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Abstract

Over the past few years, a family of interesting new inequalities for the entropies of sums and differences
of random variables has been developed by Ruzsa, Tao and others, motivated by analogous results in additive
combinatorics. The present work extends these earlier results to the case of random variables taking values inR

n

or, more generally, in arbitrary locally compact and Polishabelian groups. We isolate and study a key quantity,
the Ruzsa divergencebetween two probability distributions, and we show that itsproperties can be used to extend
the earlier inequalities to the present general setting. The new results established include several variations on the
theme that the entropies of the sum and the difference of two independent random variables severely constrain
each other. Although the setting is quite general, the result are already of interest (and new) for random vectors in
Rn. In that special case, quantitative bounds are provided forthe stability of the equality conditions in the entropy
power inequality; a reverse entropy power inequality for log-concave random vectors is proved; an information-
theoretic analog of the Rogers-Shephard inequality for convex bodies is established; and it is observed that some
of these results lead to new inequalities for the determinants of positive-definite matrices. Moreover, by considering
the multiplicative subgroups of the complex plane, one obtains new inequalities for the differential entropies of
products and ratios of nonzero, complex-valued random variables.
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I. INTRODUCTION

A. Motivation

T HE properties of the entropy of sums and differences of random variables have attracted a great deal of interest
in almost every area of information theory. Classical results were primarily motivated by the study of additive

noise channels, and in the past three decades connections with several other fields have emerged, including the
foundations of probabilistic limit theorems, functional inequalities and probabilistic bounds.

More recently, it was also observed that inequalities involving the entropies of sums and differences are closely
tied to basic questions and results in the area of additive combinatorics, which in turn also have applications in
communications. A prominent collection of tools in additive combinatorics are those provided by the Plünnecke-
Ruzsa sumset theory; see, e.g., [55] for a broad introduction. A simple example of such a result is the following.
Given two discrete setsA andB, the sumsetA + B is defined as,A + B = {a + b : a ∈ A, b ∈ B}, and the
difference setA−B is, A− B = {a− b : a ∈ A, b ∈ B}. The Ruzsa triangle inequality[48] states that, for any
three setsA,B,C, we have,

|A− C| · |B| ≤ |A−B| · |B −C|, (1)

where|E| denotes the cardinality of a setE, andA,B andC are subsets of the integers, or any other discrete abelian
group. A fascinating connection between such inequalitiesand corresponding results for the Shannon entropyH
was identified initially by Tao and Vu [56] and by Ruzsa [49], and it has been developed quite extensively by several
authors over the past 10 years; see, e.g., [34], [54] and the references therein. The main idea is that, interpreting
the entropy as the effective log-cardinality of the supportof a random variable, then replacing the log-cardinality
of every sumset (or difference set) by the entropy of a corresponding sum (respectively, difference) of independent
discrete random variables, produces a candidate entropy inequality. For example, (1) becomes,

H(X − Z) +H(Y ) ≤ H(X − Y ) +H(Y − Z), (2)

for independentX,Y,Z, whereH denotes the Shannon entropy.
For discrete random variables, this connection was studiedin detail by [34] and Tao [54], who established

numerous such entropy inequalities. The main technical tool in Tao’s proofs was the submodularity property of the
discrete entropy, which, as observed in our subsequent work[30], fails to hold in the case of differential entropy.
Therefore, in order to extend Tao’s results to continuous random variables, new arguments were necessary, and the
key property which replaced submodularity in the proofs of almost all of the corresponding differential entropy
inequalities in [30], was the data processing inequality for mutual information. As for the results of [34], some
of them can be extended without too much effort to continuousrandom variables, while others rely too much on
the bijection-invariance of discrete entropy and cannot beextended both because of this and because of delicate
measure-theoretic issues that only arise in the continuouscase.

The starting point of the present work is the desire to explore how this family of inequalities can be extended
to random vectorsRn and, more generally, to random variables taking values in general (locally compact, Polish)
abelian groups. Our main results, outlined below, include unified proofs for many of the earlier results in [54], [34]
and all the results of [30]; a key ingredient in our approach is the identification of the Ruzsa divergenceas the
central quantity of interest.

We note in passing that strong communication-theoretic motivation for the present work comes from the fact that
our results can be used powerfully in the study of the degreesof freedom of interference channels (for which the
computation of fundamental limits is a notoriously hard open problem). The results of our prior work [30] played
a key role in the works of Wu, Shamai and Verdú [57] and Stotz and Bölcskei [52], [53]; we anticipate that the
more general results developed herein will also find applications to communication theory.

B. Outline of main results

The first contribution of this work is to isolate and study, ina general setting, a quantity that plays a key role
in the behavior of entropy of sums and differences; we call this the Ruzsa divergence. LetX andY denote two
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random variables which can be discrete, continuous, vector-valued, or, more generally, taking values in a locally
compact abelian groupG. The Ruzsa divergencebetweenX andY is defined as,1

dR(X‖Y ) := h(X ′ − Y ′)− h(X ′) = I(X ′ − Y ′;Y ′),

whereX ′ andY ′ are independent and have the same marginal distributions asX andY , respectively, andh denotes
the entropy onG. As described formally in the following section,h is the usual Shannon entropy ifG is discrete, it
is the (joint) differential entropy whenG = Rn, and in general it is the entropy defined with respect to Haar measure
on G. Much of the remainder of this section will summarize how thebasic properties of the Ruzsa divergence can
be used to provide unified proofs for all existing (discrete and continuous) entropy inequalities in this area, as well
as their extensions to general groups, offering an analysison spaces satisfying essentially minimal assumptions –
specifically, on abelian groups equipped with the minimal topological structure necessary to guarantee the existence
of a Haar measure so that a natural notion of entropy can be defined.

The second contribution of this work is to highlight some interesting connections of the aforementioned techniques
and ideas with problems related to the differential entropies of products of positive random variables, the entropy
power inequality, results in convex geometry, and determinantal inequalities.

We begin in SectionII by introducing the main definitions and assumptions that will remain in effect throughout
the paper. We first formally define the Ruzsa divergencedR(X‖Y ), as well as two related quantities, the conditional
Ruzsa divergence and the Ruzsa difference. After some elementary observations, we then state in Theorem1 the
triangle inequality fordR(X‖Y ), which implies the inequality (2), and which is seen to be a simple consequence
of a stronger result, Theorem2. This is stated and proved in SectionIII , where we also establish a number of
the important properties ofdR(X‖Y ). In Theorem3 we show that it is subadditive with respect to convolution,
dR(X‖Y1 + Y2) ≤ dR(X‖Y1) + dR(X‖Y2), and in Theorem5 we give a general information-theoretic version of
the Balog-Szemeredi-Gowers theorem, a significant inequality from additive combinatorics.

In SectionIV we first re-interpret the subadditivity property of Theorem3 in the context of important inequalities
for the cardinalities of sumsets in additive combinatorics, called the Plünnecke-Ruzsa inequalities. Specifically,in
Theorem6 we observe that, ifX,Y1, Y2, . . . , Yn are independent, then,

h

(
X −

n∑

i=1

Yi

)
+ (n− 1)h(X) ≤

n∑

i=1

h(X − Yi).

We then examine the question of how different the entropies of X + X ′ andX − X ′ can be, whenX andX ′

are independent and identically distributed (i.i.d.). As was pointed out by Lapidoth and Pete [31], the difference
between the two can be arbitrarily large, which may be rephrased as saying thatdR(X‖X ′) anddR(X‖−X ′) can
differ by an arbitrarily large amount. However, in Corollary 3 we show that the ratio between these two Ruzsa
divergences is always bounded between1/2 and 2; this generalizes the doubling-difference inequality of [30]. In
Theorem7 we give the general version of the sum-difference inequality [30], relatingh(X +X ′) andh(X −X ′)
[equivalently, relatingdR(X‖X ′) anddR(X‖−X ′)] whenX andX ′ are independent but not necessarily identically
distributed. We close this section by giving general versions of some recent results by Wu, Shamai and Verdú [57]
on discrete random variables, which were used in a study of the degrees of freedom of theM -user interference
channel. In Lemma6 and Theorem8 we state and prove corresponding results for the entropy of weighted linear
combinations of random variables of the formaX+ bY , whereX,Y take values in a general (locally compact and
Polish) abelian group, anda, b are integers.

In SectionV, we consider the special cases of three subgroupsG of the complex planeC, equipped with the
multiplication operation: the half-line(0,∞), the unit circleT ⊆ C, and the nonzero complex numbersC \ {0}.
In each of these cases, the application of our general results lead to new inequalities for the differential entropies
of products and ratios ofG-valued random variables.

In the last four sections we concentrate on the special case of real random vectors, takingG = Rn andh to be
the usual (joint) differential entropy. In SectionVI we look at the difference betweenh(X +X ′) andh(X −X ′)

1 Although a symmetrical variant of this quantity, namely1
2
(dR(X‖Y ) + dR(Y ‖X)), has been called the “Ruzsa distance” has been

studied before in the discrete setting by Tao [54] and for real-valued random variables in [30], we find that focusing on this non-symmetric
version makes various developments clearer. Furthermore,the Ruzsa divergence is a particular instance of the Kullback-Leibler divergence
or relative entropy, so that it inherits many of its characteristics, but it also has special properties that justify itsclose study.
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from a different perspective, and provide results in the spirit of the Freiman-Green-Ruzsa inverse sumset theorems.
In Corollary 7 we show (under certain conditions), based on a recent resultfrom [7], that if h(X +X ′)− 2h(X) is
small, then the distribution ofX is necessarily close to being Gaussian, in a way that can be precisely quantified
in terms of relative entropy. Then, in Theorem10 we prove a converse result: If the two entropiesh(X −X ′) and
h(X +X ′) are significantly different, then the distribution ofX will also be significantly different (in the relative
entropy sense) from being Gaussian. These results can be seen as quantitative versions of the condition for equality
in the entropy power inequality [50], [51]. Recall that, when applied to i.i.d. random vectorsX,X ′, the entropy
power inequality implies that,

h(X +X ′) ≥ h(X) +
n

2
log 2,

where, throughout the paper,log denotes the natural logarithmloge, so that the entropy and all other familiar
information-theoretic quantities are expressed in nats. In SectionVII we establish a reverse inequality of this sort:
Corollary 8 states that, ifX,X ′ are i.i.d. with a log-concave distribution, then,

h(X +X ′) ≤ h(X) + n log 2.

In SectionVIII we argue that the Ruzsa divergence is a natural analog of volume-based functionals that arise
in the geometry of convex sets. In Corollary9 we establish the following information-theoretic analog of the
Rogers-Shepard inequality: IfX andX ′ are i.i.d. with a log-concave distribution onRn, then,

h(X −X ′) ≤ h(X) + 2n log 2.

In fact, we conjecture that the same result holds without thefactor of 2 in the last term above. Finally, in SectionIX,
we briefly indicate how the earlier inequalities for the entropy can be used to develop corresponding inequalities
for the determinants of positive-definite matrices. In particular, in Corollary11 we establish the following variant
of an inequality due to Rotfel’d [45]: If K,K1,K2, . . . ,Kn are positive-definite matrices, then,

det(K +K1 + . . .+Kn) ≤ [det(K)]−(n−1)
n∏

j=1

det(K +Kj).
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II. T HE RUZSA DIVERGENCE

We begin by introducing the basic definitions of Haar measureand random variables with values in an abelian
group. Readers not interested in the general formulation can simply skip to the two main examples below, and read
the rest of this paper keeping only these two key examples in mind.

Let G be an abelian topological group, i.e., a topological space endowed with a commutative, associative and
continuous operation (i.e., a continuous function fromG × G to G that takes(x, y) to an element ofG denoted
x + y), which has an identity element 0 (such thatx + 0 = x for all x in G) and with every element having an
inverse (i.e., for eachx ∈ G there is an element inG denoted−x such thatx+(−x) = 0). We will always assume
that the topology onG is Polish (i.e., it is metrizable so that the resulting metric space is complete and separable),
and locally compact (i.e., every point has a compact neighborhood). The Borelσ-algebraG on G is theσ-algebra
generated by all open sets. It is a classical fact (see, e.g.,[25], [40], [24]) that under these assumptions, there exists
a (countably additive) measureλ defined onG that is translation-invariant, i.e., such thatλ(A + x) = λ(A) for
eachA ∈ G and eachx ∈ G, whereA + x = {a + x : a ∈ A}. Such a measure is called a Haar measure, and it
is unique up to scaling by a positive constant. In any given situation, we will assume that the scaling is chosen at
the beginning and fixed; thus we will talk without further comment about “the” Haar measure onG.

For our analysis, the normalization (particular scaling chosen) of the Haar measure does not matter. Nonetheless,
it is useful to keep in mind the common normalizations used for the most important examples – namely discrete
groups and the additive groupRn. WhenG is a countable group with the discrete topology, we will always take
the Haar measureλ to be counting measure, i.e.,λ({g}) = 1 for every elementg ∈ G, and defineλ on any
subset ofG as its (possibly infinite) cardinality. WhenG is not compact, the Haar measure is infinite, and then
it is common to fix the normalization by fixing the measure of some special set; in the case ofRn, as usual, by
requiringλ([0, 1]n) = 1, we obtain the Lebesgue measure.

Let (Ω,F ,P) be a probability space, andX be aG-valued random variable on it (i.e., a function fromΩ to G
measurable with respect toF andG). We say that the random variableX taking values inG has a continuous
distribution if its probability distribution, namely the image measurePX induced by the mappingX on G, is
absolutely continuous with respect to the Haar measureλ. In this case, denoting the Radon-Nikodym derivative
dPX

dλ (x) by f(x) = fX(x), we say thatX has densityf , and writeX ∼ f .

Example 1. WhenG is countable, everyG-valued random variableX has a continuous distribution, and its density
is simply the probability mass function ofX, i.e., fX(x) = P{X = x}.

Example 2. LetG be the setRn equipped with the addition operation, so thatλ is the usual Lebesgue measure. Let
X be aG-valued random variable. IfX is a continuous random variable, then its density is the usual probability
density functionfX : G → [0,∞) of the random vectorX with respect to Lebesgue measure, satisfying,

P{X ∈ B} =

∫

B
fX(x)dx,

for eachB ∈ G, whereG is the collection of Borel subsets ofRn.

If X has densityf on the groupG, the entropyof X is defined by,

h(X) = −
∫

G
f(x) log f(x) dx,

provided that the integral exists in the Lebesgue sense. As usual, we writeh(X) even though the entropy depends
only on the densityf of X. Clearly, h is precisely the discrete entropy in the setting of Example1, and the
differential entropy in the setting of Example2.

To summarize,we assume throughout thatG is a Polish, locally compact, abelian group, equipped with the
Haar measureλ on its Borel σ-field G. Then it is easy to check that the same properties are satisfied by the
Cartesian productGn (with coordinate-wise addition defining the group structure, the product topology defining
the topological structure, and the product measureλn being its Haar measure), for anyn ∈ N. Thus we can define
the entropy of any finite collection of jointly distributed random variables(X1, . . . ,Xn), each with values inG,
simply by treating(X1, . . . ,Xn) as a measurable function fromΩ to the Cartesian productGn, and computing the
entropy of its density. [Generally we will not use the commonterm “joint entropy,” since we prefer to think of
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the collection of random variables as a single random object.] In particular, we can define the conditional entropy
between twoG-valued random elementsX andY by the usual chain rule, ash(Y |X) = h(X,Y )− h(X).

Although particular care is needed to see which of the standard properties of discrete entropy and differential
entropy carry over to the general case, we note that it is immediate from the definition that some key properties
remain true. First, the entropy is always translation-invariant in that, for any constanta ∈ G, h(X + a) = h(X),
because of the translation-invariance of the Haar measure.Also, the chain rule holds in general, and, if we define
the mutual information as usual as a difference of entropies, the chain rule for mutual information also holds in this
general setting. Finally, the property which will play the most central role in our subsequent development, namely
the data processing inequality for mutual information, also holds in complete generality.

Definition 1. SupposeX andY areG-valued random variables with finite entropy. TheRuzsa divergencebetween
X and Y is defined as,

dR(X‖Y ) := h(X ′ − Y ′)− h(X ′),

whereX ′ andY ′ are taken to be independent random variables with the same distributions asX andY , respectively.

Let us note that even though the entropies ofX andY above are assumed to be finite, it is possible thath(X ′−Y ′)
and hencedR(X‖Y ) are+∞ (see, e.g., [12] for examples). In order to avoid uninteresting technicalities, in the
statements of all subsequent definitions and results,we will always implicitly assume that the entropies and Ruzsa
divergences that appear are well-defined and finite. The adjustments that need to be made to address possible
infinities are left to the reader; see, e.g., the discussion after Lemma7 where we work out explicitly the precise
finiteness conditions in one particular case.

A more precise way of writing the Ruzsa divergence would havebeen to write it asdR(f1‖f2), whereX ∼ f1
andY ∼ f2, but we find it convenient to highlight the random vectors in the notation. The term “divergence” is
designed to invoke comparison with the relative entropy or Kullback-Leibler divergence (in thatdR also satisfies
some properties of a distance but not others, e.g., it is not symmetric); in fact, it is immediately obvious that the
Ruzsa divergence is just a special case of the mutual information (and hence of the relative entropy).

Lemma 1. For any twoG-valued random variablesX,Y ,

dR(X‖Y ) = I(X ′ − Y ′;Y ′),

whereI(Z;W ) = h(Z) + h(W )− h(Z,W ) denotes the mutual information betweenZ andW , andX ′ ∼ X and
Y ′ ∼ Y are independent. In particular,dR(X,Y ) ≥ 0.

Observe thatdR(X‖X) = I(X −X ′;X), whereX ′ is an independent copy ofX, and this is rarely identically
zero. In particular, whenG = Rn, dR(X‖X) is never zero, since the entropy power inequality implies a strictly
positive lower bound ondR(X‖X) depending only onn, as discussed in SectionVI . Thus even if we ignore the
assymmetry of Ruzsa divergence (which can be fixed by averagingdR(X‖Y ) anddR(Y ‖X)), one should be careful
in interpreting it as a notion of distance.

However, the quantitydR satisfies a triangle inequality.

Theorem 1 (TRIANGLE INEQUALITY FOR RUZSA DIVERGENCE). If X1,X2,X3 are independent, then,

dR(X1‖X3) ≤ dR(X1‖X2) + dR(X2‖X3).

Theorem1 was proved originally (in an equivalent form) for discrete random variables by Ruzsa [49]; see also
Tao [54]. Since the discrete arguments used in these proofs rely on the property of submodularity which fails in the
continuous setting, a different proof for Theorem1 was recently provided in [30] for real-valued random variables.
The proof we present for the general setting in SectionIII uses both a re-interpretation of the approach used in
[30], and a sufficient condition for bijections in locally compact abelian groups to preserve the entropy, recently
obtained in [35] and stated in Lemma5.

We now define a conditional version of the Ruzsa divergence. Throughout this paper, we say thatX ↔ Z ↔ Y
form a Markov chain if they are defined on a common probabilityspace and the conditional distribution ofX given
(Z, Y ) is the same as that ofX given Z alone. The assertion thatX ↔ Z ↔ Y form a Markov chain is easily
seen to be symmetric, i.e., it is equivalent to the statementthat Y ↔ Z ↔ X form a Markov chain.
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Definition 2. SupposeX1, Y , andX2 are G-valued random variables, such thatX1 ↔ Y ↔ X2 forms a Markov
chain. Theconditional Ruzsa divergence betweenX1 andX2 givenY is,

dR(X1‖X2|Y ) := h(X1 −X2|Y )− h(X1|Y ).

Lemma 2. If X1 ↔ Y ↔ X2 form a Markov chain, then,

dR(X1‖X2|Y ) = I(X1 −X2;X2|Y ),

whereI(Z;W |V ) = h(Z|V ) + h(W |V )− h(Z,W |V ) denotes the conditional mutual information betweenZ and
W , givenV . In particular, dR(X1‖X2|Y ) ≥ 0.

Proof: Observe that,

dR(X1‖X2|Y ) = h(X1 −X2|Y )− h(X1|Y )

= h(X1 −X2|Y )− h(X1|Y,X2)

= h(X1 −X2|Y )− h(X1 −X2|Y,X2)

= I(X1 −X2;X2|Y )

≥ 0.

The Markov condition was used in an essential way in the second equality of the above display, while the translation-
invariance of entropy was used in the third equality.

Observe thatdR(X1‖X2|Y ) 6= dR(X2‖X1|Y ) in general, but that both quantities are non-negative.
Finally we introduce a more general version of the Ruzsa divergence, involving dependent random variables.

Definition 3. TheRuzsa differenceof the twoG-valued random variablesX and Y is,

d̃R(X‖Y ) := h(X − Y )− h(X).

Clearly, d̃R(X‖Y ) = dR(X‖Y ) whenX andY are independent, but in generald̃R(X‖Y ) is not a divergence
and need not be non-negative. Indeed, it is easy to see that one always has the following identity.

Lemma 3. For any pair ofX,Y ,

d̃R(X‖Y ) = I(X − Y ;Y )− I(X;Y ).
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III. PROPERTIES OFRUZSA DIVERGENCE

A special case of the Markov chain conditionX1 ↔ Y ↔ X2 is whenX1 is independent of(Y,X2). Then, the
conditional Ruzsa divergence can be related to the (unconditional) Ruzsa divergence.

Lemma 4. (CONDITIONING REDUCESRUZSA DIVERGENCE) If X1 is independent of(Y,X2), then,

dR(X1‖X2) = dR(X1‖X2|Y ) + I(Y ;X1 −X2),

and, in particular,dR(X1‖X2|Y ) ≤ dR(X1‖X2).

Proof: By Lemma2 and the chain rule for mutual information,

dR(X1‖X2|Y ) = I(X1 −X2;X2|Y )

= I(X1 −X2; (X2, Y ))− I(X1 −X2;Y ).

But,

I(X1 −X2; (X2, Y )) = h(X1 −X2)− h(X1 −X2|X2, Y )

= h(X1 −X2)− h(X1|X2, Y ),

by translation-invariance of entropy. The assumed independence now implies that,

I(X1 −X2; (X2, Y )) = h(X1 −X2)− h(X1)

= dR(X1‖X2),

so that,

dR(X1‖X2|Y ) = dR(X1‖X2)− I(Y ;X1 −X2)

≤ dR(X1‖X2).

To motivate the next property of Ruzsa divergence we will develop, it is useful to consider the special case
G = Rn, equipped with Lebesgue measure. In this case, it is an elementary fact that for any matrixA ∈ GLn(R)
(i.e., any invertiblen×n matrix), and for any random vectorX taking values inRn, h(AX) = h(X)+ log det(A),
wheredet(·) denotes the determinant. This has two useful consequences.Firstly, dR(X‖AY ) = dR(A

−1X‖Y ) so
that in particular,dR(X‖ − Y ) = dR(−X‖Y ). Secondly, for any matrixA ∈ SLn(R) (i.e., any invertible matrix
with determinant 1), entropy is preserved by the corresponding linear transformation, i.e.,h(AX) = h(X).

For a general locally compact abelian groupG, the notion of a linear transformation onGn defined by a matrix
A no longer makes sense. However, when the elements of ann× n matrix A = (aij)1≤i,j≤n are integers, we can
talk about the group homomorphism induced byA on Gn. Specifically, for(x1, . . . , xn) = x ∈ Gn, we denote by
Ax the element,

( n∑

j=1

a1jxj,

n∑

j=1

a2jxj, . . . ,

n∑

j=1

anjxj

)
∈ Gn,

whereax denotes the elementx + · · · + x ∈ G, addeda times. Even thoughGn is not a linear space, we will
sometimes call an integer matrixA a “linear transformation,” with the understanding that this refers to the group
homomorphism induced by it as above.

The general linear group over the integer ringZ (strictly speaking, of the moduleZn), denotedGLn(Z), is the
set of alln× n matrices with integer entries and determinant+1 or −1. The following result was recently shown
in [35].

Lemma 5. Let X be a random variable taking values inGn. If A ∈ GLn(Z), then,

h(AX) = h(X).

This allows us to extend the observation that the Ruzsa divergence behaves nicely when the random vectors
involved are linearly transformed.
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Corollary 1. For anyA ∈ GLn(Z), and any pair ofG-valued random variablesX,Y ,

dR(X‖AY ) = dR(A
−1X‖Y ).

In particular, dR(X‖ − Y ) = dR(−X‖Y ).

Proof: Assume, without loss of generality, thatX,Y are independent. By Lemma5,

dR(X‖AY ) = h(X −AY )− h(X)

= h(A−1X − Y )− h(A−1X)

= dR(A
−1X‖Y ).

We now prove a sharpened version of the triangle inequality in Theorem1.

Theorem 2. If X1,X2,X3 are independent, then,

dR(X1‖X3) ≤ dR(X1‖X2|X2 −X3) + dR(X2‖X3).

Proof: By an application of Lemma1 and the data processing inequality for mutual information,

dR(X1‖X3) = I(X1 −X3;X3)

≤ I((X1 −X2,X2 −X3);X3).

By the chain rule for mutual information, however,

I((X1 −X2,X2 −X3);X3)

= I(X2 −X3;X3) + I(X1 −X2;X3|X2 −X3)

= dR(X2‖X3) + I(X1 −X2;X3|X2 −X3),

where we used Lemma1 in the last equality. All that remains is to show that,

dR(X1‖X2|X2 −X3) = I(X1 −X2;X3|X2 −X3),

or, in view of Lemma2, that,

I(X1 −X2;X2|X2 −X3) = I(X1 −X2;X3|X2 −X3). (3)

Let us observe the following general fact:

I(X;Y, Y − Z) = I(X;Y,Z). (4)

To see this, write,

I(X;Y, Y − Z) = h(Y, Y − Z)− h(Y, Y − Z|X)

= h(Y,Z)− h(Y,Z|X)

= I(X;Y,Z),

where the second identity relied on Lemma5, and the fact that the mapping of(y, z) to (y, y − z) is represented
by the2× 2 matrix,

(
1 0
1 −1

)
,

which has determinant 1.
Then (4) implies that,

I(X1 −X2;X2,X2 −X3) = I(X1 −X2;X3,X2 −X3),

since both these quantities equalI(X1−X2;X2,X3). SubtractingI(X1−X2;X2−X3) from both sides, we obtain
the inequality in (3), completing the proof.
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Remark 1. Using Lemma4, Theorem2 can be written in a symmetric form as,

dR(X1‖X3) ≤ dR(X1‖X2) + dR(X2‖X3)− I(X1 −X2;X2 −X3),

and Theorem1 immediately follows.

A useful property of Ruzsa divergence is subadditivity in the second argument, which may be equivalently
expressed as a monotonicity property in the first argument.

Theorem 3. If X,Y1 and Y2 are independent, then,

dR(X‖Y1 + Y2) ≤ dR(X‖Y1) + dR(X‖Y2).

Equivalently, ifX1,X2 and Y are independent, then,

dR(X1 +X2‖Y ) ≤ dR(X1‖Y ).

Proof: Observe that,

dR(X‖Y1 + Y2)− dR(X‖Y1)

= h(X − Y1 − Y2)− h(X) − [h(X − Y1)− h(X)]

= h(X − Y1 − Y2)− h(X − Y1)

= dR(X − Y1;Y2).

By relabeling variables, we see that the two formulations are equivalent.
To prove the second formulation (and hence also the first), note that by Lemma1, and the data processing

inequality and the chain rule for mutual information,

dR(X1 +X2‖Y ) = I(X1 +X2 − Y ;Y )

≤ I(X1 − Y,X2;Y )

= I(X1 − Y ;Y ) + I(X2;Y |X1 − Y ).

The second term in the last line is 0 sinceX2 is independent of(X1, Y ), so that another application of Lemma1
gives the desired result.

Remark 2. Written out in terms of entropies, Theorem3 is equivalent to the assertion that the entropy of a
sum of independent group-valued random variables is a submodular set function, i.e.,h(X + Y + Z) + h(Z) ≤
h(X+Z)+h(Y +Z). For discrete entropy, this assertion is implicit in Kaimanovich and Vershik [27], and explicitly
and independently developed in [32], [ 34]; [ 34] also contains a generalization from sums to a more general class
of so-called partition-determined functions that can makesense on sets with less algebraic structure. For differential
entropy, this assertion was first presented in [32], and further explored for the case ofR-valued random variables
in [30].

If we do not make assumptions about the nature of the underlying distributions, the Ruzsa divergence and
conditional Ruzsa divergence can be unbounded. In SectionsVII and VIII , we will make such assumptions and
demonstrate a uniform bound on Ruzsa divergence for a log-concave density onRn. On the other hand, it is possible
to obtain a bound on conditional Ruzsa divergence under mildassumptions on the dependence structure.

Theorem 4. If X1 ↔ Y ↔ X2 form a Markov chain, then,

dR(X1‖X2|Y ) ≤ 2I(X1;Y ) + I(X2;Y ) + d̃R(X1‖Y ) + d̃R(Y ‖X2).

Proof: Let (X1, Y,X2) and(X1, Y
′′,X2) be conditionally independent versions of(X1, Y,X2), given(X1,X2).

By the data processing inequality:

I(X1 −X2;X1|Y )

≤ I(X1 + Y ′′,X2 + Y ′′;X1|Y )

= h(X1|Y ) + h(X1 + Y ′′,X2 + Y ′′|Y )

− h(X1 + Y ′′,X2 + Y ′′,X1|Y )

= h(X1|Y ) + h(X1 + Y ′′,X2 + Y ′′|Y )− h(X1,X2, Y
′′|Y ),
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where the last equality follows from Lemma5, and the fact that the linear map(x1, x2, y) 7→ (x1 + y, x2 + y, x1)
has determinant−1. Therefore,

h(X1 −X2|Y ) = h(X1 −X2|X1, Y ) + I(X1 −X2;X1|Y )

= h(X2|Y ) + I(X1 −X2;X1|Y )

≤ h(X1,X2|Y ) + h(X1 + Y ′′,X2 + Y ′′|Y )

− h(X1,X2, Y
′′|Y ).

We have established that,

h(X1,X2, Y, Y
′′) + h(X1 −X2, Y ) ≤ h(X1,X2, Y ) + h(X1 + Y ′′,X2 + Y ′′, Y ). (5)

We now deduce the result from (5). First note that by conditional independence ofY andY ′′ givenX1,X2, the
first term in the left-hand of (5) is,

h(X1,X2, Y, Y
′′) + h(X1,X2) = h(X1,X2, Y ) + h(X1,X2, Y

′′) = 2h(X1,X2, Y ),

so that,

h(X1 −X2, Y ) ≤ h(X1 + Y ′′,X2 + Y ′′, Y )

− h(X1,X2, Y ) + h(X1,X2)

≤
∑

i

h(Xi + Y ) + h(Y )

− h(X1,X2, Y ) + h(X1,X2).

By conditional independence and the chain rule,

h(X1,X2, Y ) = h(X1,X2|Y ) + h(Y )

= h(X1|Y ) + h(X2|Y ) + h(Y ).

Thus,

h(X1 −X2|Y ) + h(Y ) ≤
∑

i

h(Xi + Y ) + h(Y ) + h(X1,X2)

−[h(X1|Y ) + h(X2|Y ) + h(Y )]

= h(X1 + Y )− h(X1|Y )

+h(X2 + Y )− h(X2|Y ) + h(X1,X2).

So,

h(X1 −X2|Y )− h(X1|Y )

≤ I(X1;Y ) + d̃R(X1‖Y ) + h(X2 + Y )− h(X2|Y ) + h(X1,X2)− h(X1, Y ).

Since,

h(X2|Y )− h(X1,X2) + h(X1, Y ) = h(X1,X2|Y ) + h(Y )− h(X1,X2)

= h(Y |X1,X2)

= h(Y |X2)− I(Y ;X1|X2),

and since,

I(Y ;X1|X2) = h(X1|X2)− h(X1|Y,X2)

= h(X1|X2)− h(X1|Y )

≤ h(X1)− h(X1|Y )

= I(X1;Y ),

we are done.
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Let us note two corollaries of Theorem4. Firstly, if we assumeX1,X2 andY to be independent, we recover the
Ruzsa triangle inequality (Theorem1). Secondly, the case where the joint distribution is symmetric in (X1,X2) is
of interest.

Corollary 2. SupposeX1 ↔ Y ↔ X2 form a Markov chain, andX1 andX2 have the same conditional distribution
givenY . Then,

dR(X1‖X2|Y ) ≤ 3I(X;Y ) + d̃R(X‖Y ) + d̃R(Y ‖X).

One may interpret this as follows. For every possible valuey of Y , consider the Ruzsa divergence between the
conditional distribution ofX givenY = y, and itself; then the conditional Ruzsa divergencedR(X1‖X2|Y ) is the
average of these quantities under the distribution ofY . This follows from the fact thatX1,X2 are conditionally
i.i.d. givenY . Thus Corollary2 says that, for weakly dependent random variablesX,Y , having bounds on the two
(not particularly well behaved) Ruzsa differences betweenX andY , allows one to get a bound on this averaged
self-divergence of the conditional distribution ofX givenY (which is a well behaved divergence).

Let us recall the Balog-Szemeredi-Gowers theorem, which has become an extremely useful tool in additive
combinatorics in the last two decades. There are several formulations, but the one we focus on is stated in terms

of the restricted sumsetA
E
+ B, defined as,

A
E
+ B = {a+ b : a ∈ A, b ∈ B, (a, b) ∈ E},

whereE is some subset of the Cartesian productA × B. If A andB are finite nonempty subsets of an abelian

groupG, andE ⊂ A × B satisfies|E| ≥ 1
K |A| · |B| and |A

E
+ B| ≤ K

√
|A| · |B| for someK ≥ 1, then there

exist subsetsA0 ⊂ A andB0 ⊂ B such that|A0| ≥ 1
K |A|, |B0| ≥ 1

K |B|, and

|A0 +B0| ≤ K7
√

|A0| · |B0|.
The natural probabilistic analogue of a restricted sumset is a sum of dependent random variables. Theorem4 may be
thought of as an information-theoretic form of the Balog-Szemeredi-Gowers theorem, since bounds for dependent
random vectors are used to deduce bounds for (conditionally) independent random vectors. It is not directly
analogous to the Balog-Szemeredi-Gowers theorem since thebounds are not in terms of the Ruzsa differences
betweenX1 andX2, but rather in terms of the Ruzsa differences between eitherof them and the auxiliary random
variableY . However, such a direct analogue can be constructed using Theorem4. This was done in the discrete
case by Tao [54], and in the case of the additive groupR by the authors in [30]. We state below the resulting
theorem in the general setting, using the notation developed in this paper.

Theorem 5. Let(X2, Y1,X1, Y2) form a Markov chain, with the marginal distributions of the pairs (X2, Y1), (X1, Y1)
and (X1, Y2) all being the same as the distribution of(X,Y ). Then,

dR(X2‖Y2|X1, Y1) + dR(Y2‖X2|X1, Y1) ≤ 3I(X;Y ) + d̃R(X‖Y ) + d̃R(Y ‖X).

Proof: The proof of [30, Theorem 3.14] for real-valued random variables carries over almost exactly in the
general case, if one uses Lemma5 to justify one of the steps. This yields, under the present assumptions, that,

I(X2 + Y2;Y2|X1, Y1) + I(X2 + Y2;X2|X1, Y1) ≤ I(X;Y ) + I(X + Y ;X) + I(X + Y ;Y ).

To obtain the desired result in the stated form, one just needs to replace all occurrences ofY, Y1 or Y2 by their
respective inverses (i.e.,−Y,−Y1 or −Y2), and then make appropriate use of Lemma1, Lemma2, and Lemma5.
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IV. ENTROPIES OF WEIGHTED SUMS AND DIFFERENCES

The Plünnecke inequality in additive combinatorics [43], [46], [47] states that, if|A + B| ≤ α|A| for finite
nonempty subsetsA,B of an abelian group, then for everyk > 1, there exists a nonempty subsetA′ ⊂ A such
that

|A′ + kB| ≤ αk|A′|, (6)

wherekB refers to the sumsetB + · · · + B with k summands. A very elegant and considerably simpler proof,
obtained by Petridis [41], also shows that the same subsetA′ can be used for all positive integersk. The inequality
(6) can be generalized to different summands: ifA andBi are nonempty finite sets, with|A + Bi| ≤ αi|A| for
eachi, then there exists a nonempty subsetA′ ⊂ A such that,

|A′ +B1 + . . .+Bm| ≤
( m∏

i=1

αi

)
|A′|.

This is usually called the Plünnecke-Ruzsa inequality, since it was proved by Ruzsa [46], [47] using an ingenious
combinatorial argument. These inequalities are very influential in additive combinatorics– for example, as expounded
in [55], they are sufficient to obtain Freiman-type inverse theorems for groups with bounded torsion. The analogue
of the Plünnecke-Ruzsa inequality for the entropy is the following subadditivity property of Ruzsa divergence,
which is an immediate consequence of Theorem3; the same historical remarks made in Remark2 therefore also
apply here.

Theorem 6. If X,Y1, . . . , Yk are independent, then:

dR

(
X

∥∥∥∥
k∑

i=1

Yi

)
≤

k∑

i=1

dR(X‖Yi).

To see that this is analogous to the Plünnecke-Ruzsa inequality as stated above, we can trivially rewrite it in
the following form: if dR(X‖Yi) ≤ αi, thendR(X‖∑k

i=1 Yi) ≤ ∑k
i=1 αi. Unlike in the case of sets where one

potentially needs to pass to a subset to obtain a valid inequality, the entropy analogue works with the original
random variables of interest.

The properties of Ruzsa divergence developed in SectionIII can also be used to understand how the differential
entropy of the sum of two independent random vectors constrains the differential entropy of their difference.

Theorem 7. For anyG-valued random variablesX,Y ,

dR(X‖ − Y ) ≤ 2dR(X‖Y ) + dR(Y ‖X).

Proof: Let (X1, Y1) be independent, withZ = X1 − Y1. Assume(X2, Y2) is conditionally independent of
(X1, Y1) givenZ, and has the same conditional distribution givenZ as (X1, Y1); thus in particularZ = X2 − Y2.
Let (X,Y ) be independent of(X1, Y1,X2, Y2), but have the same distribution as either pair(Xi, Yi).

Since, by construction,X1 − Y1 = X2 − Y2 = Z,

X + Y = X + Y + (X2 − Y2)− (X1 − Y1)

= (X − Y2)− (X1 − Y ) +X2 + Y1,

and hence, by data processing for mutual information,

I(X;X + Y ) ≤ I(X;X − Y2,X1 − Y,X2, Y1)

= h(X − Y2,X1 − Y,X2, Y1)

−h(X − Y2,X1 − Y,X2, Y1|X)

= h(X − Y2,X1 − Y,X2, Y1)− h(Z, Y1, Y2, Y |X),

where the last equality follows from the fact that the linearmap,(z, y1, y2, y, x) 7→ (x−y2, y1+z−y, y2+z, y1, x),
has determinant1.
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Using the independence ofX andY from each other and all other random variables for the secondterm on the
above right-hand side, we have,

dR(Y ‖ −X) ≤ h(X − Y2) + h(X1 − Y ) + h(X2) + h(Y1)

− [h(Z, Y1, Y2) + h(Y )]

= [dR(Y ‖X) + h(Y )] + [dR(X‖Y ) + h(X)]

+ h(X2)− h(Z, Y1, Y2). (7)

However, observe that, sinceI(Y1;Y2|Z) = 0,

h(Z, Y1, Y2) + h(Z) = h(Y1, Z) + h(Y2, Z)

= h(X1, Y1) + h(X2, Y2) = 2h(X,Y ). (8)

Plugging (8) into (7) gives,

dR(Y ‖ −X) ≤ dR(Y ‖X) + dR(X‖Y ) + h(Y ) + 2h(X)

−[2h(X,Y )− h(Z)]

= dR(Y ‖X) + dR(X‖Y ) + h(Z)− h(Y )

= 2dR(Y ‖X) + dR(X‖Y ),

which is the desired result.

In the case whereX andY are not just independent but also identically distributed,Theorem7 simply says that
dR(X‖ −X) ≤ 3dR(X‖X), while takingX and−Y to have the same distribution gives,

dR(X‖X) ≤ dR(X‖ −X) + 2dR(X‖ −X) = 3dR(X‖ −X).

In fact, one can obtain tighter bounds in these special cases.

Corollary 3. If X,Y are i.i.d., then:

dR(X‖ −X)

dR(X‖X)
∈ [12 , 2].

Proof: The desired statement is equivalent, forX1,X2 that are i.i.d., to:

1

2
≤ h(X1 +X2)− h(X1)

h(X1 −X2)− h(X1)
≤ 2. (9)

As observed in [30], the upper bound in the inequality (9) follows from Theorem6, and the lower bound follows
from Theorem1, both of which we have already proved for the general setting.

Corollary 3 provides inequalities betweenh(X + Y ) andh(X − Y ) whenX,Y are i.i.d. andh(X) is known.
The requirement to knowh(X) to make the comparison cannot be dispensed with in the general setting of locally
compact abelian groups. However, this requirement can be dispensed with for discrete groups– as observed by [1],
h(X + Y )/h(X − Y ) must lie between 3/4 and 4/3 ifX andY are i.i.d. random variables in a discrete group.

Finally, let us examine what can be said about weighted sums and differences, i.e., about random variables of
the formaX + bY wherea, b are non-zero integers. Discrete entropy inequalities for such random variables play a
key role in the recent work of Wu, Shamai and Verdú [57] on the degrees of freedom of theM -user interference
channel – specifically, they immediately yield inequalities of similar form for the Rényi information dimension of
weighted sums of random variables, which imply, using the single-letter characterization of [57], that for rational
channel coefficients the number of degrees of freedom is strictly smaller thanM/2. In the following theorem, we
extend all the inequalities proved by [57] for discrete entropy of weighted sums and differences to the general
abelian setting. First we give the generalization of [57, Lemma 18].

Lemma 6. Let X,X ′ and Z be independentG-valued random variables, whereX ′ has the same distribution as
X. Let a, b be nonzero integers. Then:

h(aX + b) ≤ h((a − b)X + bX ′ + Z) + dR(X‖X).
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Furthermore, ifa is even, then:

h(aX + b) ≤ h

(
a

2
X + Z

)
+ h(2X −X ′)− h(X).

Proof: One can simply follow the proof strategy of [57, Lemma 18], which on inspection relies only on the
subadditivity of Ruzsa divergence and the Ruzsa triangle inequality, both of which we have already proved in the
general setting.

Finally we give the generalization of [57, Theorem 14]; its proof is again the same as in the discrete case, using
the subadditivity of Ruzsa divergence and Ruzsa triangle inequality established earlier. The result of Theorem8
can be compared to the inequalities of Bukh [18] for dilated sums of sets.

Theorem 8. Let X and Y be independentG-valued random variables, anda, b be nonnegative integers. Then,

h(aX + bY )− h(X + Y ) ≤ τa,b
{
dR(X‖ − Y ) + dR(Y ‖ −X)

}
,

where,

τa,b = 6
(
⌊log |a|⌋+ ⌊log |b|⌋+ 2

)
.
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V. ENTROPIES OF PRODUCTS AND RATIOS

Since we will need to discuss entropies with respect to two different measures on the same group, we introduce
some additional notation to keep things unambiguous. All the examples considered in this section involve subgroups
G of the groupC× = C\{0} equipped with the multiplication operation. The Haar measure for such multiplicative
groups is typically not the same as the familiar Lebesgue measure used to compute differential entropies of real-
valued or complex-valued random variables (the one-dimensional and two-dimensional Lebesgue measures are Haar
measures for the groupsR andC respectively, but only when the group structure comes from the addition operation).

A. Positive random variables

Consider the groupR>0 = (0,∞) equipped with the multiplication operation. Its Haar measure is given by,

λ(dx) =
dx

x
,

wheredx is Lebesgue measure on(0,∞). To see this, all we need to do is check the translation-invariance ofλ
with respect to multiplication, i.e., that for any fixedc > 0, we haveλ(cA) = λ(A) when

λ(A) =

∫

A

dx

x
,

and dx represents Lebesgue measure onR. [And this in turn is an immediate consequence of the fact that the
logarithmic function is an isomorphism between(R>0,×) and(R,+), using the standard translation-invariance of
Lebesgue measure for addition.]

We are interested in two entropies of a positive (i.e.,R>0-valued) random variableX. To define them, let us
assume thatX has a densityf with respect to Lebesgue measure on(0,∞). Then:

1) The differential entropy ofX is,

hR(X) = −
∫ ∞

0
f(x) log f(x)dx.

2) The intrinsic entropyh×(X) with respect to Haar measureλ on (R>0,×) is given by,

h×(X) = −
∫ ∞

0
[xf(x)] log[xf(x)]λ(dx) = hR(X) −E[logX], (10)

since the density ofX with respect toλ is xf(x). We useh× to emphasize that this is the intrinsic entropy
with respect to the multiplicative structure onR>0 rather than the additive structure onR.

Observe thatR>0 is a Polish, locally compact, abelian group to which all of our preceding results apply and
yield statements of interest. For illustration, we only write out one consequence: Corollary3 says that,

1

2
≤ h×(XY )− h×(X)

h×(X/Y )− h×(X)
≤ 2,

which, using relation (10), translates to the following statement for the usual differential entropy.

Corollary 4. If X,Y are i.i.d. random variables taking values in(0,∞), then:

hR(XY ) ≤ 2hR(X/Y )− hR(X) + 3E[logX],

hR(X/Y ) ≤ 2hR(XY )− hR(X)− 3E[logX].

B. Random variables on the circle group

Consider the unit circleT = {z ∈ C : |z| = 1} in the complex plane; this is of course a group under multiplication,
and is isomorphic toR/Z equipped with addition via the isomorphismt 7→ e2πit. Alternatively we can parametrize
T using the angleθ subtended by the arc of the circle between the point onT and the real axis (which is just2πt).
With this parametrization, the Haar measureλ is the uniform distribution on the angle or, equivalently, Lebesgue
measure on[0, 2π). For aT -valued random variableΘ that has a densityf with respect to the uniform measure,

h(Θ) = −
∫

T
f(x) log f(x)λ(dx) = −D(Θ‖U),
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whereU ∼ λ is uniformly distributed onT , andD(Θ‖U) denotes the relative betweenΘ and a uniformly distributed
random variableU on T . Thus, the fact that entropy increases on convolution captures in this setting the fact that
convolution brings any distribution closer to the uniform.

In this case, Corollary3 becomes the following statement.

Corollary 5. If Θ,Θ′ are i.i.d. random variables taking values inT , then:

1

2
≤ D(Θ‖U)−D(Θ + Θ′‖U)

D(Θ‖U)−D(Θ−Θ′‖U)
≤ 2.

C. Non-zero complex random variables

Finally we consider the full group(C×,×), whose Haar measure is given by,

dz

|z|2 ,

where dz is 2-dimensional Lebesgue measure (using the identification of C with R2). If f is the density of a
C×-valued random variableZ with respect to 2-dimensional Lebesgue measure, one has theintrinsic entropy,

h×(Z) = −
∫

C×

[|z|2f(z)] log[|z|2f(z)] dz|z|2 = hR2(Z)−E[log(|Z|2)],

where we usehR2(Z) to denote the usual differential entropy ofZ.
Then Corollary3 becomes the following statement.

Corollary 6. If Z1, Z2 are i.i.d. random variables taking values inC×, then:

hR2(Z1Z2) ≤ 2hR2(Z1/Z2)− hR2(Z1) + 6E[log |Z1|],
hR2(Z1/Z2) ≤ 2hR2(Z1Z2)− hR2(Z1)− 6E[log |Z1|].
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VI. FREIMAN-TYPE RESULTS FOR THE ENTROPY ONRn

For the rest of the paper, our focus is on the additive groupRn equipped with Lebesgue measure, so thath
denotes the usual differential entropy. Our first observation is a uniform lower bound on the Ruzsa divergence
between a distribution and itself. A simple application of the entropy power inequality [50][51] to two i.i.d. random
variables easily gives the following result.

Lemma 7. For anyRn-valued random vectorX with finite differential entropy,

dR(X‖X) ≥ n

2
log 2.

Furthermore,dR(X‖ −X) ≥ n
2 log 2.

The assumption of finite differential entropy in Lemma7 is in fact essential. As shown by Bobkov and Chistyakov
[12, Proposition 1], there exists aR-valued random variableX of finite entropy such that ifX,X ′ are i.i.d., the
entropy ofX+X ′ does not exist. However, [12] also shows that for any such example, necessarily the entropy of X
is −∞, so that it remains true that if the entropy exists and is a real number, then the entropy of the self-convolution
also exists (although, thanks to another example constructed in [12], it may then be+∞!). Henceforth, as stated
in SectionII , if nothing is stated, we will assume that all entropies and Ruzsa divergences exist and are finite.

We find it convenient to restate Lemma7 in terms of the doubling and difference constants associated with a
random vector.

Definition 4. For an Rn-valued random vectorX, the entropy power ofX is defined as,

N (X) = exp
{2h(X)

n

}
.

For an Rn-valued random vectorX, the doubling constant is defined by,

σ+(X) =
N (X +X ′)

2N (X)
,

and the difference constant is defined by,

σ−(X) =
N (X −X ′)

2N (X)
,

whereX ′ is an independent copy ofX.

Then entropy power inequality immediately implies that ifX has finite entropy, thenσ+(X) ≥ 1 andσ−(X) ≥ 1;
this is just a restatement of Lemma7 since,

σ−(X) = 1
2 exp

{
2

n
dR(X‖X)

}
, (11)

and,

σ+(X) = 1
2 exp

{
2

n
dR(X‖ −X)

}
. (12)

Furthermore, because of the equality conditions of the entropy power inequality,σ+(X) (or σ−(X)) is equal to
1 if and only if X is a Gaussian (with non-singular covariance matrix). Note that the definitions of doubling and
difference constants of scalar random variables in [54] (for discrete random variables) and in [30] (for R-valued
random variables) used a different normalization, but we have chosen the normalization above so that the minimum
value achieved at Gaussians for bothσ+ andσ− is 1.

A natural question is whether the extremality of Gaussians is a stable phenomenon. In other words, ifσ+(X) ≤ K
for someK, does this imply that the distribution ofX is necessarily not far from being Gaussian, in a sense that can
be quantified in terms ofK? It is a perhaps somewhat surprising result due to Bobkov, Chistyakov and Götze [14]
that the answer is “no,” even in the one-dimensional setting. Nonetheless, as observed in [30], under the additional
assumption thatX has a finite Poincaré constant (and using results independently obtained by Johnson and Barron
[26] and Artstein, Ball, Barthe and Naor [3] on the rate of convergence in the information-theoretic central limit
theorem forR-valued random variables) it can be shown that such a stability bound can indeed be established.
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This result cannot be directly extended to the case ofRn-valued random vectors, since non-asymptotic bounds that
exhibit convergence rates for the entropic central limit theorem in the multivariate case are not known under just
the assumption of a finite Poincaré constant2. However, by relying on recent work of Ball and Nguyen [7], one
can see that such stability does hold under the stronger assumption of log-concavity.

Recall that a probability density functionf defined onRn is said to be log-concave if,

f(αx+ (1− α)y) ≥ f(x)αf(y)1−α,

for eachx, y ∈ Rn and each0 ≤ α ≤ 1. If f is log-concave, we will also use the adjective “log-concave” for a
random variableX distributed according tof , and for the probability measure induced by it. Note that theclass of
log-concave probability measures is quite broad, including the uniform distribution on any compact, convex set, the
exponential distribution, and of course any Gaussian. On the other hand, log-concavity can also be fairly restricting:
For instance, it implies at least exponentially decaying tails, and a finite Poincaré constant.

Now we state the main result of [7] we will need. For a random vectorX ∼ f we write D(X) for its relative
entropy distance from a Gaussian,

D(X) = D(f‖fG) = h(fG)− h(f),

wherefG is the Gaussian density with the same mean and covariance matrix as f , andD is the usual relative
entropy.

Theorem 9. [7] SupposeX is a log-concave random vector inRn, and that it satisfies a Poincaré inequality with
constantc, i.e., if for any smooth functionu with E[u(X)] = 0,

cE[u(X)2] ≤ E[|∇u(X)|2].
Then,

h

(
X1 +X2√

2

)
− h(X) ≥ c

4(1 + c)
D(X),

whereX1 andX2 denote independent copies ofX.

Simply rearranging the conclusion of Theorem9 gives the following stability result.

Corollary 7. If X is a log-concave random vector inRn, with Poincaŕe constantc, then:

D(X)

n
≤ 2(1 + c)

c
log σ+(X).

Remark 3. It was proved in [10, Proposition V.6], by relying on an important result of Klartag [29], that log-
concave distributions are not too far from Gaussianity, in the sense that,

D(X)

n
≤ 1

4
log n+ C,

for some absolute constantC. Therefore, the main value of the result in Corollary7 is in that it explicitly connects
“non-Gaussianity” with the doubling constantσ+(X), and especially whenσ+(X) is small.

Interestingly, it is not hard to give a much more elementary converse result when we know something about
both the doubling and the difference constants. Indeed, we show below that any random vector whose doubling
and difference constants differ significantly, must also besignificantly far from Gaussianity.

Theorem 10. If X1 andX2 are independent copies of any random vectorX in Rn with finite differential entropy,
then,

D(X)

n
≥ 1

4
| log σ+(X)− log σ−(X)|.

2While asymptotic estimates of this sort are known [13], [15], [19], estimates that only hold for a sufficiently large number ofsummands
are not strong enough for our purposes.
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Proof: By the invariance of the entropy under linear transformations of determinant 1,

h(X1) + h(X2) = h(X1,X2)

= h

(
X1 +X2√

2
,
X1 −X2√

2

)

≤ h

(
X1 +X2√

2

)
+ h

(
X1 −X2√

2

)
.

Let a be the greater of the quantitiesh
(
X1+X2√

2

)
andh

(
X1−X2√

2

)
, andb be the lesser of them. The above display

implies that,

a+ b

2
≥ h(X). (13)

Now, by the scaling property of differential entropy, we have,

1
2 |h(X1 −X2)− h(X1 +X2)| = 1

2

∣∣∣∣h
(
X1 +X2√

2

)
− h

(
X1 −X2√

2

)∣∣∣∣

=
a− b

2
= a− a+ b

2
≤ a− h(X),

using (13) to obtain the inequality. Since bothX1+X2√
2

and X1−X2√
2

have the same covariance matrix asX, the
maximum entropy property of the Gaussian implies thath(Z) ≥ a, whereZ is a Gaussian random vector with the
same covariance matrix asX. Thus we have,

1
2 |h(X1 −X2)− h(X1 +X2)| ≤ h(Z)− h(X) = D(X),

which is equivalent to the desired statement by using the relations (11) and (12).
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VII. A N EXPLICIT REVERSE ENTROPY POWER INEQUALITY

In recent work [9], a reverse entropy power inequality was developed for the class of log-concave distributions.
Recall that the entropy power inequality due to Shannon and Stam [50], [51] asserts thatN (X + Y ) ≥ N (X) +
N (Y ), for any two independent random vectorsX and Y in Rn for which the entropy is defined. The entropy
power inequality may be formally strengthened by using the invariance of entropy under affine transformations of
determinant±1, i.e.,N (u(X)) = N (X) whenever|det(u)| = 1. Specifically,

inf
u1,u2

N (u1(X) + u2(Y )) ≥ N (X) +N (Y ), (14)

where the mapsui : Rn → Rn range over all affine entropy-preserving transformations.What [9] showed was
that the inequality (14) can be reversed with a constant independent of dimension ifwe restrict to log-concave
distributions.

Theorem 11 (REVERSEEPI, [9]). If X andY are independent random vectors inRn with log-concave densities,
there exist linear entropy-preserving mapsui : Rn → Rn such that

N
(
X̃ + Ỹ

)
≤ C (N (X) +N (Y )), (15)

whereX̃ = u1(X), Ỹ = u2(Y ), and whereC is a universal constant.

This reverse entropy power inequality is analogous to Milman’s [37] reverse Brunn-Minkowski inequality (see
also [38], [39], [42]), which is a celebrated result in convex geometry. In this light, Theorem11 can be seen as
an extension of the analogies between geometry and information theory that were previously observed by Dembo,
Cover and Thomas [23], among others. Also, Theorem11 can be extended to the larger subclass of so-called
“convex measures” [11].

Observe that the universal constant provided by the proof ofTheorem11 is not explicit, and it is not easy to
even get bounds on it. But in the special case whenX andY have the same distribution, we show below that an
explicit constant can be obtained rather simply. To do this,we first note that the following result of Cover and
Zhang [21] easily generalizes to higher dimensions: IfX andX ′ are (possibly dependent) random variables with
the same log-concave marginal distribution onR, then,h(X +X ′) ≤ h(2X).

Theorem 12. If X and Y are (possibly dependent) random vectors inRn, with the same log-concave marginal
density, then,

h(X + Y ) ≤ h(2X).

Proof: Suppose the common marginal density ofX andY is f , and letg be the density ofZ = X+Y . Since
f is log-concave, Jensen’s inequality implies that,

E log f

(
X + Y

2

)
≥ E 1

2 [log f(X) + log f(Y )]

= 1
2 [E log f(X) + E log f(Y )]

= −h(f).

Observe that independence is not required here, and all expectations are taken with respect to the joint distribution
of (X,Y ). In particular, we have that,

∫
g(z) log f̃(z)dz =

∫
g(z) log f(

z

2
)− 1

≥ −h(f)− 1

= −h(f̃),

wheref̃(z) = 1
2f(z/2) is the density ofZ∗ = 2X. In other words,

D(g‖f̃ ) + h(g) ≤ h(f̃).

Thush(g) = h(X + Y ) is maximized if and only ifg = f̃ , i.e., whenX andY are identical.
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Theorem12 immediately implies that for i.i.d. random vectors with log-concave distribution, the reverse entropy
power inequality (Theorem11) holds with both linear transformations being the identity, and with a universal
constant of 2.

Corollary 8. If X,X ′ are independent random vectors with the same log-concave distribution, then,

N (X +X ′) ≤ 2[N (X) +N (X ′)].

In other words, for any log-concave random vectorX, σ+(X) ≤ 2.

Proof: From Theorem12,

N (X +X ′) ≤ N (2X) = 4N (X) = 2[N (X) +N (X)].

A version of Corollary8 was obtained (contemporaneously with this work) by a different method in [16]; however
the bound on the doubling constant in that work ise4/2 ≈ 27.3, which is significantly worse than the bound of 2
we obtain. Soon after the first version of this paper was released, some related results and a nice conjecture about
reverse forms of the entropy power inequality were releasedby Ball, Nayar and Tkocz [6].

Although it already seems rather restrictive that the doubling constant of any log-concave random vector lies
between 1 and 2, we do not believe the upper bound is optimal. However, Corollary8 represents yet another way
in which general log-concave random vectors resemble Gaussian ones; as mentioned in Remark3, [10] gives a
different formulation of this intuition.

Another way to view Corollary8 is in the context of the central limit theorem. Recall that the central limit
theorem in terms of relative entropy ([8], [4], see also [33]) asserts that ifX,X1,X2, . . . are i.i.d. random vectors
with h(X) > −∞, then, asn → ∞,

h

(
X1 + . . .+Xn√

n

)
↑ h(N(0, In).

Corollary 8 implies that,

N (X) ≤ N
(
X1 +X2√

2

)
≤ 2N (X),

and hence constrains the rate at which entropy can increase when doubling sample size in the central limit theorem
for i.i.d. log-concave summands.

The above development is also closely related to a very nice observation of K. Ball, dating back to around 2003 but
with details only being published much later in [7], relating two important conjectures in convex geometry, namely
the Kannan-Lovász-Simonovits conjecture [28] and the hyperplane conjecture or slicing problem of Bourgain [17].
We explain this connection in our language; the reasoning isrelated to that of K. Ball even if it differs in details.
The Kannan-Lovász-Simonovits (KLS) conjecture asserts that the Poincaré constantc is bounded from below for all
log-concave densities by a universal constantC independent of dimension. If this is true, then Corollary7 implies
that

D(X)

n
≤ 2

(
1 +

1

C

)
σ+(X) ≤ 2

(
1 +

1

C

)
log 2,

using Corollary8 for the second inequality. In other words,D(X)/n is bounded by a universal constant for any log-
concave random vectorX in Rn, which by [10, Corollary 5.3], is equivalent to the hyperplane conjecture (whose
original formulation in [17] we do not bother to state here). Hence the KLS conjecture implies the hyperplane
conjecture.
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VIII. T OWARDS A ROGERS-SHEPHARD INEQUALITY FOR ENTROPY

The Rogers-Shephard inequality [44] asserts that, ifK ⊂ Rn is a convex body, then

Vol(K −K) ≤
(
2n

n

)
Vol(K), (16)

with equality if and only ifK is the n-dimensional simplex. It complements the fact, implied by the Brunn-
Minkowski inequality, that,

Vol(K −K) ≥ 2nVol(K). (17)

Indeed, since by Stirling’s formula and some algebraic manipulation,
(
2n

n

)
< 4n,

the inequalities (16) and (17) together imply,

2Vol(K)1/n ≤ Vol(K −K)1/n < 4Vol(K)1/n.

As suggested by the analogy between the reverse entropy power inequality and the reverse Brunn-Minkowski
inequality discussed in the preceding section, the naturalprobabilistic analogue of a convex set is a log-concave
distribution, and a natural probabilistic analogue of volume is entropy. Therefore, it is natural to ask whether there
is a probabilistic analogue of the Rogers-Shephard inequality. Indeed, we show that forX,X ′ i.i.d. log-concave
random vectors,N (X −X ′) is bounded by a multiple ofN (X).

Corollary 9. If X,X ′ are independent random vectors drawn from the same log-concave distribution, then

N (X −X ′) ≤ 16N (X).

In other words, for any log-concave random vectorX, σ−(X) ≤ 8.

Proof: By Corollary 8,

N (X +X ′) ≤ 4N (X),

and by Corollary3,

N (X −X ′) ≤ N 2(X +X ′)

N (X)
≤ 16N (X).

Corollary 9 does not provide a tight bound. Indeed, in the contemporaneous work [16], a different approach is
used to obtain a bound on the difference constant ofe2/2 ≈ 3.7, which is better than our bound of 8. We state
below a conjecture for the sharp constant in the one-dimensional case.

Conjecture 1. If X,X ′ are independentR-valued random variables drawn from the same log-concave distribution,
then,

N (X −X ′) ≤ 4N (X),

with equality if and only ifX is a translated and scaled version of the (one-sided) exponential distribution. In
other words, for any log-concave random variableX, σ−(X) ≤ 2.

Of course, we may also write Corollary9 and Corollary8 in terms of the Ruzsa divergence using the identities
(11) and (12).

Corollary 10. If X is a log-concave random vector taking values inRn, then,

dR(X‖X) ≤ 2n log 2 and dR(X‖ −X) ≤ n log 2.

Let us note that a sharp functional analogue of the Rogers-Shephard inequality has been proved by Colesanti
[20] for log-concave functions as opposed to densities (see also [5], [2]).
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IX. D ETERMINANT INEQUALITIES

Differential entropy inequalities have been used to to deduce inequalities for positive-definite matrices since
Cover and El Gamal’s work in [22]; see also [23] and [36]. However, in most of these cases, the inequalities
deduced relate determinants of a positive-definite matrix to those of its square submatrices. We discuss below the
use of differential entropy inequalities to prove determinantal inequalities for sums of positive-definite matrices.
As in the above papers, the main idea is to use the fact that, for the Gaussian distribution onRn with covariance
matrix K, written γK = N(0,K), the differential entropy is given by,

h(γK) = 1
2 log

[
(2πe)ndet(K)

]
.

A classical inequality for the determinant of sums is Minkowski’s inequality, which asserts that, forn × n
positive-definite matrices,

det(A+B)
1

n ≥ det(A)
1

n + det(B)
1

n .

This may be seen as a consequence of the entropy power inequality (by specializing to Gaussians), but there are
also elementary means of deriving it.

On the other hand, upper bounds for the determinant of a sum ofpositive-definite matrices are not as well
known. This is partly due to the fact that the most straightforward inequalities that one might try to check, like
subadditivity, are actually false. However, Rotfel’d [45] did obtain such a bound when one of the matrices involved
is the identity matrix:

det(I +A+B) ≤ det(I +A) · det(I +B). (18)

Indeed, he obtained this as a special case of a more general inequality for arbitrary square matrices,

det(I + |A+B|)| ≤ det(I + |A|) · det(I + |B|),
where|A| =

√
A∗A andA∗ is the adjoint ofA.

Our final observation is that, substituting normals in Theorem 6, provides an extremely simple alternative proof
of a generalization of inequality (18), not requiring any of the matrices to be the identity:

Corollary 11. Let K andKi be positive-definite matrices of the same dimension. Then:

det(K +K1 + . . .+Kn) ≤ [det(K)]−(n−1)
n∏

j=1

det(K +Kj).
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