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Abstract

Let G = (V, E) be a graph of order p and size q. It is known that if G is super edge-magic
graph then q ≤ 2p− 3. Furthermore, if G is super edge-magic and q = 2p− 3, then the girth
of G is 3. It is also known that if the girth of G is at least 4 and G is super edge-magic then
q ≤ 2p − 5. In this paper we show that there are infinitely many graphs which are super
edge-magic, have girth 5, and q = 2p− 5. Therefore the maximum size for super edge-magic
graphs of girth 5 cannot be reduced with respect to the maximum size of super edge-magic
graphs of girth 4.
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1 Introduction.

For the undefined concepts and notation used in this paper, the reader is referred to [5].

We will use the notation G = (V,E) in order to denote a graph with vertex set V and edge set
E. The order and size of G will be denoted by p and q respectively. Also the girth of G will be
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denoted with the notation g(G). By the notation [a, b] where a, b ∈ Z; a < b we mean the set
{a, a + 1, a + 2, . . . , b}. Furthermore, the symbol +n means the sum in Zn.

In 1998, Enomoto, Lladó, Nakamigawa and Ringel [2] defined a graph G = (V,E) of order p and
size q to be super edge-magic if there exists a bijective function f : V ∪ E −→ {1, 2, . . . , p + q}
such that

1. f(V ) = {1, 2, . . . , p}.

2. f(u) + f(uv) + f(v) = k ∀uv ∈ E.

The function f is called a super edge-magic labeling of G.

The following Lemma found in [3], provides us with an alternative definition of super edge-magic
graphs which is sometimes very useful.

Lemma 1.1 A graph G = (V,E) of order p and size q is super edge-magic if and only if there

exists a bijective function

f̄ : V −→ {1, 2, . . . , p}

such that the set

S = {f̄(u) + f̄(v) : uv ∈ E}

consists of q consecutive integers.

Note that Lemma (1.1) allows us to describe super edge-magic labelings only by means of the
vertex labels and this is what will be done in the rest of the paper.

It is worthwhile mentioning that in 1991 Acharya and Hegde,[1], defined the concept of strongly
indexable graph that turns out to be equivalent to the concept of super edge-magic graph.

In [2], Enomoto et al. established the following upper bound for the size of super edge-magic
graphs.

Theorem 1.1 If G = (V,E) is a super edge-magic graph of order p and size q then

q ≤ 2p − 3.

In [4] Figueroa-Centeno et al. improved the result as follows.

Theorem 1.2 Let G = (V,E) be a super edge-magic graph of order p and size q, where p ≥ 4
and q ≥ 2p − 4. Then G contains triangles.

Thus, in light of Theorems (1.1) and (1.2), we known that the girth of any super edge-magic
graph of order p ≥ 4 and size q ≥ 2p−4 is necessarily 3. Therefore we get the following corollary.

Corollary 1.1 Let G = (V,E) be a super edge-magic graph of order p ≥ 4 and size q such that

g(G) ≥ 4. Then

q ≤ 2p − 5.



The bound established in Corollary (1.1) is tight since it is not hard to find bipartite graphs of
order p ≥ 8 and size q = 2p − 5 which are super edge-magic. Also it is easy to find graphs with
girth 3 that attain the bound established in Theorem (1.1).

In this paper we prove that at least for graphs of girth 5, the bound obtained in Corollary (1.1)
cannot be improved. We show this by establishing an infinite family of super edge-magic graphs
with girth 5, for which their size is exactly equal to two times the order minus 5.

2 The family and the labeling.

Consider the following family: P = {Pn : n ∈ N\{1}} of graphs where each graph Pn has order
5n and size 10n − 5. Next we describe the grahps of this family. The vertex set of Pn is the set
V (Pn) = [0, 5n − 1]. The graph Pn consist of n cycles, each of them called level Lk for every
k ∈ [1, n]. The vertices of the level Lk are V (Lk) = [5k − 5, 5k − 1]. Each vertex of Lk is joined
with exactly one vertex of Lk−1 and with exactly one vertex of Lk+1 for every k ∈ [2, n − 1].
Therefore, the vertices of L2, . . . , Ln−1 are all of degree 4 and the vertices of L1 and Ln have
degree 3. At this point, let us define the adjacencies.

Let a, b ∈ V (Fk); k ∈ [1, n]. We denote by ā and b̄ the remainders of a and b modulo 5. Then
ab ∈ E(Pn) if and only if either ā = b̄ +5 2 or b̄ = ā +5 2. Next, ab ∈ E(Pn) if and only if
b̄ = π(ā) when k is odd or b̄ = π−1(ā) when k is even, where π is the following permutation of
elements the of Z5 written in cycle notation: (0, 4, 1, 2)(3).
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Figure 1: The graph P3



Let Pn ∈ P. We observe that the subgraphs of Pn induced by two consecutive levels are all
isomorphic to the Petersen graph. Hence any cycle of order strictly smaller than 5, must contain
vertices of at least three distinct level of Pn . It is easy to see that with vertices of at least three
levels we can only construct cycles of order at least 6. Therefore we have that g(Pn) = 5 ∀Pn ∈ P.
Next we introduce the following result regarding the super edge-magicness of the graphs in P.

Theorem 2.1 The graph Pn ∈ P is super edge-magic for all n ∈ N \ {1}.

Proof.

Let f −→ [0, 5n − 1] be the function defined by the rule f(i) = i ∀i ∈ V (Pn). Then

{f(a) + f(b) : ab ∈ E(Fk) : k ∈ [1, n]} = [10k − 8, 10k − 4]

and if k ∈ [1, n − 1] we have that

{f(a) + f(b) : ab ∈ E(Pn) : a ∈ V (Fk), b ∈ V (Fk+1)} = [10k − 3, 10k + 1].

Thus
{f(a) + f(b) : ab ∈ E(Pn)} = [2, 10n − 4] and |[2, 10n − 4]| = |E(Pn)|.

Therefore the function g : V (Pn) −→ [1, 5n] defined by the rule g(i) = f(i)+1 = i+1 ∀i ∈ V (Pn)
is a super edge-magic labeling of Pn. 2

3 Conclusions and further research.

In this paper we have shown that if G = (V,E) is a super edge-magic graph of order p, size q

and girth 5, then q ≤ 2p − 5, and that this bound is tight. For further research we propose to
find tight upper bounds for the size of super edge-magic graphs of girth g ≥ 6, or at least to
improve the bound established in this paper.

References

[1] B. D. Acharya and S. M. Hegde, Strongly indexable graphs, Discrete Math. 93 (1991)
123-129
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