37 research outputs found

    Sumset and Inverse Sumset Inequalities for Differential Entropy and Mutual Information

    Get PDF
    The sumset and inverse sumset theories of Freiman, Pl\"{u}nnecke and Ruzsa, give bounds connecting the cardinality of the sumset A+B={a+b  ;  a∈A, b∈B}A+B=\{a+b\;;\;a\in A,\,b\in B\} of two discrete sets A,BA,B, to the cardinalities (or the finer structure) of the original sets A,BA,B. For example, the sum-difference bound of Ruzsa states that, ∣A+B∣ ∣A∣ ∣B∣≤∣A−B∣3|A+B|\,|A|\,|B|\leq|A-B|^3, where the difference set A−B={a−b  ;  a∈A, b∈B}A-B= \{a-b\;;\;a\in A,\,b\in B\}. Interpreting the differential entropy h(X)h(X) of a continuous random variable XX as (the logarithm of) the size of the effective support of XX, the main contribution of this paper is a series of natural information-theoretic analogs for these results. For example, the Ruzsa sum-difference bound becomes the new inequality, h(X+Y)+h(X)+h(Y)≤3h(X−Y)h(X+Y)+h(X)+h(Y)\leq 3h(X-Y), for any pair of independent continuous random variables XX and YY. Our results include differential-entropy versions of Ruzsa's triangle inequality, the Pl\"{u}nnecke-Ruzsa inequality, and the Balog-Szemer\'{e}di-Gowers lemma. Also we give a differential entropy version of the Freiman-Green-Ruzsa inverse-sumset theorem, which can be seen as a quantitative converse to the entropy power inequality. Versions of most of these results for the discrete entropy H(X)H(X) were recently proved by Tao, relying heavily on a strong, functional form of the submodularity property of H(X)H(X). Since differential entropy is {\em not} functionally submodular, in the continuous case many of the corresponding discrete proofs fail, in many cases requiring substantially new proof strategies. We find that the basic property that naturally replaces the discrete functional submodularity, is the data processing property of mutual information.Comment: 23 page

    Entropy methods for sumset inequalities

    Get PDF
    In this thesis we present several analogies betweeen sumset inequalities and entropy inequalities. We offer an overview of the different results and techniques that have been developed during the last ten years, starting with a seminal paper by Ruzsa, and also studied by authors such as Bollobás, Madiman, or Tao. After an introduction to the tools from sumset theory and entropy theory, we present and prove many sumset inequalities and their entropy analogues, with a particular emphasis on Plünnecke-type results. Functional submodularity is used to prove many of these, as well as an analogue of the Balog-Szemerédi-Gowers theorem. Partition-determined functions are used to obtain many sumset inequalities analogous to some new entropic results. Their use is generalized to other contexts, such as that of projections or polynomial compound sets. Furthermore, we present a generalization of a tool introduced by Ruzsa by extending it to a much more general setting than that of sumsets. We show how it can be used to obtain many entropy inequalities in a direct and unified way, and we extend its use to more general compound sets. Finally, we show how this device may help in finding new expanders

    Conditional R\'enyi entropy and the relationships between R\'enyi capacities

    Full text link
    The analogues of Arimoto's definition of conditional R\'enyi entropy and R\'enyi mutual information are explored for abstract alphabets. These quantities, although dependent on the reference measure, have some useful properties similar to those known in the discrete setting. In addition to laying out some such basic properties and the relations to R\'enyi divergences, the relationships between the families of mutual informations defined by Sibson, Augustin-Csisz\'ar, and Lapidoth-Pfister, as well as the corresponding capacities, are explored.Comment: 17 pages, 1 figur

    Countably Infinite Multilevel Source Polarization for Non-Stationary Erasure Distributions

    Full text link
    Polar transforms are central operations in the study of polar codes. This paper examines polar transforms for non-stationary memoryless sources on possibly infinite source alphabets. This is the first attempt of source polarization analysis over infinite alphabets. The source alphabet is defined to be a Polish group, and we handle the Ar{\i}kan-style two-by-two polar transform based on the group. Defining erasure distributions based on the normal subgroup structure, we give recursive formulas of the polar transform for our proposed erasure distributions. As a result, the recursive formulas lead to concrete examples of multilevel source polarization with countably infinite levels when the group is locally cyclic. We derive this result via elementary techniques in lattice theory.Comment: 12 pages, 1 figure, a short version has been accepted by the 2019 IEEE International Symposium on Information Theory (ISIT2019
    corecore