13,906 research outputs found

    Bounds on the size of super edge-magic graphs depending on the girth

    Get PDF
    Let G = (V,E) be a graph of order p and size q. It is known that if G is super edge-magic graph then q 2p−3. Furthermore, if G is super edge-magic and q = 2p−3, then the girth of G is 3. It is also known that if the girth of G is at least 4 and G is super edge-magic then q 2p − 5. In this paper we show that there are infinitely many graphs which are super edge-magic, have girth 5, and q = 2p−5. Therefore the maximum size for super edge-magic graphs of girth 5 cannot be reduced with respect to the maximum size of super edge-magic graphs of girth 4.Preprin

    Recent studies on the super edge-magic deficiency of graphs

    Full text link
    A graph GG is called edge-magic if there exists a bijective function f:V(G)∪E(G)→{1,2,…,∣V(G)∣+∣E(G)∣}f:V\left(G\right) \cup E\left(G\right)\rightarrow \left\{1, 2, \ldots , \left\vert V\left( G\right) \right\vert +\left\vert E\left( G\right) \right\vert \right\} such that f(u)+f(v)+f(uv)f\left(u\right) + f\left(v\right) + f\left(uv\right) is a constant for each uv∈E(G)uv\in E\left( G\right) . Also, GG is said to be super edge-magic if f(V(G))={1,2,…,∣V(G)∣}f\left(V \left(G\right)\right) =\left\{1, 2, \ldots , \left\vert V\left( G\right) \right\vert \right\}. Furthermore, the super edge-magic deficiency μs(G) \mu_{s}\left(G\right) of a graph GG is defined to be either the smallest nonnegative integer nn with the property that G∪nK1G \cup nK_{1} is super edge-magic or +∞+ \infty if there exists no such integer nn. In this paper, we introduce the parameter l(n)l\left(n\right) as the minimum size of a graph GG of order nn for which all graphs of order nn and size at least l(n)l\left(n\right) have μs(G)=+∞\mu_{s} \left( G \right)=+\infty , and provide lower and upper bounds for l(G)l\left(G\right). Imran, Baig, and Fe\u{n}ov\u{c}\'{i}kov\'{a} established that for integers nn with n≡0(mod4)n\equiv 0\pmod{4}, μs(Dn)≤3n/2−1 \mu_{s}\left(D_{n}\right) \leq 3n/2-1, where DnD_{n} is the cartesian product of the cycle CnC_{n} of order nn and the complete graph K2K_{2} of order 22. We improve this bound by showing that μs(Dn)≤n+1 \mu_{s}\left(D_{n}\right) \leq n+1 when n≥4n \geq 4 is even. Enomoto, Llad\'{o}, Nakamigawa, and Ringel posed the conjecture that every nontrivial tree is super edge-magic. We propose a new approach to attak this conjecture. This approach may also help to resolve another labeling conjecture on trees by Graham and Sloane

    Perfect (super) Edge-Magic Crowns

    Get PDF
    A graph G is called edge-magic if there is a bijective function f from the set of vertices and edges to the set {1,2,…,|V(G)|+|E(G)|} such that the sum f(x)+f(xy)+f(y) for any xy in E(G) is constant. Such a function is called an edge-magic labelling of G and the constant is called the valence. An edge-magic labelling with the extra property that f(V(G))={1,2,…,|V(G)|} is called super edge-magic. A graph is called perfect (super) edge-magic if all theoretical (super) edge-magic valences are possible. In this paper we continue the study of the valences for (super) edge-magic labelings of crowns Cm¿K¯¯¯¯¯n and we prove that the crowns are perfect (super) edge-magic when m=pq where p and q are different odd primes. We also provide a lower bound for the number of different valences of Cm¿K¯¯¯¯¯n, in terms of the prime factors of m.Postprint (updated version

    Rainbow eulerian multidigraphs and the product of cycles

    Full text link
    An arc colored eulerian multidigraph with ll colors is rainbow eulerian if there is an eulerian circuit in which a sequence of ll colors repeats. The digraph product that refers the title was introduced by Figueroa-Centeno et al. as follows: let DD be a digraph and let Γ\Gamma be a family of digraphs such that V(F)=VV(F)=V for every F∈ΓF\in \Gamma. Consider any function h:E(D)⟶Γh:E(D)\longrightarrow\Gamma . Then the product D⊗hΓD\otimes_{h} \Gamma is the digraph with vertex set V(D)×VV(D)\times V and ((a,x),(b,y))∈E(D⊗hΓ)((a,x),(b,y))\in E(D\otimes_{h}\Gamma) if and only if (a,b)∈E(D) (a,b)\in E(D) and (x,y)∈E(h(a,b)) (x,y)\in E(h (a,b)). In this paper we use rainbow eulerian multidigraphs and permutations as a way to characterize the ⊗h\otimes_h-product of oriented cycles. We study the behavior of the ⊗h\otimes_h-product when applied to digraphs with unicyclic components. The results obtained allow us to get edge-magic labelings of graphs formed by the union of unicyclic components and with different magic sums.Comment: 12 pages, 5 figure

    Super edge-magic deficiency of join-product graphs

    Full text link
    A graph GG is called \textit{super edge-magic} if there exists a bijective function ff from V(G)∪E(G)V(G) \cup E(G) to {1,2,…,∣V(G)∪E(G)∣}\{1, 2, \ldots, |V(G) \cup E(G)|\} such that f(V(G))={1,2,…,∣V(G)∣}f(V(G)) = \{1, 2, \ldots, |V(G)|\} and f(x)+f(xy)+f(y)f(x) + f(xy) + f(y) is a constant kk for every edge xyxy of GG. Furthermore, the \textit{super edge-magic deficiency} of a graph GG is either the minimum nonnegative integer nn such that G∪nK1G \cup nK_1 is super edge-magic or +∞+\infty if there exists no such integer. \emph{Join product} of two graphs is their graph union with additional edges that connect all vertices of the first graph to each vertex of the second graph. In this paper, we study the super edge-magic deficiencies of a wheel minus an edge and join products of a path, a star, and a cycle, respectively, with isolated vertices.Comment: 11 page

    Langford sequences and a product of digraphs

    Get PDF
    Skolem and Langford sequences and their many generalizations have applications in numerous areas. The ⊗h\otimes_h-product is a generalization of the direct product of digraphs. In this paper we use the ⊗h\otimes_h-product and super edge-magic digraphs to construct an exponential number of Langford sequences with certain order and defect. We also apply this procedure to extended Skolem sequences.Comment: 10 pages, 6 figures, to appear in European Journal of Combinatoric
    • …
    corecore