147 % Signa l Power

148 PowerSignal=norm( s i g n a l ( supp ) ) . ^2 ;

Appendix A: Code A.1 Compressive Sensing MIMO Radar



98

149 snr=SNR;

150 index5=1;

151 f o r parameter=Par_L1SQ

152

153 i f snr==In f

154 % No no i s e

155 tStartL1SQNNR=t i c ;

156 d i sp l ay ( [ ’ cu r rent parameter : ’ num2str ( parameter ) ] )

157 [xL1SQNNR,~ ,~ ,NbrItrL1SQNNR ] = l1sqnnreg ( z1 ,B1 , parameter ) ;

158 L1SQNNR_Time( index2 , 1 , index5 )=toc ( tStartL1SQNNR) ;

159 L1SQNNR_NbrItr( index2 , 1 , index5 )=NbrItrL1SQNNR ;

160 xL1SQNNR=xL1SQNNR( 1 :K)+1 i .∗xL1SQNNR(K+1,end ) ;

161 xL1SQNNR_Abs=abs (xL1SQNNR) ;

162

163 e l s e

164 % Generate Noise

165

166 NoiseStdDev=sq r t ( PowerSignal /(2∗M∗N∗Q∗power (10 , snr /10) ) ) ;

167 % Standard dev i a t i on o f the no i s e

168 no i s e=NoiseStdDev .∗ randn (M∗N∗Q, 1 )+NoiseStdDev∗1 i .∗ randn (M∗N∗Q, 1 ) ;

169 % Complex Gaussian no i s e

170

171 %noi sey measurments

172 y1N=y1+no i s e ;

173 z1N=[ r e a l (y1N) ; imag (y1N) ] ;

174

175 % Recovery

176

177 % L1SQNN

178 tStartL1SQNNR=t i c ;

179 d i sp l ay ( [ ’ cu r rent parameter : ’ num2str ( parameter ) ] )

180 [xL1SQNNR,~ ,~ ,NbrItrL1SQNNR ] = l1sqnnreg (z1N ,B1 , parameter ) ;

181 L1SQNNR_Time( index2 , 1 , index5 )=toc ( tStartL1SQNNR) ;

182 L1SQNNR_NbrItr( index2 , 1 , index5 )=NbrItrL1SQNNR ;

Appendix A: Code A.1 Compressive Sensing MIMO Radar



99

183 xL1SQNNR=xL1SQNNR( 1 :K)+1 i .∗xL1SQNNR(K+1,end ) ;

184 xL1SQNNR_Abs=abs (xL1SQNNR) ;

185 end

186

187 index3=1;

188 f o r t=thre sho ld

189

190 Removed_L1SQNNR=f ind (xL1SQNNR_Abs<t ) ;

191 xL1SQNNR(Removed_L1SQNNR)=0;

192 xL1SQNNR_Abs(Removed_L1SQNNR)=0;

193 SuppL1SQNNR=f ind (xL1SQNNR_Abs>=t ) ;

194 L1SQNNR_RelErr( index2 , index3 , index5 )=norm(xL1SQNNR−s i g n a l ) / sq r t (

PowerSignal ) ;

195 L1SQNNR_ProbD( index2 , index3 , index5 )=sum(xL1SQNNR_Abs( supp , 1 )>=t ) /

s s ;

196 L1SQNNR_ProbFA( index2 , index3 , index5 )=sum(xL1SQNNR_Abs( s e t d i f f (

SuppL1SQNNR, supp ) ,1 )>=t ) /(K−s s ) ;

197 L1SQNNR_RelErrS( index2 , index3 , index5 )=norm(xL1SQNNR( supp )−s i g n a l (

supp ) ) / sq r t ( PowerSignal ) ;

198

199 index3=index3+1;

200 end

201

202 index5=index5+1;

203

204 end

205 d i sp l ay ( [ ’ cu r rent s p a r s i t y : ’ num2str ( s s ) ’ cur r ent s imu la t i on : ’ num2str

( index2 ) ] )

206 index2=index2+1;

207 index1=index1+1;

208 end

209 end

210

211 L1SQNNR. AvgProbD( index4 , : , : )=mean(L1SQNNR_ProbD, 1 ) ;
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212 L1SQNNR. AvgProbFA( index4 , : , : )=mean(L1SQNNR_ProbFA, 1 ) ;

213 L1SQNNR. AvgRelErr ( index4 , : , : )=mean(L1SQNNR_RelErr , 1 ) ;

214 L1SQNNR. AvgRelErrS ( index4 , : , : )=mean(L1SQNNR_RelErrS , 1 ) ;

215 L1SQNNR. AvgTime( index4 , 1 , : )=mean(L1SQNNR_Time, 1 ) ;

216 L1SQNNR. AvgNbrItr ( index4 , 1 , : )=mean(L1SQNNR_NbrItr , 1 ) ;

217

218 index4=index4+1;

219 end

220

221 timeStop=toc ( t imeStart )

The following auxiliary files are called upon in the main experiments. Their functions are detailed

with in each piece of code.

Antenna Position (Random)

1 f unc t i on [ p , q ] = AntennaPositionRandom (M,N)

2 % Generate the random l o c a t i o n s o f the M transmit antennas

3 % and the N r e c e i v e antennas . Uniform Random Di s t r i bu t i on .

4 % Michael F Minner

5

6 L=N∗M/2; % l o c a t i o n s o f antennas

7 p1=so r t (L .∗ rand (M, 1 ) ) ; % p are transmit antenna l o c a t i o n s

8 q1=so r t (L .∗ rand (N, 1 ) ) ; % q are r e c e i v e antenna l o c a t i o n s

9

10 % di s t an c e s between antennas

11 p=p1−p1 (1) ;

12 q=q1−q1 (1 ) ;

13

14 end

Antenna Position (Uniform)

1 f unc t i on [ p , q ] = AntennaPositionUniform (M,N, lambda )

2 % Generate the random l o c a t i o n s o f the M transmit antennas

3 % and the N r e c e i v e antennas . Uniform Linear Array .

4 % Michael F Minner
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5

6 % ULA

7 p1=2∗N∗ lambda ∗ ( 1 :M) . ’ ; % p are transmit antenna l o c a t i o n s

8 q1=lambda ∗ ( 1 :N) . ’ ; % q are r e c e i v e antenna l o c a t i o n s

9

10 % di s t an c e s between antennas

11 p=p1−p1 (1) ;

12 q=q1−q1 (1 ) ;

Antenna Array

1 f unc t i on [A_T,A_R] = AntennaArray ( p , q , lambda ,M,N,U, Values_U)

2 % Build Antenna Arrays A_T and A_R

3 % Matr ices to s t o r e array mani fo lds f o r each ang le by column

4

5 A_T=ze ro s (M,U) ;

6 A_R=ze ro s (N,U) ;

7

8 a=exp (2∗ pi ∗1 i /lambda ) ;

9 a_T=a .^p ; % array mani fo lds f o r azimuth domain

10 a_R=a .^q ;

11

12 f o r j =1:U

13 A_T( : , j )= a_T.^Values_U( j ) ;

14 A_R( : , j )= a_R.^Values_U( j ) ;

15 end

16

17 end

Linear Chirp

1 f unc t i on [ chirp1 , weight , A_F, A_G, A_H ] = LinearChirp ( M,Q,V,W, alpha ,T, f_c ,

Values_tau , Values_upsi lon , Values_T_d )

2 % Create Matrix to s t o r e l i n e a r ch i rp s where ch i rp (m, q )=s_m(t_q) .

3 % Also c r e a t e Angle , Delay and Doppler matr i ce s f o r measurement matrix

4 % without v e c t o r i z a t i o n .

5 % Michael F Minner
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6

7 ch i rp1 = ze ro s (M,Q) ; % Store LFM ch i rp s

8 A_F = ze ro s (M,V) ; % Values needed f o r measurement matrix

9 A_G = ze ro s (Q,V) ;

10 A_H = ze ro s (Q,W) ;

11

12 t= Values_T_d ; % va lues o f t_q ’

13

14 f_m = f_c+alpha ∗T; % va lues o f f_m = f_c+m∗ alpha ∗T

15

16 weight=ones (M, 1 ) ; % no weights

17 % values o f tau_k − tau_0

18 Values_tau_shifted=Values_tau−Values_tau (1) ;

19

20 f o r m=1:M

21 ch i rp1 (m, : ) = exp (1 i ∗2∗ pi ∗ ( . 5∗ alpha .∗ t .^2+f_m.∗ t ) ) ;

22 A_F(m, : )=exp(−1 i ∗2∗ pi ∗f_m.∗ Values_tau_shifted ) ;

23 f_m = f_m+alpha ∗T;

24 end

25

26 f o r q=1:Q

27 A_G(q , : ) = exp(−1 i ∗2∗ pi ∗ alpha ∗ t ( q ) .∗ Values_tau_shifted ) ;

28 A_H(q , : ) = exp(−1 i ∗2∗ pi ∗( t ( q )+Values_tau (1 ) ) .∗ Values_upsi lon ) ;

29 end

30

31 end

Measurement Matrix (Vectorized)

1 f unc t i on [ A ] = MeasurementMatrixVectorized (A_R, A_T, A_F, A_G, A_H, weight ,M,N,Q,U,

V,W,K)

2 % Measurement Matrix with Angle , Range and Ve loc i ty Vector i zed

3 % Michael F Minner

4

5 A=ze ro s (M∗N∗Q,K) ; % measurment matrix
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6 index =1; % keep track o f which column o f A we are f i l l i n g in

7

8 % A_R and A_T s t o r e array mani fo lds f o r each ang le by column

9

10 f o r u=1:U

11 f o r v=1:V

12 f o r w=1:W

13 a=A_G( : , v ) .∗A_H( : ,w) ;

14 b=kron (A_R( : , u ) , a ) ;

15 c=(weight ( : , 1 ) .∗A_T( : , u ) ) .∗A_F( : , v ) ;

16 A( : , index )=kron ( c , b ) ;

17 index=index +1;

18 end

19 end

20 end

21

22 end

Scene Location

1 f unc t i on [ k ] = SceneLocate ( i i , j j , kk ,U,V,W)

2 % i i , j j , kk i s the cur rent g r id l o c a t i o n

3 % U i s the number o f Azimuth b ins ( not needed in cur rent setup )

4 % V i s the number o f Range b ins

5 % W i s the number o f Doppler b ins

6 % Michael F Minner

7

8 k=kk+( j j −1) .∗W+( i i −1) . ∗ (V∗W) ; % po s i t i o n in U∗V∗W scene vec to r

9

10 end

Target Scene

1 f unc t i on [ s i gna l , gr id , supp ] = TargetScene (P,U,V,W,K)

2 % Create a ’ scene ’ conta in ing P t a r g e t s .

3 % Michael F Minner

4
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5 s i g n a l=ze ro s (K, 1 ) ; % i n i t i a l i z e the s i g n a l

6

7 % bui ld support in azimuth and range , then add Doppler

8 g r id=ze ro s (3 ,P) ;

9 g r id ( : , 1 ) =[ randsample (U, 1 ) ; randsample (V, 1 ) ; randsample (W, 1 ) ] ; % f i r s t t a r g e t

l o c a t i o n

10 f l a g =1;

11 whi le f l a g <P

12 i i=randsample (U, 1 ) ; % po s s i b l e azimuth and range l o c a t i o n

13 j j=randsample (V, 1 ) ;

14 i f max( ( i i==gr id ( 1 , : ) )+( j j==gr id ( 2 , : ) ) )~=2 % check i f bin i s unoccupied

15 kk=randsample (W, 1 ) ; % doppler f o r t a r g e t

16 f l a g=f l a g +1;

17 g r id ( : , f l a g )=[ i i ; j j ; kk ] ; % add new ta rg e t to support

18 end

19 end

20 supp=so r t ( SceneLocate ( g r id ( 1 , : ) , g r i d ( 2 , : ) , g r i d ( 3 , : ) ,U,V,W) ) ;

21

22 end

A.2 Sparse Disjoint Vectors

This file contains three separate experiments. The first experiment finds the best s-sparse d-disjointed

approximation to a vector, once with the `2-norm and again with the `4 norm to highlight the impact

of the norm in the approximation. The second experiment recovers a single sparse disjointed vector

via the classical IHT and via the DIHT (see Section 4.3). In this example the DIHT provides supe-

rior reconstruction. The final experiment, which is detailed at the end of Section 4.2, runs several

simulations to compare the efficacy of IHT and DIHT in recovering sparse disjoint vectors.

Sparse Disjoint Experiments

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % This f i l e conta in s the r ep roduc ib l e exper iments accompanying the a r t i c l e

3 % SPARSE DISJOINTED RECOVERY FROM NONINFLATING MEASUREMENTS

4 % by Foucart , Minner , and Needham
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5 % Created 3 Sept 2014

6 % Last modi f i ed 12 Sept 2014

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %% Experiment 1

10 % f ind i n g best s−spa r s e d−d i s j o i n t e d approximations

11 x = [ 1 ; 0 ; 1 ; 2^(1/4) ; 1 ; 0 ; 2^(−1/2) ] ;

12 s = 3 ; d = 1 ;

13 % best approximation in the 2−norm −−− note that i t does not conta in the

14 % l a r g e s t abso lu t e entry o f x

15 [ z2 , S2 , e r r o r 2 ] = baSpaDis (x , s , d , 2 ) ;

16 z2 = z2 ’

17 % best approximation in the 4−norm −−− note that i t i s d i f f e r e n t from the

18 % best approximation in the 2−norm

19 [ z4 , S4 , e r r o r 4 ] = baSpaDis (x , s , d , 4 ) ;

20 z4 = z4 ’

21

22 %% Experiment 2

23 % recovery o f a s i n g l e spar s e d i s j o i n t e d v ia i t e r a t i v e th r e sho ld ing a lgor i thms

24

25 % se t the paramaters f o r the exper iments

26 N = 1000 ; m = 200 ; s = 12 ; d = 65 ;

27 % crea t e a spar s e d i s j o i n t e d vec to r

28 rng (6 ) % sp e c i f y the random number genera tor to always produce the same experiment

29 suppCol lapsed = so r t ( randsample (N−d∗( s−1) , s ) ) ;

30 supp = suppCol lapsed + d ∗ ( 0 : s−1) ’ ;

31 x = ze ro s (N, 1 ) ;

32 x ( supp ) = randn ( s , 1 ) ;

33 % de f i n e the measurement matrix and the measurement vec to r

34 A = randn (m,N) / sq r t (m) ;

35 y = A∗x ;

36 % recove r us ing c l a s s i c a l IHT

37 x iht = ih t (y ,A, s ) ;

38 recoveryErrorIHT = norm(x−x iht )
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39 % recove r us ing IHT adapted to the spar s e d i s j o i n t e d case

40 xihtSpaDis = ihtSpaDis (y ,A, s , d ) ;

41 recoveryErrorIHTSpaDis = norm(x−xihtSpaDis )

42 % v i s u a l i z e the recovered vec to r s ve r sus the o r i g i n a l vec to r

43 f i g u r e (1 )

44 subplot ( 1 , 2 , 1 )

45 p lo t ( 1 :N, x , ’ b ∗ ’ , 1 :N, xiht , ’ ro ’ )

46 l egend ( ’ Or i g i na l vector ’ , ’ Recovered vector ’ )

47 t i t l e ( ’ C l a s s i c a l IHT ’ )

48 subplot ( 1 , 2 , 2 )

49 p lo t ( 1 :N, x , ’ b ∗ ’ , 1 :N, xihtSpaDis , ’ ro ’ )

50 l egend ( ’ Or i g i na l vector ’ , ’ Recovered vector ’ )

51 t i t l e ( ’ IHT adapted to the spar s e d i s j o i n t e d case ’ )

52

53 %% Experiment 3

54 % percentage o f r ecovery su c c e s s v ia i t e r a t i v e th r e sho ld ing a lgor i thms

55

56 % se t the paramaters f o r the exper iments ( two va lue s o f d are cons ide r ed )

57 nTests = 100 ;

58 N = 1000 ; m = 200 ;

59 d1 = 10 ; d2 = 20 ;

60 smin = 1 ; smax = 20 ;

61 recoveryErrorsIHT1 = nan ( nTests , smax−smin+1) ;

62 recoveryErrorsIHT2 = nan ( nTests , smax−smin+1) ;

63 recoveryErrorsIHTSpaDis1 = nan ( nTests , smax−smin+1) ;

64 recoveryErrorsIHTSpaDis2 = nan ( nTests , smax−smin+1) ;

65 t i c ;

66 f o r n=1: nTests

67 n

68 f o r s = smin : smax

69 % crea t e spar s e d i s j o i n t e d ve c to r s

70 suppCol lapsed = so r t ( randsample (N−d1 ∗( s−1) , s ) ) ;

71 supp = suppCol lapsed + d1 ∗ ( 0 : s−1) ’ ;

72 x1 = ze ro s (N, 1 ) ;
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73 x1 ( supp ) = randn ( s , 1 ) ;

74 suppCol lapsed = so r t ( randsample (N−d2 ∗( s−1) , s ) ) ;

75 supp = suppCol lapsed + d2 ∗ ( 0 : s−1) ’ ;

76 x2 = ze ro s (N, 1 ) ;

77 x2 ( supp ) = randn ( s , 1 ) ;

78 % de f i n e the measurement matrix and the measurement vec to r

79 A = randn (m,N) / sq r t (m) ;

80 y1 = A∗x1 ;

81 y2 = A∗x2 ;

82 % recove r us ing c l a s s i c a l IHT

83 x1 iht = ih t ( y1 ,A, s ) ;

84 recoveryErrorsIHT1 (n , s−smin+1) = norm(x1−x1 iht ) ;

85 x2 iht = ih t ( y2 ,A, s ) ;

86 recoveryErrorsIHT2 (n , s−smin+1) = norm(x2−x2 iht ) ;

87 % recove r us ing IHT adapted to the spar s e d i s j o i n t e d case

88 x1ihtSpaDis = ihtSpaDis ( y1 ,A, s , d1 ) ;

89 recoveryErrorsIHTSpaDis1 (n , s−smin+1) = norm(x1−x1ihtSpaDis ) ;

90 x2ihtSpaDis = ihtSpaDis ( y2 ,A, s , d2 ) ;

91 recoveryErrorsIHTSpaDis2 (n , s−smin+1) = norm(x2−x2ihtSpaDis ) ;

92 end

93 end

94 timeExp3 = toc ;

95 % percentage o f r ecovery su c c e s s

96 t o l = 1e−3;

97 percentageSuccessIHT1 = 100∗ sum( recoveryErrorsIHT1 < t o l ) / nTests ;

98 percentageSuccessIHT2 = 100∗ sum( recoveryErrorsIHT2 < t o l ) / nTests ;

99 percentageSuccessIHTSpaDis1 = 100∗ sum( recoveryErrorsIHTSpaDis1 < t o l ) / nTests ;

100 percentageSuccessIHTSpaDis2 = 100∗ sum( recoveryErrorsIHTSpaDis2 < t o l ) / nTests ;

101 save ( ’ Exp3 . mat ’ )

102

103 %% v i s u a l i z a t i o n o f the r e s u l t s

104 load ( ’ Exp3 . mat ’ )

105 f i g u r e (2 )

106 % succ e s s o f IHT and IHTSpaDis f o r d=d1
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107 subplot ( 1 , 2 , 1 )

108 p lo t ( smin : smax , percentageSuccessIHT1 , ’ b ’ , smin : smax , percentageSuccessIHTSpaDis1 , ’ g ’ )

109 l egend ( ’ C l a s s i c a l IHT ’ , [ ’ IHT adapted ’ 10 ’ to the sparse ’ 10 ’ d i s j o i n t e d case ’ ] , . . .

110 ’ Location ’ , ’ SouthWest ’ )

111 t i t l e ( s t r c a t ( ’ Percentage o f s u c c e s s f u l r e c o v e r i e s f o r d= ’ , num2str ( d1 ) ) )

112 x l ab e l ( ’ s p a r s i t y l e v e l s ’ )

113 y l ab e l ( ’ percentage o f s u c c e s s f u l r e c ov e r i e s ’ )

114 % succ e s s o f IHT and IHTSpaDis f o r d=d2

115 subplot ( 1 , 2 , 2 )

116 p lo t ( smin : smax , percentageSuccessIHT2 , ’ b ’ , smin : smax , percentageSuccessIHTSpaDis2 , ’ g ’ )

117 l egend ( ’ C l a s s i c a l IHT ’ , [ ’ IHT adapted ’ 10 ’ to the sparse ’ 10 ’ d i s j o i n t e d case ’ ] , . . .

118 ’ Location ’ , ’ SouthWest ’ )

119 t i t l e ( s t r c a t ( ’ Percentage o f s u c c e s s f u l r e c o v e r i e s f o r d= ’ , num2str ( d2 ) ) )

120 x l ab e l ( ’ s p a r s i t y l e v e l s ’ )

121 y l ab e l ( ’ percentage o f s u c c e s s f u l r e c ov e r i e s ’ )

The following functions are required for the above experiments. Their primary purposes are

detailed immediately within each file. The first is the dynamic programming algorithm for finding

the best s-sparse d-disjointed approximation to a vector.

1 % baSpaDis Computes bes t spar s e d i s j o i n t e d approximations by dynamic programming

2 %

3 % Finds the best approximation to a vec to r x

4 % by an s−spa r s e d−d i s j o i n t e d vec to r in the p−norm ,

5 % i . e . , the minimizer z o f norm(x , z , p )

6 % sub j e c t to z i s s−spa r s e d−d i s j o i n t e d

7 %

8 % Usage : [ z , S , e r r o r ] = baSpaDis (x , s , d , p )

9 %

10 % x : the vec to r to be approximated

11 % s : the s p a r s i t y l e v e l

12 % d : the d i s j o i n t n e s s parameter

13 % p : the exponent o f the norm ( opt iona l , d e f au l t =2)

14 %

15 % z : the best s−spa r s e d−d i s j o i n t e d approximation
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16 % S : the support o f the best approximation

17 % er r o r : the e r r o r o f bes t approximation , i . e . , norm(x−z , p )

18

19 % Written by Simon Foucart and Michael Minner

20 % Send comments to simon . f ou ca r t@cen t r a l i e n s . net

21

22 f unc t i on [ z , S , e r r o r ] = baSpaDis (x , s , d , p )

23

24 i f narg in < 4

25 p=2;

26 end

27

28 N = length (x ) ;

29 absxp = abs (x ) .^p ;

30 va lue s = nan (N, s+1) ;

31 po i n t e r s = nan (N, s+1) ;

32

33 % i n i t i a l i z e o f the t ab l e o f va lue s

34 % f i r s t column

35 va lue s ( : , 1 ) = cumsum( absxp ) ;

36 % f i r s t d+1 rows

37 f o r n=1:d+1

38 va lue s (n , 2 : s+1) = (sum( absxp ( 1 : n) )−max( absxp ( 1 : n) ) ) ∗ ones (1 , s ) ;

39 end

40

41 % f i l l in the tab l e o f values , row by row

42 f o r n=d+2:N

43 f o r r r =2: s+1 %r r r ep r e s en t s r+1

44 va l1 = va lue s (n−1, r r )+absxp (n) ;

45 va l2 = va lue s (n−d−1, rr −1)+sum( absxp (n−d : n−1) ) ;

46 i f va l1 < val2

47 va lue s (n , r r ) = val1 ;

48 po i n t e r s (n , r r ) = 0 ; % "0" means that the arrow po in t s north

49 e l s e
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50 va lue s (n , r r ) = val2 ;

51 po i n t e r s (n , r r ) = 1 ; % "1" means that the arrow po in t s nor theas t

52 end

53 end

54 end

55

56 % return the e r r o r o f bes t approximation

57 e r r o r = va lue s (N, s+1)^(1/p) ;

58

59 % cons t ruc t the support by backtrack ing

60 n = N;

61 r r = s+1;

62 S = [ ] ;

63 whi le ( n > d+1 && rr > 1 )

64 i f p o i n t e r s (n , r r ) == 0

65 n = n−1;

66 e l s e

67 S = [ n , S ] ; % where i s the r i g h t p lace ?

68 n = n−d−1;

69 r r = rr −1;

70 end

71 end

72 i f r r > 1

73 [~ , j ] = max( absxp ( 1 : n) ) ;

74 S = [ j , S ] ;

75 end

76

77 % return the best approximation

78 z = ze ro s (N, 1 ) ;

79 z (S) = x(S) ;

80

81 end

The next function is an implementation of the classical iterative hard thresholding algorithm.
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1 % ih t runs the I t e r a t i v e Hard Threshold ing

2 %

3 % Usage : [ x , S , normRes , n I t e r ] = ih t (y ,A, s , x0 , maxnIter , to lRes )

4 %

5 % y : the measurement vec to r

6 % A: the measurement matrix

7 % s : the s p a r s i t y parameter

8 % x0 : i n i t i a l vec to r ( opt iona l , d e f au l t =0)

9 % maxnIter : number o f i t e r a t i o n s not to be exceeded ( opt iona l , d e f au l t =500)

10 % tolRes : th r e sho ld f o r the L2−norm o f the r e s i d u a l to stop the a lgor i thm ( opt iona l ,

d e f au l t=1e−4)

11 %

12 % x : column vec to r

13 % S : support o f x

14 % normRes : the norm of the r e s i d u a l

15 % nbIte r : the number o f performed i t e r a t i o n s

16 %

17 % SF and MFM ( created 27 May 2012 , modi f i ed 9 Sept 2014)

18

19 f unc t i on [ x , S , normRes , n I t e r ] = ih t (y ,A, s , x0 , maxnIter , to lRes )

20

21 [~ ,N]= s i z e (A) ;

22 i f narg in < 6

23 to lRes = 1e−4;

24 end

25 i f narg in < 5

26 maxnIter = 500 ;

27 end

28 i f narg in < 4

29 x0=ze ro s (N, 1 ) ;

30 end

31

32 x = x0 ;

33 r e s = y−A∗x ;
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34 normRes = norm( r e s ) ;

35 n I t e r =0;

36

37 whi le ( n I t e r < maxnIter && normRes > to lRes )

38 u = x+A’∗ r e s ;

39 [~ , sorted_idx ] = so r t ( abs (u) , ’ descend ’ ) ;

40 S = sorted_idx ( 1 : s ) ;

41 x=ze ro s (N, 1 ) ; x (S)=u(S) ;

42 r e s = y−A∗x ;

43 normRes=norm( r e s ) ;

44 n I t e r = n I t e r +1;

45 end

46

47 end

Finally, we present the sparse disjointed iterative hard thresholding method.

1 % ihtSpaDis runs the Sparse D i s j o i n t ed I t e r a t i v e Hard Threshold ing

2 %

3 % Usage : [ x , S , normRes , n I t e r ] = ihtSpaDis (y ,A, s , d , x0 , maxnIter , to lRes )

4 %

5 % y : the measurement vec to r

6 % A: the measurement matrix

7 % s : the s p a r s i t y parameter

8 % d : the d i s j o i n t n e s s parameter

9 % x0 : i n i t i a l vec to r ( opt iona l , d e f au l t =0)

10 % maxnIter : number o f i t e r a t i o n s not to be exceeded ( opt iona l , d e f au l t =500)

11 % tolRes : th r e sho ld f o r the L2−norm o f the r e s i d u a l to stop the a lgor i thm ( opt iona l ,

d e f au l t=1e−4)

12 %

13 % x : column vec to r

14 % S : support o f x

15 % normRes : the norm of the r e s i d u a l

16 % nbIte r : the number o f performed i t e r a t i o n s

17 %
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18 % SF and MFM ( created 3 Sept 2014 , modi f i ed 12 Sept 2014)

19

20 f unc t i on [ x , S , normRes , n I t e r ] = ihtSpaDis (y ,A, s , d , x0 , maxnIter , to lRes )

21

22 [~ ,N]= s i z e (A) ;

23 i f narg in < 7

24 to lRes = 1e−4;

25 end

26 i f narg in < 6

27 maxnIter = 500 ;

28 end

29 i f narg in < 5

30 x0=ze ro s (N, 1 ) ;

31 end

32

33 x = x0 ;

34 r e s = y−A∗x ;

35 normRes = norm( r e s ) ;

36 n I t e r =0;

37

38 whi le ( n I t e r < maxnIter && normRes > to lRes )

39 u = x+A’∗ r e s ;

40 x = baSpaDis (u , s , d ) ;

41 r e s = y−A∗x ;

42 normRes=norm( r e s ) ;

43 n I t e r = n I t e r +1;

44 end

45

46 i f n I t e r == maxnIter

47 f p r i n t f ( ’Maximum number o f i t e r a t i o n s reached \n ’ )

48 end

49

50 i f normRes <= to lRes

51 f p r i n t f ( ’ Tolerance on the norm o f the r e s i d u a l reached \n ’ )
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52 end

53

54 end
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