5,576 research outputs found

    Resolution over Linear Equations and Multilinear Proofs

    Get PDF
    We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. Using the (monotone) interpolation by a communication game technique we establish an exponential-size lower bound on refutations in a certain, considerably strong, fragment of resolution over linear equations, as well as a general polynomial upper bound on (non-monotone) interpolants in this fragment. We then apply these results to extend and improve previous results on multilinear proofs (over fields of characteristic 0), as studied in [RazTzameret06]. Specifically, we show the following: 1. Proofs operating with depth-3 multilinear formulas polynomially simulate a certain, considerably strong, fragment of resolution over linear equations. 2. Proofs operating with depth-3 multilinear formulas admit polynomial-size refutations of the pigeonhole principle and Tseitin graph tautologies. The former improve over a previous result that established small multilinear proofs only for the \emph{functional} pigeonhole principle. The latter are different than previous proofs, and apply to multilinear proofs of Tseitin mod p graph tautologies over any field of characteristic 0. We conclude by connecting resolution over linear equations with extensions of the cutting planes proof system.Comment: 44 page

    Static Data Structure Lower Bounds Imply Rigidity

    Full text link
    We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of tω(log2n)t \geq \omega(\log^2 n) on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space (s=(1+ε)n)(s= (1+\varepsilon)n), would already imply a semi-explicit (PNP\bf P^{NP}\rm) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial (tnδt\geq n^{\delta}) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime (s=n+o(n))(s=n+o(n)), we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest

    Equivalence of Systematic Linear Data Structures and Matrix Rigidity

    Get PDF
    Recently, Dvir, Golovnev, and Weinstein have shown that sufficiently strong lower bounds for linear data structures would imply new bounds for rigid matrices. However, their result utilizes an algorithm that requires an NPNP oracle, and hence, the rigid matrices are not explicit. In this work, we derive an equivalence between rigidity and the systematic linear model of data structures. For the nn-dimensional inner product problem with mm queries, we prove that lower bounds on the query time imply rigidity lower bounds for the query set itself. In particular, an explicit lower bound of ω(nrlogm)\omega\left(\frac{n}{r}\log m\right) for rr redundant storage bits would yield better rigidity parameters than the best bounds due to Alon, Panigrahy, and Yekhanin. We also prove a converse result, showing that rigid matrices directly correspond to hard query sets for the systematic linear model. As an application, we prove that the set of vectors obtained from rank one binary matrices is rigid with parameters matching the known results for explicit sets. This implies that the vector-matrix-vector problem requires query time Ω(n3/2/r)\Omega(n^{3/2}/r) for redundancy rnr \geq \sqrt{n} in the systematic linear model, improving a result of Chakraborty, Kamma, and Larsen. Finally, we prove a cell probe lower bound for the vector-matrix-vector problem in the high error regime, improving a result of Chattopadhyay, Kouck\'{y}, Loff, and Mukhopadhyay.Comment: 23 pages, 1 tabl

    Min-Rank Conjecture for Log-Depth Circuits

    Get PDF
    A completion of an m-by-n matrix A with entries in {0,1,*} is obtained by setting all *-entries to constants 0 or 1. A system of semi-linear equations over GF(2) has the form Mx=f(x), where M is a completion of A and f:{0,1}^n --> {0,1}^m is an operator, the i-th coordinate of which can only depend on variables corresponding to *-entries in the i-th row of A. We conjecture that no such system can have more than 2^{n-c\cdot mr(A)} solutions, where c>0 is an absolute constant and mr(A) is the smallest rank over GF(2) of a completion of A. The conjecture is related to an old problem of proving super-linear lower bounds on the size of log-depth boolean circuits computing linear operators x --> Mx. The conjecture is also a generalization of a classical question about how much larger can non-linear codes be than linear ones. We prove some special cases of the conjecture and establish some structural properties of solution sets.Comment: 22 pages, to appear in: J. Comput.Syst.Sci

    Algebraic and Combinatorial Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. The algebraic theme continues in some of the most exciting recent progress in computational complexity. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Another surprising connection is that the algebraic techniques invented to show lower bounds now prove useful to develop efficient algorithms. For example, Williams showed how to use the polynomial method to obtain faster all-pair-shortest-path algorithms. This emphases once again the central role of algebra in computer science. The seminar aims to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and this seminar can play an important role in educating a diverse community about the latest new techniques, spurring further progress
    corecore