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Abstract

Keywords: Additive Combinatiorics, Shannon Entropy, Pliinecke inequalities.

MSC2010: 05D40, 11B13, 94A17

In this thesis we present several analogies betweeen sumset inequalities and entropy inequalities. We offer
an overview of the different results and techniques that have been developed during the last ten years, start-
ing with a seminal paper by Ruzsa, and also studied by authors such as Bollobds, Madiman, or Tao. After
an introduction to the tools from sumset theory and entropy theory, we present and prove many sumset
inequalities and their entropy analogues, with a particular emphasis on Pliinnecke-type results. Functional
submodularity is used to prove many of these, as well as an analogue of the Balog-Szemerédi-Gowers the-
orem. Partition-determined functions are used to obtain many sumset inequalities analogous to some new
entropic results. Their use is generalized to other contexts, such as that of projections or polynomial com-
pound sets. Furthermore, we present a generalization of a tool introduced by Ruzsa by extending it to a
much more general setting than that of sumsets. We show how it can be used to obtain many entropy in-
equalities in a direct and unified way, and we extend its use to more general compound sets. Finally, we

show how this device may help in finding new expanders.






Resum

Paraules clau: Combinatoria additiva, entropia de Shannon, desigualtats de Pliinnecke.

MSC2010: 05D40, 11B13, 94A17

Aquesta tesi té com a objectiu presentar resultats recents que plantejen analogies entre desigualtats classiques
entre cardinals de conjunts suma i desigualtats d’entropies de variables aleatories. Es dona una vista panora-
mica dels diferents resultats i tecniques que han aparegut a la literatura els darrers deu anys, motivats per un
treball seminal de Ruzsa, que han estat desenvolupades per diversos autors que inclouen Bollobas, Madiman,
Ruzsa i Tao. Després d’introduir les nocions basiques de combinatoria additiva i de teoria de la entropia, el
treball presenta i prova una gran diversitat de teoremes sobre conjunts suma i els seus analegs entropics,
amb un emfasi particular en les desigualtats de Pliinecke. La submodularitat funcional es fa servir per pro-
var molts d’aquests resultats, especialment la versi6 entropica del teorema de Balog-Szemerédi-Gowers. La
noci6 de funcions determinades per particions es fa servir per obtenir analegs entropics d’altres desigualtats
més generals i en particular s’estén a tractar projeccions. Finalment el treball presenta una nova generalitza-
ci6 d’una eina introduida per Ruzsa que va molt més enlla dels problemes de conjunts suma. Provem com
aquesta generalitzacié permet reobtenir molts dels resultats exposats al treball i presentem una aplicaci6 ori-
ginal a la obtenci6é de versions entropiques d’expansors polinomics, que podria proporcionar noves families

d’aquests expansors.
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Introduction

This work tries to put emphasis on an example of a phenomenon that occurs with increasing
frequency in the study of mathematics: the intersection of different areas. As the title already
suggests, there are two main areas from mathematics that will be studied: sumset theory (additive
combinatorics) and entropy theory (information theory).

Additive combinatorics, also known as combinatorial number theory, is now a broad field in math-
ematics, developed mainly after an approach to the still open Goldbach’s conjecture. A lot of in-
tense activity has been carried out in this area in the most recent decades, and it is now very rich
in results, tools, and interesting open problems. Among the different problems studied in additive
combinatorics, sumset theory concerns itself with the study of the properties (such as size, density,
structure) of iterated sums of sets. There are also inverse problems, that try to derive properties of
the original sets once a property of their sumset is known. The techniques to tackle these problems
come from many distinct areas of mathematics: one can find tools coming from elementary com-
binatorics, graph theory, number theory, ergodic theory, probability, harmonic analysis, convex
geometry, incidence geometry, algebraic geometry, or information theory, among others.

Information theory is an area whose development in the last decades is much due to its applica-
tions in the digital era. Related to the study of transmission and reception of signals and informa-
tion, the mathematical approach has provided many useful tools to other areas of mathematics.
In particular, the notion of entropy (introduced by Shannon in order to “measure” the amount
of information conveyed by the output of a random variable) has proved to have many appli-
cations in other areas; particularly, many results in combinatorics can be proved using simple
entropic inequalities, and this has found applications in problems in extremal combinatorics (such
as counting independent sets, subgraphs, or graph homomorphisms), algorithm theory, computer

science, discrete geometry, or game theory.

There are many classical sumset inequalities that have been thoroughly studied throughout the last
forty years. The seminal works of Gregory Freiman, Imre Ruzsa, Ben Green or Terence Tao have
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2 Entropy methods for sumset inequalities

left a wake of results with many applications in more sofisticated problems. An instance of these
results is Pliinnnecke’s inequality, first proved in 1969, and the many Pliinnecke-type inequalities
that have been developed later. Similarly, many entropy inequalities have arisen from the study

of information theory.

Starting with the seminal work by Ruzsa [25], it was shown that several sumset inequalities have
an entropic analogue, providing a rich connection which allows for the use of tools from infor-
mation theory in additive combinatorics, and inspiring a host of new entropic inequalities which

have applications in information theory.

The main purpose of this Master’s Thesis is to give a general and uniform overview of the many
results appeared in this area in the last ten years. One of the motivations is to describe the entropy
analogue of Pliinnecke-type inequalities, which were thoroughly studied in the authors Bachelor’s
Thesis. The proofs of the main results which are included in the text, while inspired in the ones in
the literature, have been rewritten in a hopefully simpler or clearer way. In this work, furthermore,
we exploit the device introduced by Ruzsa by extending it to a more general context. The power
of this device is illustrated by deriving most of the results in the literature in a simple and unified
way, and by showing new applications in the area of polynomial expanders.

The basis for this study is presented in Chapter 1. The chapter is devoted to giving a brief in-
troduction to some basic concepts of sumset theory and entropy theory. In particular, entropy is
defined, and most of its basic properties, which will be used throughout the thesis, are presented
and proved. It also serves as an introduction to some entropy theory definitions analogous to
some of the classical sumset theory tools.

In Chapter 2 we strive to find entropic results which are analogous to many classical sumset in-
equalities. In particular, we deal with Ruzsa’s triangle inequality, as well as with the Pliinnecke-
Ruzsa inequalities. Furthermore, we present and prove the very influencial Balog-Szemerédi-

Gowers theorem, and give an entropic analogue.

In Chapter 3 we work in the opposite direction. Starting from the well known Han'’s inequality
and Shearer’s inequality, we present and prove some projection inequalities which are completely
analogous to the entropic inequalities. The entropic inequalities are then generalized in several
new ways, obtaining results proved in the last decade. All these entropic inequalities are then

used to obtain several sumset inequalities.

Chapter 4 presents an extension of a device instroduced by Ruzsa in [25] which allows for a new
unified approach to most of the results presented in previous chapters. The power and flexibility of
this framework are also illustrated by giving new applications concerning polynomial expanders

and their entropy analogues.
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While the study of these inequalities is still recent and many new results may appear in the follow-
ing years, we strive to give a wide overview of the tools and results that have been presented so
far, in such a way that this thesis may serve as an introductory text for anyone interested in these
exciting new developments.

Acknowledgements: The author would like to express his thanks to Professor Oriol Serra for his
help in gathering information and discussing many details of this thesis. He would also like to
thank Professor Madiman for several helpful remarks about the content of this work.

This investigation was partially funded by grant 2015 / COLAB / 00069 of the Spanish Ministerio
de Educacién, Cultura y Deporte.






Chapter 1

Preliminaries

The aim of this thesis is to present in a unified way the different analogies that appear between
sumset inequalities and entropy inequalities. In order to do so, we shall present the results in both
settings, and prove them when possible. Sometimes we will first prove the sumset inequality and
then prove the entropy one, and then discuss the analogy between the results. Other times, the
entropic results will be used to deduce the set-theoretic inequalities, so the order in which they
are presented will be reversed. In both cases it is important to understand the theoretical basis in
order to follow through the developments presented here, so let us begin by presenting this basis.
It should be noted that some basic concepts about probability theory, such as the definition and
some basic properties of random variables, are already assumed to be known by the reader. So are
the basic operations of set theory, and some basic concepts from graph theory. For the rest, we will
try to present every possible definition, so that this thesis is as self-contained as possible.

First of all, let us start with some basic notation. We shall use uppercase letters A, B, C when
talking about sets, and X, Y, Z for random variables. We will write |A| to denote the size of a set
A. When talking about groups we will use G, H, K, whereas H shall denote entropy. When talking
about graphs we shall use greek letters I', A. We also denote as [1] the set {1,2,...n}.

In section 1.1 we present the definitions and ideas of the theory of set addition, while the basic
definitions and properties of entropy are presented in section 1.2. Bear in mind, however, that
along the thesis there will be many aspects from mathematics that will be used; usually, we will
present and define more particular tools only when they are needed.

1.1. Introduction to the theory of set addition

The theory of set addition developed as a result of the study of Goldbach’s conjecture. Although it
did not result in any breakthrough in this aspect and was soon substituted by different approaches,

5



6 Entropy methods for sumset inequalities

the interest in this theory lingered, and it has now become a field of intense research, with many
interesting open problems. This theory has also recently been extended to the non-commutative
case, but here we will deal mainly with additive sets, that is, sets in commutative additive groups

(G,+), to which we will refer as the ambient group.
Definition 1.1. Let A and B be two sets in a commutative group.

The sumset or Minkowsky sum of these two sets is
A+B={a+b:ac Abec B}

A particular case of the sumsets occurs when adding a singleton to another set. In this case, what
we have is a translation of the set, and we write

{a} +B=a+B.
The iterated h-fold sumset will be denoted as hA. It can be recursively defined as
hA=(h—1)A+A=A+A+ M 1A
The inverse of a set A is the set of the inverses of A, and can be denoted as
—A={-a:a€ A}.
Then, one can easily define the difference set as
A—B={a+b:acAbec—-B}={a—b:ac AbecB}.
In general, we may write

kA—lB:{a1+...+ak—b]—...—b[ICliGA,b]'EB}.

When dealing with different problems, we may use a more compact notation. For instance, assume
that we have sets Ay, ..., A, in our additive ambient group. Then, for any set of indices S C [#]

we will write AS = ) A,
ieS

The main goal of the theory of set addition is to understand the properties of sets that are being
operated with respect to each other. For example, many of the problems in additive combina-
torics concern themselves with bounding the cardinalities of sumsets. Some trivial sharp bounds
can be found, but this problem becomes interesting when considering stronger hypothesis about
the sets that are being added. A clear example of this are the Pliinnecke-Ruzsa inequalities (see
Theorem 2.8, Theorem 2.9 and Theorem 2.10, or have a look at [8]), in which bounds for iterated
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sum-and-difference sets are stated. Very often, the problems that concern themselves with bound-
ing cardinalities of iterated sumsets do so by considering what is called the doubling constant of a
set.

Definition 1.2. Given a finite set A in a commutative group, its doubling constant is defined as the

ratio At Al
_l’_
oAl = ———.
A==
Similarly, its difference constant is given by
A~ Al
O[A] = ———.
Al =7

When o[A] is “small” (or constant), these can be understood as a way to measure the “additive
structure” of a set. These simple concepts can be somewhat generalized using the Ruzsa distance.

Definition 1.3. The Ruzsa distance between two sets A and B in a commutative group is given by
A — B

VIAIBI

dr(A,B) = log

The Ruzsa distance is not an actual distance as, in general, dgr(A, A) > 0. However, the symmetric
and positive properties hold, as well as the triangle inequality, so thinking about this as a metric
sometimes gives a good insight on the problems. Furthermore, observe that dg (A, —A) = log o[ A]
and dg(A, A) = logd[A], which explains that this is somewhat a generalization of the doubling
and difference constants. In this way;, it can be understood as a measure of the amount of common
additive structure between the two sets.

The kind of problems that try to find properties of a “higher order” sumset when some condition
on the sets is imposed (as happens with the Pliinnecke-Ruzsa inequalities) are called direct prob-
lems. A different type of problems adressed in additive combinatorics are the so called inverse
problems. Often, the assumptions that are considered so that better bounds for iterated sumsets
can be obtained are related to the structure of the sets that are being added. Inverse problems try
to find converse results: if a bound for sumsets is known, can something be said about the struc-
ture of the sets? There are many very interesting and deep results in this area, and some entropy
inverse theorems have been recently presented. However, throughout this thesis we will mainly
concern ourselves with direct problems. Should the reader be interested, we recommend to check
[31] and [16]. As for more information about additive combinatorics, we defer the reader to [32].
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1.2. Introduction to Shannon entropy

Entropy and mutual information are widely used properties, whose study comes from informa-
tion theory. They are defined as functionals of a probability distribution, and characterize the
behaviour of random variables.

Definition 1.4. Given a discrete random variable X with a probability mass function p(x), its
entropy is defined as

ZP x)log p(x

It is interesting to notice that the above expression can be thought of as the expectation of a function
of the random variable X.

In a way, the entropy is a measure of the uncertainty of a random variable, of the amount of
information that its output conveys. It can also be thought of as the “measure of the surprise” of
the outcome of a random variable. Entropy became usual with the development of information
theory, and its use has been generalized in many different areas of mathematics. For instance,
many results in combinatorics can be proved using an entropic approach. In this section, we give
a brief overview of the basic properties of entropy, as well as mutual information, presenting only
those that will be useful in the remainder of this work.

1.2.1. The entropy function

As was already established, the entropy of a random variable X : X — G with probability mass
function px(x), where G is a group, is defined as

H(X) = E[~logpx(x)],
where log denotes the natural logarithm (by convention) and x € X(X') (notice that, in fact, the
space where X takes values plays no role in the value of its entropy, which only depends on the
distribution of probabilities). In most of the bibliography, the logarithms are taken in base 2; this,
however, only results in a rescaling of the numerical results, which is something we pay no mind
to throughout this thesis. If X is a discrete random variable, we may expand this expression, which
can be written as

=Y px(x)logpx(x pr pxl(x) Y F(px(x)),

xeX(X) reX(X xeX(X)

1
where F : RT — R is the function F(x) = xlog > As a convention, F(0) = 0 is taken. In

such a way, adding terms with probability 0 does not change the entropy of the random variable.
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This entropy function is crutial for the development of entropy theory, so here we concentrate on
showing some of its most basic properties.

One of the first things one may notice is that F is nonnegative in the range we are working on.
Indeed, it is easy to check that log% > 0 when 0 < x < 1. This means that H(X) > 0 for any
random variable, and this is a key property that will be used once and again.

The first derivative of the entropy function is
1 -1 1
F'(x) =log-+x—x=1log- —1
(x) og txyx=log_—1,

and the second derivative is . .
Fl(x) = —Sx=—-,
(x) 2 »

which is negative for all positive values of x. Hence, F is a concave function, and from this simple
fact many properties can be obtained. For instance, we know that it has at most one maximum.
This maximum is achieved when the first derivative is zero, so we have that

F(x)=0 = log%—lzo - log%:l — x:%.

We can then state that F is increasing for x < %, decreasing for x > %, and we have the bound

F(x)gF(1> -1

e

(notice that if the entropy was defined in base 2, the maximum would be achieved for x = %,
which is a widely known property). Considering the tangent lines to the function, we also have
the bound

0 Fly) S F6) +F-x) ¥ x>0y20
Similarly, because it is a concave function, we have the subadditivity property.
Lemma 1.1 (Subadditivity). For any positive reals x and y, the following inequality holds:
F(x+y) < F(x) + F(y).
Proof. Remember that a function f is said to be concave if tf(a) + (1 —t)f(b) < f(ta+ (1 —t)b)

for all 4, b in the range of the function and for all t € [0,1]. As such, taking b = 0 we have that
F(ta) = F(ta+ (1 —t)0) > tF(a) + (1 — t)F(0) = tF(a). Then,

R+ 20) = F () ) (L)
Yy

F(x+y)+mF(x+y):F(x+y). O

>
T x+y
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In particular, we have the triangle inequality
2 [F(a) = F(b)| < F(la —bl)

forall0 <a,b < % Indeed, assume without loss of generality that a > b. Then, takingx =a —b
and y = b in Lemma 1.1, we have the desired result.

Finally, consider the identity

F(ax)zaxlogleaxloglzaloglxlog1 %4—% = F(a)F(x) %4—% .
a X a ¥ \log, log+ log2 log

X

One can easily check that

1 1

+ <2

log; logy ~

for all values of g and x such that 0 < g,x < %, so from this we get the inequality

F(ax) < 2F(a)F(x).

Lemma 1.2 (Jensen bound). Let A be a finite set in a group, and let X be an A-random variable. Then,

H(X) <log|A|.

Proof. Simply check, using (1), that

H(X)= Y F(px(x)) < ¥ [F<|/11> tF <|f1ﬂ> (pX(x)lflll)]

x€eA xeA

1 1
~ Al log 4l + tog |41~ 1) T (px(x) = o ) = loglAl. 0

x€eA

1.2.2. Conditional entropy

Given a discrete random variable X, let px denote its probability distribution, and consider an
event E. We define the conditioned random variable (X|E) by restricting the probability measure
to E and dividing by the measure of E in order to normalize the result. The probability distribution

can be written as
Pr(x € XAE)

P(X|E)(x) = W
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If E is an event of the form X € A for some finite set A, then

_ Li@px(x)

PX|XeA(x) =
yg px(y)

where 1 4 is the characteristic function of A. With this, one can define the entropy of a conditioned

random variable in the same way as before, which reults in

1
X=x|Y=y)

HX|Y =y) = Z Pr(X =x|Y =y)log
XEX(X) Pr(

Then, the conditional entropy is defined as
3) H(X|Y) =} py(H(X]Y =y).
yerange(Y)

There is a simple formula relating the conditional entropy to normal entropies,

Lemma 1.3. Given two discrete random variables X and Y,

H(X|Y) = H(X,Y) — H(Y).

Proof. Indeed, we have that

H(X|Y) =) py(y)H(X|Y =)

yerange(Y)

1
=Y py(y) Pr(X =x|Y = y)log
y€range(Y) x€range(X) Pr(X =x|Y =y)
— Pr(Y = y)
=y Y Pr(X=uxY= y)logPr( X=xY =y

yerange(Y) xerange(X)

1
=) Pr(X=uxY=y)log — ——+ ) Pr(X=xY =y)logPr(Y =y)
(x,y)€range((X,Y)) Pr(X=x,Y =y) (x,y)€range((X,Y))

1
=H(X,Y)-) Pr(X=xY=y)logo————
(x,y)€erange((X,Y)) Pr(Y - y)

ElogP = Y Pr(X=xY=y)

yerange(Y) xerange(X)

ng( Pr(Y = y) = H(X,Y) ~H(Y). 0
yerange( ) =Y
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In particular, we have that

) H(X,Y|Y) = H(X,Y,Y) — H(Y) = H(X,Y) — H(Y) = H(X|Y).

One can write a similar statement when considering three random variables.

Lemma 1.4. Let X, Y and Z be three discrete random variables. Then,

H(X,Y|Z) = H(X|Y, Z) + H(Y|Z).

Proof. Indeed, applying Lemma 1.3 several times we can see that
H(X,Y,Z) =H(X,Y|Z) +H(2),
H(X,Y,Z) =H(X|Y,Z)+H(Y,Z) =H(X|Y,Z)+ H(Y|Z) + H(Z). O

Applying this several times results in the chain rule for entropy.

Lemma 1.5 (Chain rule for entropy). Let X3, ..., X, be n discrete random variables. Then,

H(Xy,.. .,Xn) = H(Xl) + H(Xz‘Xl) + H(X3|X2, X)) +...+ H(Xn|Xn,1,.. ., X1).

As happened with the notation for sumsets, there is a compact notation when dealing with joint
random variables. In this sense, if we have random variables X3, ..., X, for each subset of indices
S C [n] we will write Xg = (X; : i € S). We take as a convention the notation Xz to not be a
random variable, in which case the entropy is, by definition, null. Using this notation, the chain

rule can be rewritten as

M-

I
—

H(Xy,..., Xn) = Y H(X|X;q)).

One can also use the total probability formula

px(x) = Y py(¥)pxjy—y(x)
yerange(Y)

to obtain the following result.

Lemma 1.6 (Dropping condition). Let X and Y be two discrete random variables. Then,

H(X|Y) < H(X).
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Proof. Indeed, we have

H(X) =) F(px(x)) =) F ( Yy (W)Pxiy=y ))

xerange(X) xerange(X) yerange( )
22 ZPY F(pxjy—y(x ZPY H(X|Y =y) = H(X]Y),
xerange(X) yerange(Y) yerange(Y)

where the inequality comes from using Jensen’s inequality with the average weighted by the
py(v), and the concavity of F, and the last equality corresponds to (3). O

Equality holds if, and only if, pxy_,(x) = px(x) for all y € range(Y), x € range(X), that is, if,
and only if, (X|Y = y) = X for all y € range(Y). This is equivalent to saying that X and Y are
independent. Combining this and Lemma 1.3, we have that

®) H(X) > H(X|Y) = H(X,Y) - H(Y) = H(X,Y) < H(X) + H(Y),

with equality if, and only if, X and Y are independent random variables.
When considering the entropy of joint distributions, one can now prove the following lemma.

Lemma 1.7 (Submodularity). Let X = (X,...,X,) be the joint distribution of n random variables.
Then, H(Xs) is a submodular function of the set S, that is, given two sets S, T C [n],

H(Xsur) + H(Xsnr) < H(Xs) + H(X7).

Proof. By the dropping condition Lemma 1.6,
H(X7\s|Xs) < H(Xp\s|Xsn7)-
Using Lemma 1.3, we have that
H(X7us) — H(Xs) < H(X7) — H(Xsn1),

and the result follows by reordering the terms. O

We say that a discrete random variable Y is determined by another discrete random variable X if
there is a function f : range(X) — range(Y) such that Y = f(X).

Lemma 1.8. Let X and Y be two discrete random variables such that Y is determined by X. Then,

H(Y) < H(X).
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Proof. LetY = f(X). We know that H(X, f(X)) = H(X|f (X)) + H(f(X)) = H(f(X)|X) + H(X).
1 ify=f(x),

0 otherwise.

The result follows because entropy is nonnegative. O

However, H(f(X)|X) = 0 since f(X) is determined by X | py|x—.(y) =

An important particular case of this comes when considering the random variable (X, Y), which
determines both X and Y. Therefore,

max{H(X),H(Y)} < H(X,Y).
Then, using Lemma 1.3 and Lemma 1.6 we have that
H(X) — H(Y) < H(X,Y) — H(Y) = H(X|Y) < H(X).
Furthermore, if X determines Y then X and (X, Y) determine each other, and therefore H(X,Y) =

H(X). In this particular case we have that H(X|Y) = H(X) — H(Y) and H(Y|X) = 0.

Now we can state a lemma which will come in useful when obtaining entropy analogues of set

inequalities. It is a particuar form of the submodularity that is present in entropy.

Lemma 1.9 (Functional submodularity inequality). Let Xo, X1, Xp and X, be discrete random vari-
ables such that Xy and Xy each determine Xo and (X1, Xp) determines Xq5. Then,

H(X32) + H(Xp) < H(Xp) + H(Xy).

Proof. As X is determined by (X7, X»), we also have that X15| Xy = x is determined by (X1|Xop =
x, X»|Xo = x) for each possible value of x € range(Xj). By Lemma 1.8 and (5), this means that

H(X12|Xo = x) < H(X1|Xp = x, X2|Xo = x) <H(X1|Xp = x) + H(X3|Xp = x) Vx € range(Xp).
Applying the definition of conditional entropy (3) we have that
H(X12|Xo) < H(X1|Xo) + H(X2|Xo)
and, by Lemma 1.3 and Lemma 1.6,
H(X12|Xo) = H(X12, Xo) — H(Xo) = H(X12) — H(Xp).

As X7 and X, each determine X, we have that H(X;|X) = H(X7) — H(Xp) and H(X;3|Xp) =
H(X;) — H(Xp). Putting all of this together we have that

H(X12) — H(Xp) < H(X12|Xo) < H(X;) + H(X2) — 2H(X)),

and the result follows by reordering the terms. O
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1.2.3. Mutual information

The mutual information between two random variables measures the amount of information one
of them contains about the other. Conversely, one can think of it as the reduction in the uncertainty
of one due to the knowledge of the other. In this sense, it can be understood as a measure of their
dependence. When given two random variables X and Y, their mutual information is defined as

(6) I(X;Y) = H(X) - H(X]Y).
In fact, the definition is symmetric: by Lemma 1.3 we have that
I(X;Y) =H(X) -H(X|Y) =H(X) -H(X,Y) + H(Y) = H(Y) - H(Y|X) = I(Y; X).

The mutual information between two random variables is nonnegative, as a direct consequence of
the dropping condition Lemma 1.6. In particular, one has that I(X;Y) = 0if, and only if, X and Y
are independent. Also, notice that I(X; X) = H(X), so the entropy is just the mutual information
of a random variable and itself. In this sense, mutual information is just a generalization of the
concept of entropy.

As happens with entropy, one can also define conditional mutual information in an analogous
way. One has that

(7) I(X;Y|2) =1((X,2);Y) - (Z;Y)
By applying (6) and Lemma 1.3 we have
I(X;Y|Z) =H(X,Z)-H(X,Z|Y) -H(Z)+ H(Z|Y) =H(X,Z)+ H(Y,Z) - H(X,Y, Z) — H(Z).

It is interesting to note that this quantity is nonnegative as a simple consequence of Lemma 1.7
(submodularity).

One of the classical properties of mutual information, in a similar spirit to Lemma 1.8, is known as
the data processing inequality.

Lemma 1.10 (Data processing inequality). The mutual information cannot increase when looking at
functions of the random variables. That is,

I(f(X);Y) <I(X;Y).

Proof. By the symmetry of mutual information, we may write

I((X, f(X));Y) = HXY[F(X)) + 1(f(X);Y)
= I(f(X); Y|X) + L(X; Y).
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Now observe that Y and f(X) are conditionally independent given X. Indeed, one has that
PriY=y,X=x,f(X) =2z2)

PrlY =y, f(X) =z|X =x) =

Pr(X = x)
_ Pr(Y =y, X =x)Pr(f(X) =z|X = x)
Pr(X = x)

where we have used twice the definition of conditional probabilities, and the second equality
comes from the fact that f(X) is completely determined by X, so f(X) = z can only occur if
z = f(x). With this, I(f(X); Y|X) = 0 and we can write

I(X;Y) =1(XY[f(X) +1(f(X);Y) = I(f(X);Y)

by the nonnegativity of mutual information. O

For further information about entropy and mutual information, we refer the reader to the vast
bibliography about this topic. For instante, [7] or [3] provide detailed proofs and more careful
explanations.

1.2.4. Analogues of set addition theory

In set theory, we work with the cardinalities of sets. In the entropy setting, we must first find an
object with which we can find a correspondence, and this object is a random variable. Instead of
size, we will consider its entropy. We shall see that this approach allows us to obtain many results
in this setting that are perfectly analogous to those in the addition set setting. Usually, one thinks
about random variables defined over the reals; however, in order to obtain analogies to general set
cardinality inequalities, we must be able to define random variables over general sets.

Definition 1.5. Given any arbitrary set A, we will say that X is an A-random variable if it takes
values in a finite subset {x € A : Pr(X = x) # 0} C A.

Now, one can see there is a certain analogy between the size of sumsets and the entropy of G-
random variables. Although they are clearly different, many ideas from one setting can be applied
to the other. For example, one may define doubling constants and the Ruzsa distance.

Definition 1.6. Let G be an additive group, and let X be a G-random variable. Then, its doubling

constant is defined as
(T[X] — eH(X1+X2)_H(X)I

where X; and X; are independent copies of X.
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Observe that c[X] > 1. This is a consequence of the fact that, if X and Y are independent random
variables, H(X 4+ Y) > max{H(X), H(Y)}, which will be proved in Lemma 2.2. In this sense, we
have a first analogy, as one can trivially see that c[A] > 1.

Furthermore, one can prove that, if X is uniformly distributed over a set A, then ¢[X] < ¢[A].
Indeed, let X be a uniform A-random variable, and let X; and X; be two independent copies of
X. Observe that range(X; 4+ X) C range(X;) + range(X;) holds for any random variables (not
necessarily uniform). Then we have
o[X] = HXi+X)—HX) _ HETX) - Jrange(X; + Xp)|
eHX) = |range(X)]
< range(X) +range(X)| _ [A+A[ _ olAl
[range(X)| Al

where the first inequality holds because of Lemma 1.2 and the fact that eH(X) = |range(X)| = |A],

since X is uniform.

We thus have that the doubling constant of uniform random variables ranges between the same
values as that of sets. However, it is important to note that it can be significantly smaller; one can
construct many examples where this fact is observed.

One can also similarly define the Ruzsa distance for random variables.

Definition 1.7. Given two G-random variables X and Y, where G is an additive group, their Ruzsa
distance is defined as

dr(X,Y) =H(X' - Y") - Z(H(X) + H(Y)),

N =

where X’ and Y’ are independent copies of X and Y.

Again, this is not a metric, but it is nonnegative, symmetric, and a triangle inequality holds. Fur-
thermore, we can observe that dg (X, —X) = log c[X], as happens with the Ruzsa distance defined
over sets. As above, we can also prove that the entropy Ruzsa distance is upper bounded by the
set Ruzsa distance when the random variables are uniform. Indeed, let X be a uniform A-random

variable, and let Y be a uniform B-random variable. Then,

X) X -Y) SHX Y
T JHMEY) /X))
|range(X' — Y’)] < lrange(X) —range(Y)| |A—B| oAr(AB)

~ Vrange(X)|[range(Y) ~ \/Irange(X)[[range(Y)|  /[A[B]

Again, the inequality comes from Lemma 1.2.






Chapter 2
Entropy analogues of sumset inequalities

This chapter’s main goal is to show how one can prove many analogues of sumset inequalities in
the context of random variables, by using entropy instead of sizes. There is not a standard way to
do so, although very often there is a certain resemblance between the proofs of the sumset inequal-
ities and their entropic versions. In this chapter we present several sumset inequalities, together
with their proofs, and then present and prove their analogous versions in the entropy setting. Most
of these entropy analogues were proved by Tao in [31]. In many cases, the entropy analogues to
sumset inequalities can be used to prove the original sumset ones by choosing uniform distribu-
tions. This shows that the entropy counterparts are usually stronger and more general statements.
This is one of the main values of the entropic approach.

In section 2.1 we present some of the traditional sumset results, as well as their entropy counter-
parts. The study of the very influential Balog-Szemerédi-Gowers theorem and its entropy ana-

logue is presented in section 2.2

2.1. Entropy analogues of some basic sumset inequalities

We start by presenting some of the most basic sumset inequalities, and finding their corresponding
equivalent statement in the entropy setting. First, one may consider the trivial bounds, which
come from simple counting of the total number of possible sums and from the fact that adding a

set to another cannot decrease the size of any of them.
Lemma 2.1. Let A, B C G be two finite sets, where G is a group. Then,

max{|A|,[B|} < |A+ B| < [A]|[B].

This trivial bound can be found in the setting of random variables and entropies.

19
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Lemma 2.2. Let X and Y be two G-random variables. Then,
H(X+Y) <H(X)+H(Y).
Furthermore, if X and Y are independent, then

max{H(X),H(Y)} < H(X +Y).

Proof. The first part can be proved simply by observing that (X, Y) determines X + Y. As a conse-
quence, by Lemma 1.8, we know that H(X + Y) < H(X,Y), and by (5), H(X,Y) < H(X) + H(Y).

The proof of the second result is somewhat different. By Lemma 1.6 we know that conditioning
does not increase the entropy, so H(X + Y|Y) < H(X + Y). Then, observe that Pr(X + Y = z|Y =
y) =Pr(X =z—y|Y =y) forall z € range(X + Y|Y = y), so their distributions are the same and
H(X +Y|Y) = H(X]Y). Finally, using independence in Lemma 1.6 we have that H(X|Y) = H(X).

The same can be done conditioning to X, which finishes the proof. O

It is very easy to see that the entropic inequalities in Lemma 2.2 imply the sumset inequalities in
Lemma 2.1. For the first one, for each element ¢ € A + B consider a unique pair of representatives
(a,b)c such that a + b = ¢ (one may take whichever; for instance, the lexicographically minimal
one), and let Z = (X,Y) be a random variable that takes each value (a,b) € A x B with proba-
bility ﬁ if it is one of the representatives, and 0 otherwise. In such a way, X + Y is uniformly
distributed over A + B. This way of constructing uniform distributions will be used many times
throughout this thesis. By Lemma 2.2,

log|A+ B| = H(X +Y) < H(X) + H(Y) < log 4] +log|B],

where the last inequality comes from Lemma 1.2 and the fact that the range of X is contained in A,
and similarly for Y. For the second inequality, let X be a uniform random variable ranging over A,

and Y a uniform random variable ranging over B, such that they are independent. By Lemma 2.2,
log max{|A|, |B|} = max{H(X),H(Y)} < H(X+Y) <log|A+B|.

The trivial bounds follow by exponentiating.

In this way, many sumset inequalities can be proved starting from entropy inequalities. This will
be a recurrent technique throughout this thesis. The idea for this technique is the fact that, given
a set A, the random variable that best describes the set is the uniform one. Indeed, if |A| = n and

we take a random variable X defined with Pr(X = a) = % foralla € A, we have that

H(X)=)_ %logn = logn = log|A]|
acA
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H(X)

or, equivalently, |[A| = ¢ . Hence, one may establish this correspondence between sets and

random variables. Note, however, that there is not such a straightforward way to go from general
random variables to sets; we will refer to this issue in Chapter 3.

We now turn our attention towards Ruzsa’s triangle inequality. First shown by Ruzsa in [24] while
working on commutative groups, it has proved to be a very useful tool to find bounds for sumsets
in both the commutative and noncommutative settings. Throughout this thesis, we will work
mainly in the commutative setting; however, it is interesting to see how this result works in the

more general case.

Theorem 2.3 (Ruzsa’s triangle inequality). Let A, B and C be finite non-empty sets in a (not neces-
sarily commutative) group. Then,

|A||B—C| < |B-A|lA-C|.

Proof. The idea of the proof is to find an injection between A x (B—C) and (B— A) x (A —
C). Since the sizes of these sets are |A||B — C| and |B — A||A — C|, respectively, finding such an
injection immediately yields the result.

Consider the following map:
p:Ax(B-C) — (B—A)x(A-C)
(a,b—c)— (b—a,a—c)
We would like to see that this is an injection. First, observe that an element b — ¢ € B — C may

come from different elements b1, b, € B and ¢y, ¢, € C such that b; — c; = by — ¢». Hence, we must
first fix a representation in B, C for each element of B — C. We do so by defining an injection

f:B—C—BxC

such that f(x); — f(x)2 = x Vx € B— C, where f(x); denotes the first coordinate of f(x), and
f(x)2 denotes the second. Such an injection exists because |B — C| < |B||C| (this is the trivial
bound, Lemma 2.1). For example, if we give the elements of B some order by, by, . . ., by, we could
map x to a pair (b;, ¢;) such that the index i is minimum.

Now, assume that ¢(a,x) = ¢(a’,x") for some a,a’ € Aand x,x’ € B— C. Then,

feh—a =f(x')—4d,
a—f(x)2 =a" —f(x).

Adding these two equalities, we get that

f)1 = f(x)2 = f(x")1 = f(&)2
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and since f is an injection by definition, this means that x = x’. Substituting this in the former
system of equations yields a2 = 4/, so ¢ is an injection. O

Observe that the need for commutativity is avoided by the special order in which the operations
are made. There are many similar statements that only hold in the commutative case.

Ruzsa’s triangle inequality gave rise to the idea of a distance in the theory of set addition. This is the
so called Ruzsa distance, introduced in Chapter 1. Using this distance, Ruzsa’s triangle inequality
can be written as

dr(B,C) < dr(B, A) +dgr(A,C).
The analogue of this distance in the entropy setting was also introduced, and we use it in order to

state the following theorem.

Theorem 2.4. Let X, Y and Z be three independent G-random variables, where G is any (not necessarily
commutative) group. Then,
dR(Y, Z) < dR(Y, X) + dR(X, Z).

Proof. By applying the definition of the Ruzsa distance, we find that the statement holds if, and

only if,
H(Y-Z) - % (HY)+H(Z) <HY-X)+H(X-2Z) — % (H(Y) +H(X) + H(X) + H(Z)),
that is, if

H(X)+H(Y - Z) <H(Y - X) +H(X - Z).
Now observe thatboth (Y — X, X — Z) and (Y, Z) determine Y — Z, and that they jointly determine
(X,Y,Z). Hence, we may apply Lemma 1.9 to obtain

H(X,Y,Z)+H(Y - Z) <H(Y - X,X - Z) +H(Y,Z) <H(Y - X) + H(X — Z) + H(Y, Z),

where the second inequality comes from (5). Finally, by applying (5) and taking into account the
independence of the random variables we have

HX)+H(Y)+H(Z)+H(Y-Z)<H(Y-X)+H(X-Z)+H(Y)+H(Z),
and the result follows. O

This is a very interesting result, but it depends strongly on the independence of the random vari-

ables. This condition can be slightly weakened, as was proved by Ruzsa in [25].

Theorem 2.5. Let X, Y and Z be three G-random variables such that X is independent of (Y, Z), where

G is any (not necessarily commutative) group. Then,

dR(Y,Z) < dR(Y, X) +dR(X,Z).
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Proof. Again, it is enough to prove that

H(X) +H(Y — Z) <H(Y — X) + H(X — Z).

First, consider the special case in which for all u € range(Y — Z) there is only one pair (y,z) €
range(Y, Z) such that u = y — z. In this case, y and z are functions of u (as there is only one pair,
we have a bijection), say y = f(u), z = g(u). Because of the independence between X and (Y, Z)
we have that

H(X,Y-Z)=H(X)+H(Y - 2).
On the other hand, since

Y-Z=(Y-X)+(X—-2Z)
and
X=X-2)+Z=X-2)+gY-2Z)=(X-2)+g((Y-X)+ (X - 2)),

we may now use Lemma 1.8 to obtain that

HX,Y-Z)<H(Y-X,X-2Z2).
The result follows since, by (5),

H(Y - X,X-Z) <H(Y-X)+H(X-2).

Now consider the more general case in which we may have collisions, but where the variables
assume only finitely many values. Take a possible value u € range(Y — Z) such thatu = y; —z; =
Y2 — zp for different y1,y, € range(Y), z1,2z, € range(Z) and Pr(Y = y;, Z = z;) > 0fori € {1,2}.
Let Pr(Y = y1,Z = z1) = prand Pr(Y = yp,Z = zp) = pp, and set p = p1 + p2. Consider the
family of variables Y, Z; such that Pr(Y; = y1,Zy = z1) = tpand Pr(Y; = y2, Zy = 25) = (1 —t)p
foreach t € [0,1], and otherwise having the same distribution as (Y, Z). Then, Y; — Z; has the same
distribution as Y — Z, so the left hand side of the inequality remains constant when substituted by
these variables.

The right hand side, however, is a concave function of ¢ (because of the concavity of the entropy
function), so its minimum must be achieved either at t = 0 or f = 1, which corresponds to having
only one of the two different representations of u that we were considering. Hence, substituting
the initial variables by this minimal pair (Y}, Z;) results in a sharper inequality. One can repeat this
process as long as there are collisions, which at each step reduces the cardinality of range(Y, Z) by
one; as the variables only assumed finitely many values, this process must end. In the end, this
reduces our study to the first special case, which we already proved.

Finally, the general case follows by a routine limiting argument. O
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Again, it is now easy to prove the sumset inequality starting from the entropic one. Indeed, let X
be a uniform G-random variable with range A, and take (Y, Z) uniformly distributed over unique

representatives of each value of B — C, so that Y — Z is uniform. Then,

log|A|+1log|B—C|=H(X)+H(Y—-Z) <H(Y-X)+H(X—-Z) <log|B— A|+log|A—C|.

Now we turn our attention to a different result, of which we want to find an entropy analogue. It

is given by Tao and Vu in [32] (see Cor. 2.12). We refer to this reference for the proof of the result.

Theorem 2.6. Let A be a set in an additive group G. Then,

dr(A, —B) < 3dg(A,B).

Again, one can prove an entropy theorem analogous to this result. First, however, let us introduce
the concept of conditionally independent trials, which will be useful to prove this and several
other results.

Definition 2.1. Given two random variables X and Y, not necessarily independent, we can pro-
duce two conditionally independent trials X1, X of X relative to Y, defined by declaring (X;]Y = y)
and (X,|Y = y) to be independent trials of (X|Y = y) for each y € range(Y).

In particular, this means that X, X; and X; have the same distribution, and that X; and X, are
conditionally independent relative to Y. Then, by (5),

®) H(X, Xa|Y) = H(X,|Y) + H(X|Y) = 2H(X]Y).

Thus, applying Lemma 1.3 results in

) H(X31,Xp,Y) =H(Xy, X2|Y) +H(Y) =2H(X,Y) — H(Y).

We can now prove the entropy analogue of Theorem 2.6.

Theorem 2.7. Let X and Y be two independent G-random variables, where G is an additive group. Then,

dr(X, —Y) < 3dg(X,Y).

Proof. By the definition of the Ruzsa distance, we must prove that

H(X - Y) <3H(X +Y) — H(X) — H(Y).

Let (X3, Y1) and (X, Y2) be conditionally independent trials of (X, Y) relative to X — Y. We have
that (X,Y) determines X — Y, so we conclude that X; — Y1 = X, — Y5. Let (X3, Y3) be another
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independent trial of (X, Y). Then,
X3+Y; = (X3—Y2) - (X] —Y3)+X2+Y1,

and we have that (X3 — Y2, X7 — Y3, X3, Y1) and (X3, Y3) each determine X3 + Y3 and together
determine (Xl, X5,X3,Y1,Ys,Y3). By Lemma 1.9 we have that

(10)  H(X3,X2,X3,Y1,Y2,Y3) + H(X3+ Y3) < H(X3,Y3) + H(X3 — Y2, X1 — Y3, Xp, V7).

Now we can rewrite or bound each of the previous terms. In each of the bounds we consider
the fact that the independent trials and the original random variable are identically distributed.
By the independence of X and Y we have that H(X3,Y3) = H(X) + H(Y). By the standard en-
tropy inequality (5), H(X3 — Y2, X1 — Y3, Xp,Y1) < 2H(X — Y) + H(X) + H(Y). Finally, by the
independence hypothesis and (9),

H(Xy, X5, X3, Y1, Y2, Y3) = H(Xy, Xp, Y1, Y2) + H(X3, Y3)
=2H(X,Y) -H(X—-Y)+H(X) +H(Y) =3H(X) +3H(Y) —H(X - Y),
as
H(Xq, X5, Y1, Y2) = H(Xy, X2, Y1, Y2, X = Y)
—2H(X,Y,X—Y) - H(X—Y)=2H(X,Y) —H(X —Y)
because X — Y is determined by (X, Y). Substituting these into (10) yields
H(X+Y) <3H(X-Y)—-H(X)—H(Y),

as we wanted to see. O

Again, one can obtain a sumset inequality from the entropy one in Theorem 2.7. Indeed, assume
that X and Y are distributed over A and B, respectively, in such a way that X — Y is uniform (again,
this can be done by taking unique representatives in A x B of each value in A — B). Then, by the
nonnegativity of the entropy, we trivially have that

log|A—B|=H(X-Y) <3H(X+Y)—-H(X)-H(Y) <3H(X+Y) <3log|A+B|,
so |A — B| < |A + BJ3. We can obtain a better result by using Lemma 2.2, whence we obtain
log|A—B|=H(X-Y) <3H(X+Y)—-H(X)-H(Y) <2H(X+Y) <2log|A+ B|,

from where the bound is |A — B| < |A + B|2. We must emphasize that this inequality, although
interesting by itself, is not as strong as the one in Theorem 2.6.
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Finally, one can also prove a Pliinnecke-Ruzsa-type inequality in the entropic setting. The original
sumset theoretic inequalities have a very rich history. The first result was proved by Pliinnecke
[21], and can be stated as follows.

Theorem 2.8 (Pliinnecke’s inequality). Lef j, h be two non-negative integers such that j < h, and let
A and B be sets in a commutative group. Assume that |A + jB| < a|A|. Then, there exists a non-empty
set A" C A such that

|A’ +1B| < &) |A/].

In particular, this means that

h
an) hB| < af|Al.

This result was generalised using Ruzsa’s triangle inequality. The new result, presented by Ruzsa
[22, 23], states the following.

Theorem 2.9 (Pliinnecke-Ruzsa inequality). Let A and B be finite sets in a commutative group, and j
be a positive integer. Assume that |A + jB| < a|A|. Then, for any nonnegative integers k and I such that
j < min{k, 1}, we have that

kB—1B| <& |Al

Later on, further generalizations were presented by Gyarmati, Matolcsi, and Ruzsa [11], arriving
to the following very general result.

Theorem 2.10. Let j and h be two positive integers such that j < h. Let A, By, ..., By, be finite sets in a

commutative group. For any I C [h], let B = Z B;. For each By, let a1 be a rational number such that
icl

|A + B} | < aj|Al|. Assume that oy is known for any | C [h] such that |]| = j, and write

(G=D!h=))!
(h—1)!

= II «

T =]
Then, there exists a non-empty set A’ C A such that

A"+ B | < BlA'|.

First of all, we are interested in the particular case where j = 1 and B = A of Theorem 2.9,
which is enough for many applications. In such a case, using the notation for doubling constants

introduced in Chapter 1 we have that

hA| < o[A]"|A|
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and
kA —1A| < o[A]FTAl

The entropic inequality analogue to this one was first proved by Tao in [31]. In his paper, he
claimed that the inequality loses a constant factor with respect to the Pliinnecke-Ruzsa inequali-
ties due to the fact that the graph theoretic proof of Pliinnecke’s inequality has not been adapted
to the entropic setting; however, his arguments can be easily used to show the tight constant that
corresponds to the sumset inequalities. For instance, the tight constant appears in a paper of
Madiman and Kontoyiannis [16], and were probably first published by Madiman in [18]. For a
thorough overview of sumset Pliinnecke-type inequalities and their proofs, the reader is encour-
aged to check [8]. Here we shall simply prove the entropic version, by refining Tao’s argument in

anew way.

Theorem 2.11. Let X be a G-random variable, where G is an additive group, and let Xy,. .., Xk, Xi, ey Xl’
be independent copies of X for some positive integers k and 1. Then,

H(Xy +...+ X — X{ — ... — X)) <H(X) + (k+1)log 0[X].

Proof. Let X and Y be two independent G-random variables, and let (Xy,Y7),..., (X, Yi) be
independent trials of (X,Y). Set S; = X;+ Y, for each i € {1,...,k}. Observe that we may
write S1+ ...+ S5 = (Y1 + X2) + (Y2 + X3) + ...+ (Ys_1 + Xx) + (Yx + X7). In particular, both
(XerI/ S,,53,..., Sk) and (Y1 + X0, .o, Y1+ X, Y + Xl) determine S; + ...+ Sk, while they
jointly determine (X, ..., Xy, Y1,...,Y)). By Lemma 1.9 we have that
H(Xl,. Xk, Yy, .,Yk)+H(Sl +...+ Sk)
< H(Xl,Yl,Sz, Ss,.. .,Sk) + H(Yl +Xo, o, Y1+ X, Y + Xl)-
By independence,
H(Xll ey Xk/ Yl/ ey Yk) = k(H(X) + H(Y))

and
H(X1,Y1,5,,53,--.,5) =H(X) + H(Y) + (k—1)H(X +Y),

and by the standard inequality (5),
HY1+Xo,..., Y% 1+ X, i+ X1) <KH(X+Y).
Substituting these above yields

H(S;+...+S) < (2k— DH(X +Y) — (k—1)(H(X) + H(Y)).
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Now let each Y; be one more independent copy of X. Using the definition of the doubling constant,

we have that

H(X, 4 ...+ Xoi) < (2k — 1)H(Xq + Xp) — (2k —2)H(X) = H(X) + (2k — 1) log o[X].

It is clear that this equation holds when adding an even number n = 2k of independent and
identically distributed random variables. For the case when we add an odd number n = 2k 41
of independent identically distributed random variables Xy, ..., Xpr1 we proceed in a similar
way. Define S; = Xp;_1 + Xy and S} = Xp; + Xpiyq, for i € [k]. Itis clear that Sy + ...+ S +
Xokt1 = X1+ 5] +...+S;. Hence, we have that both (Sy,...,Sk, Xpr41) and (X3, S,...,S;)
determine X; + ...+ Xy, 1, and it is easy to check that, combined, they determine (X, ..., Xpx41)-
By Lemma 1.9,

H(X,...,Xo01) +HX 1 4+ ...+ X2k+1) < H(Sy,... ,Sk,X2k+1) +H(Xy, Si .. ,S]/{)
By independence,
H(Xy, ..., Xore1) = (2k+ 1)H(X),

and by (5),
H(Sl, vy Sk, X2k+1) < H(X) + kH(X + X/),

H(Xy,S,...,S;) <H(X) +KkH(X + X'),
where X’ is an independent copy of X. Substituting these above yields
H(Xl +...+ X2k+1) < H(S1,. .., S, X2k+1) + H(X1,S/1 .. .,S]/() — H(Xl, .. .,X2k+1)
<2H(X) +2kH(X + X') — (2k + 1)H(X)
= H(X) + 2k(H(X + X') — H(X)) = H(X) + 2klog o[X].

Putting the results for odd and even number of summands together, when considering sums of

independent identically distributed random variables we may write

(12) H(X;+ ...+ Xy) <H(X) + (n — 1) logo[X].

Finally, in order to obtain the inequality from the statement, apply Theorem 2.4 taking X = — X"/,
X" being another independent copy of X, Y = X; + ...+ Xgand Z = X| +... + X]. AsH(X) =
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H(—X), this yields
H(X+...+ X — X —...— X))
<HX'4+X1+...+ X)) +HX"+ X +...+ X)) - H(X")
< H(X) + klogo[X] +H(X) + llogo[X] — H(X)
=H(X) + (k+1)logo[X],

where the last inequality comes from applying (12). O

It is interesting to note that (12) is a perfect analogue of Pliinnecke’s inequality up to the constant
factor (one may argue that this result is even better, as the exponent is reduced to n — 1, but for the

applications, this difference does not matter).

One may now try to obtain sumset inequalities from these results. However, it soon becomes
aparent that it is not such an easy task as it was before. Several problems arise: first, we want
to have several copies of the same random variable (that is, several independent and identically
distributed random variables) such that their sum is uniformly distributed over the set kA — A,
which cannot be done. Secondly, we face the problem of upper bounding the entropic doubling

constant by its additive counterpart, which, again, is not clear.

2.2. The Balog-Szemerédi-Gowers theorem

The Balog-Szemerédi-Gowers theorem was a big breakthrough in the theory of set addition. One
may roughly think as follows. The traditional results in additive combinatorics are concerned with
small sumsets, for in that case one can derive structural properties on the summands. If the sumset
is small, then there must be many collisions in the sums. The Balog-Szemerédi-Gowers theorem
states a partial converse of this idea: if we know that there are a lot of collisions, then the sumset
must be small. This is actually not true; one can construct examples with many collisions where
the sumset is big. However, what Balog and Szemerédi first proved is that one can find “big”
subsets such that their sumset is “small”.

So far we have been dealing with complete subsets, but very often in applications one does not
have complete control over a sumset, and only knows a partial collection of these sums. This idea

can be represented through partial sumsets.

Definition 2.2. Let A and B be two sets in an additive group G, and let I be a subset of A x B
(that is, a subgraph of the complete bipartite graph with independent sets A and B). We define the
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partial sumset of A and B along I' as
r
A+ B={a+b:(ab)eTl}.

The partial difference set is defined in the same way.

In general, it is not easy to work on this setting, as the usual estimates we have been presenting
do not work anymore. The Balog-Szemerédi-Gowers theorem allows to go from this setting to the
complete sumset setting, by refining the sets that are being added.

The way to think about the “many collisions” is to consider that the partial sumset restricted to a
“big” graph is small. One may build sets such that this is true and the complete sumset is very
large, but the Balog-Szemerédi-Gowers theorem states that, by refining the sets that are being

added, one can also control the size of the complete sumset.

We would like to prove an entropy analogue of this important result. But first, let us state and
prove the Balog-Szemerédi-Gowers theorem carefully. The first version of the theorem was pre-
sented by Balog and Szemerédi in [2], roughly stating that, if there is a large number of quadruples
(a,a’,b,b') € A% x B? such that a + a’ = b+ b/, then there are large subsets A’ C A and B’ C B
such that A’ 4+ B’ is small. The bounds they gave were greatly improved by Gowers [9, 10], who
reduced them to a polynomial and gave a simpler proof. A more recent proof is due to Sudakov,
Szemerédi and Vu [28], and the proof we shall present here, based on this work, can be found in
[32]. An even more recent proof is due to Schoen [26], who provided a further improvement in the

bounds. His new bounds are not presented here.

Theorem 2.12 (Balog-Szemerédi-Gowers). Let A and B be additive sets in an ambient group G, and

Al|B r
let T C A x B besuch that |T| > % and |A + B| < K'\/|A||B| for some K > 1 and K’ > 0. Then,
there exist sets A’ C A and B’ C B such that
74\/§K1
B|
B> Bl
> B

and

|A” + B'| < 22K*(K")3\/|A||B].

This can be understood as a statement about dense bipartite graphs. In order to prove it, one must
first show two results about paths of small length in these dense bipartite graphs.
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Lemma 2.13. Let I'(A, B, E) be a bipartite graph such that |E| > |AllB]

K
A
0 < & < 1 there exists a set A’ C A such that |A’| > 4] and at least a (1 — &) proportion of the pairs of

V2K

vertices (a,a’) € A’ x A" are connected by at least %|B| paths of length 2 in T.

for some K > 1. Then, for any

[AllB|

Proof. We may assume that |E| = ~—— (if this is not the case, decrease the value of K). Then, by
double counting, we may know the number of edges by counting incoming edges either to A or
to B,

E[ =) IN(b)| =} IN(a)],

beB acA
and we can find the average degree in each of the independent sets in this way. Writing this in the

language of expectations, we have that
IN(b)] [N(a)] El _1
bEB{ Al T [AllB] K
Now consider the common neighbourhood of a pair of vertices in A. We have that

Y IN(a)NN(a)]| = ) IN(b)I?

aa' €A beB

by double counting, as the left hand side of the equality counts each vertex b € B as many times
as there are pairs (a,4’) such that b € N(a) N N(a’), and this corresponds to all pairs (a,4’) such
that a,a’ € N(b). The number of such pairs is [N(b)|? (note that we consider the possibility of
(a,a) being a pair and the two possible orderings for each a # 4’ at both sides of the equality).

Consequently,

M) e[S

where the inequality comes from the Cauchy-Schwarz inequality.

(13) IEu,a’eA |:

Let ) be the set of pairs of vertices of A such that there are less than 57> paths of length two
connecting them, that is,

Q={(aa)€AxA:|N@NN@) < 2%|B|}.

Note that here we are considering ordered pairs and also pairs of the form (a,a), that is, we con-
sider walks of length two instead of paths. Let 1, denote the indicator function of the event w.

Then, we clearly have that

IN(@)ON(@@)[] _ 1| e[B| e
]Ea,a’eA [Il(a,a’)e() |B| < |A|2 2K2|B| < K2’
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so from this and (13)

1 IN(a) N N(a')| 1 1 1
o Fatea Kl - eﬂ<ﬂrﬂ’>€0) OB TRk

Again, in a similar way as before, the left hand side of this inequality can be written as

i1, (1 o)
1— -1,
2 (a,a") € ’
|A| a,a'eN(b) € ]
so by the pigeonhole principle there must exist an element b € B such that

1 1 1
W Z(b) (1 - Sﬂ(ﬂ,ﬂ,)GQ) > ﬁ

IEbeB

a,a'eN
In particular, we have that

INB)2 1

o)
EMCINP 1— 1, neq ),
a5, (1 oo
A

so this means that |[N(b)| > —=—. We also have that

V2K

{(a,d') € N(b) : (a,a') € Q} < ¢|N(b)[?
(otherwise, we would have a negative quantity in (14), reaching a contradiction), so by taking the
complement, the number of pairs of neighbours of b that are connected by at least % |B| paths of

length two is at least (1 — )| N(b)|?. Hence, taking A’ = N(b) gives the desired result. O

|A|| |

Lemma 2.14. Let I'(A, B, E) be a bipartite graph such that |E| > for some K > 1. Then, there

A B
exist sets A’ C A and B’ C B such that |A’| > 1AL |B'| > 1B| and every pair (a,b) € A’ x B’ is
42K’ 4K’
Al||B
connected by at least |212||K 4| paths of length three.

1B

Proof. Let A C A be the set of vertices in A that have degree at least 7K (this set is nonempty

since, by hypothesis, the average degree of the vertices of A is at least %). Let T(A, B, E) be

|A||B|
2K ed

the subgraph of T induced by A. Note that in this transformation we delete at most
|A| |B]

(assuming all vertices were deleted, which cannot happen!), so |E| >
set of edges. Write |A| = L|A| for some L > 1.

holds for the resulting
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2K 1 - - -
Now, take K’ = T and € = 1K and apply Lemma 2.13 to I'. This yields a subset A’ C A of size

. Al |A|
A/ > | —
A= V22K 242K
L?|B|
128K3

and such that (1 - 161K) of the pairs (a,4’) € A’ x A’ are connected by

at least

paths of length two.

?|B]

~ ~ L
Let us call a pair (a,4’) € A’ x A’ “bad” if a and a’ are not connected by at least K2

length two. Observe that there are at most 16LK | A2 such bad pairs. Let A’ C A’ be the set of all
A
- 2
bipartite graph A(Aj, Ay, E*), where A and A; are two copies of A" and (a,4’) € E* if, and only
if, (a,4") is a bad pair. As we said before, |[E*| < ﬁp‘ﬂ. Assume that |A"\ A’| > @,’ then,
A AT AT

the sum of the degrees in A;, which equals the number of edges, is greater than > 8K — 16K’

paths of

- 1 - ~
a € A’ such that at most S—K\A’\ pairs (a,a’) are bad. Then, |A"\ A’| < . Indeed, define a

thus reaching a contradiction. Hence, we must have that

A 1A

Al > )
4 = 2 T 42K

Now we strive to define the corresponding B'. Since every element in A (and in particular in A’)

has degree at least %, we have that
- . < |B
Y [{acA :(a,b)cE}|=|{(a,b)eE:acA'}| > |A’|%.
beB
Let
B =3beB:|{ac A :(ab)€E} > 4]
B ' I T 4K 7
. . |A']
that is, the set of vertices of B that have degree at least 1K Then we have
1 1 i Bl A _ |AIB|
A'l|B'| > A £y > AL _ B =

beB’

where the difference comes from assuming B’ is empty as an upper bound, and therefore |B’| <
|A'||B]
4K
!/ / : : / : s |A,|
Leta € A’ and b € B’ be any vertices. By construction of B', b is adjacent to at least K elements
Al Al
a’ of A’. By construction of A’, at most T pairs (a,a") are bad, so more than |

are good.
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& 4]
8K ~ 162K
L?|B|
ted t b tl t
connec 62 oa ya eas 8K2
Al _L7[B|  |Al[B]

164/2K 8K%Z — 28K3
stated. O

Thus, there are at least vertices a’ which are simultaneously adjacent to b and

paths of length two. This means that, overall, there are at least

paths of length three connecting a and b. This is even better than what was

Proof of Theorem 2.12. First, we want to define the bipartite graph over A and B. These two sets
may not be disjoint, but we can make them so by replacing G by G x Z, A by A x {0}, and B by
B x {1}. Now we can view I’ as a bipartite graph defined on the sets A and B. A direct application

of Lemma 2.14 gives subsets A’ C A and B’ C B of the right cardinalities, and such that every pair
|Al|B]
212 K4

a € A',b € B is connected by at least paths of length three. We can rewrite this as

|[AllB

2124’

for any pair (a,b) € A’ x B'. We obviously have thata + b = (a+ V") — (a' + V') + (a' + b), so by
takingx =a+ b,y = a’ + b’ and z = 4’ + b we may write that, for any pair (a,b) € A’ x B/,

r \3
|{(x,y,z) € <A+B> :x—y—i—z:a—i-b}

r
Since the overall number of triplesis |A + BJ® < (K')3| A 3 |B| 3, we conclude that the total number
of possible values for a 4 b is bounded as

K')3|A|2|B|2 [T
|A/—|—B/| < ( ) | ‘2| |2 :212K4(K1)3 \A||B|,

|A]B|
212 g4

{(d,b')e A" xB :(ab),(t,a)(a,b)cT} >

|Al|B]
Z oTpgh

as we wanted to see. O

Now we would like to prove an entropy analogue of the Balog-Szemerédi-Gowers theorem. One
needs to find analogues of the different elements in the statement; particularly, we need an ana-
logue of partial sumsets, as well as an analogue of the refinements of the sets through which the
result is obtained. The second corresponds to conditioning the random variables, while the first
can be identified with making variables weakly dependent, in a certain sense. The statement of
the theorem is as follows.

Theorem 2.15. Let G be an additive group, and let X and Y be two G-random variables which are weakly
dependent, in the sense that H(X,Y) > H(X) + H(Y) — logK for some K > 1. Suppose also that
H(X+Y) < J(H(X) +H(Y)) + log K/, for some K' > 0. If we let (X1,Y1) and (Xp,Y>) be condi-
tionally independent trials of (X,Y) conditioning on Y and let (X1, Xp,Y) and (X1,Y") be conditionally
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independent trials of (X1, Xp,Y) and (X1,Y) conditioning on Xy, then X, and Y' are conditionally inde-
pendent relative to (Xq,Y) with

(15) H(X,[X1,Y) > H(X) —logK,

(16) H(Y|X,,Y) > H(Y) - logK

and

(17) H(X, 4 Y| Xy, Y) < %(H(X) LH(Y)) +4log K + 3log K.

Notice the analogies between this and Theorem 2.12. The entropies of the conditioned random
variables are exactly analogous to the sizes of the refined sets, and the entropy of the sum is anal-
ogous to the size of the sum of the refinements. Furthermore, we can also find an analogy with
the paths of length three. Indeed, the conditionally independent trials (X3, Y7) and (X3, Y2) con-
ditioning on Y can be though of as paths of length two (we obtain two values of X related to a
unique value of Y), and the conditionally independent trials (X1, X»,Y) and (X3, Y’) conditioning
to X; extend the path on one of its sides. Saying that X, and Y’ are conditionally independent
relative to (X1, Y) can somehow be interpreted as saying that they are independent, provided they
are adjacent to the endpoint of an edge defined by (Xj,Y). Overall, one can think that the ran-
dom variables (Y, X;,Y, X;) are drawn from the space of all paths of length three. The reader is

encouraged to consider this analogy while studying the following proof.

In order to prove the theorem, we first present a lemma that we shall need.

Lemma 2.16. Consider the same setting and random variables as in Theorem 2.15. Then,

H(X; — X2|Y) <H(X) +2logK +2logK'.

Proof. Let (X1,X2,Y) and (X3, X,Y’) be two conditionally independent trials of (X3, Xp, Y) rela-
tive to (X1, Xp). Observe that (X;, Xp,Y) and (X1 + Y/, Xo + Y’,Y) both determine (X; — X,Y),
and they jointly determine (X1, X»,Y,Y’). Hence, we may apply Lemma 1.9 to obtain

H(Xy, X2, Y,Y) +H(X; — Xp,Y) <H(Xy, X2, V) + H(X; + Y, X + Y, Y).
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By conditional independence (9), trivial joint entropy inequalities (5), and the definition of condi-
tional entropy (Lemma 1.3), we have that

H(Xy,Xo,Y,Y') =2H(X1, X2, Y) — H(X3, Xp) = 4H(X,Y) — 2H(Y) — H(X3, X5)
>4H(X,Y) —2H(Y) — 2H(X),
H(X; — Xo,Y) = H(X; — X|Y) + H(Y),
H(X3,Xp,Y) =2H(X,Y) — H(Y),
H(X; +Y, X+ YY) <2H(X +Y) + H(Y).
Substituting these above and rearranging the terms yields
H(X; — Xa]Y) <2H(X+Y) + H(Y) + 2H(X) — 2H(X,Y) < H(X) +2logK + 2log K/,

where the last inequality comes from the statement hypothesis. O

Proof of Theorem 2.15. By construction, Y’ and (X, Y) are conditionally independent relative to
X1, s0 Xp and Y’ are conditionally independent relative to (X1,Y). Also, since Xj is conditionally
independent from Xj relative to Y, we have

H(X3|X1,Y) =H(X2|Y) = H(X|Y) =H(X,Y) —H(Y) > H(X) + H(Y) — log K,
s0 (15) holds. On the other hand, since Y and Y’ are conditionally independent relative to X3,
H(Y'|X;,Y) =H(Y'|X;) = H(Y|X) = H(X,Y) — H(X) > H(Y) + H(X) — logK,

s0 (16) holds too. Finally, in order to prove (17), observe that (Xp,Y’,Y) and (X7 — Xp, X1 +
Y’,Y) both determine (X, + Y’,Y) and jointly determine (X1, X,Y,Y’). A direct application of
Lemma 1.9 results in

H(Xl,Xz, Y, Y/) + H(X2 + Y/, Y) < H(Xz, Y’, Y) + H(X1 — X, X1+ Y/, Y)

By conditional independence (9), trivial joint entropy inequalities (5), and the definition of condi-
tional entropy (Lemma 1.3), we then have that

H(X1,Xp, Y, Y') =H(X1, X2, Y) + H(Xy,Y') — H(Xy),
H(X; +Y,Y) =H(X, + Y'|Y) + H(Y)
H(X2, Y, Y) <H(Xp,Y) +H(Y') = H(X,Y) + H(Y),
and
H(X; — X2, X1 +Y,Y) <H(X; — Xo|Y) +H(Y) + H(X; + Y')
<H(X; - Xo|Y)+H(Y) +H(X+Y).
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By substituting we obtain that
H(X, +Y'|Y) <H(X; — Xp|Y) +2H(Y) + H(X) + H(X 4+ Y) — 2H(X, Y).

The result follows by applying Lemma 2.16 and the conditions from the statement.
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Chapter 3
Entropy, projections and sumsets

In a different direction than what was presented in Chapter 2, many people also noticed that there
exists a certain parallelism between entropy inequalities and projection inequalities (meaning in-
equalities using the sizes of sets and their projections). This has been studied by several renowned
researchers, such as Ruzsa [25], Balister and Bollobéas [1], or Madiman, Marcus and Tetali [19].
Furthermore, Gyarmati, Matolcsi and Ruzsa [12] realized that one can use projection inequalities
to obtain sumset inequalities which are analogous to their projection counterparts. Their idea has
been further studied and developed, and we shall present here all the different results related to

these analogies.

In order to better understand the analogies, and the very powerfull results that have been recently
achieved, we believe it is better to start by presenting the original results, and slowly build up to
the more general ones. This allows us to present the main ideas more clearly, and we hope that
this also helps the reader to obtain a clear understanding of the techniques that are being used.
In any case, we shall not prove every result separately, as we shall see that many of them can be
deduced from the more general form.

We devote Section 3.1 to present the theorems and analogies in a very particular case, correspond-
ing to the first historical results in each of the settings. The more general case, also well studied
for a long time, is presented in Section 3.2, while Section 3.3 describes some more recent general-
izations. In Section 3.4 we present a new approach, which provides a unified way to prove all the

previous results and also obtain some new ones.

The diagram at the end of this chapter illustrates the relationship among the successive general-
izations presented in the chapter.

39
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3.1. The first results

In 1949, Loomis and Whitney [17] first proved an inequality bounding the volume of an n-dimen-
sional body in terms of the volume of its (n — 1)-dimensional projections. Their result extends to
the discrete setting, where it may be written as follows.

Theorem 3.1 (Loomis, Whitney). Let n > 2, let By, ..., B, be arbitrary finite sets, and let A C By X

... X By, be a subset of their Cartesian product. Let A; = 7;(A) C By X ... x Bj_1 X Bjy1 X ... X By be
the projection of A to the coordinate hyperplanes, where rt;(a) = m;i(ay, ..., an) = (a1,...,4i-1,8i+1,---,0n).
Then,

n
A <TTIAL
i=1

Almost thirty years later, Han [13] proved an exact analogue of the Loomis and Whitney inequality
for the entropy of a family of random variables. With the properties of entropy introduced in

Chapter 1 it is now easy to give a proof of this result.

Theorem 3.2 (Han’s inequality). Let X1,..., X, be n discrete random variables. Then,

1 n
— Y H(Xq, ..., Xi—1, Xig1,- -, Xn).
n=1i3

H(Xy,...,X,) <

Proof. By the definition of conditional entropy given in Lemma 1.3 and by Lemma 1.6, we may
write

H(Xlr‘ . '/Xl’l) = H(Xl/- . */Xl'fll Xi+1/‘ . '/Xl’l) + H(Xi|X1/- . */Xifll Xi+1/' . '/Xi’l)
< H(Xl/- . ‘/Xifll Xi+1r‘ . '/X'rl) + H(Xi|Xl/- . ‘/Xifl)

forall 1 <i < n. If these n inequalities are added, we obtain
n
nH(Xl, .. .,Xn) = 2 [H(Xl, .. -/Xi—1/Xi+1r- . .,Xn) + H(Xi‘Xl, .. -/Xi—l)]
i=1

(where the case for i = 1 of H(X;|Xy,...,X;_1) is understood as H(X7)), and by Lemma 1.5 the
second summands add up to H(Xj, ..., X;). Isolating this term yields the desired result. O

Notice that we do not make any assumptions about the independence of the random variables.

The proof of Theorem 3.1 is not difficult. The authors of [17] reduce the general problem to a
combinatorial one, dividing the body into cubes, and then use induction on #. In fact, the approach
using cubes is enough in the discrete case, as we may assume that we are dealing with sets in the -

dimensional lattice, where considering cubes of side 1 centered in the points of the lattice directly
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gives a body in the n-dimensional real space with the same volume as the number of points of
the discrete structure. However, the proof we shall present here is much simpler, based on the
entropic method.

Proof of Theorem 3.1. Define independent random variables Xy, ..., X;;, X; ranging over the pro-
jection of A to its i-th coordinate, in such a way that each of them is uniform. Clearly, the joint
distribution X = (Xy,...,X;) is uniformly distributed over A. Then, by Han’s inequality and
Lemma 1.2 we have that

n 1 n
log|A| =H(X) < —— Y H(Xy,...,Xi_1, Xi11,.--, Xn) < Y log|Al,

1
n—-145 n—14

whence the result follows by exponentiating. O

Observe that in this way we have obtained a completely elementary proof of a result in projection
theory using the properties of entropy, and the key tool for this is the fact that a uniform random
variable can somehow “represent” a set. This reminds us of the approach we presented in Chapter
2. However, in this setting Ruzsa [25] managed to prove the converse: starting from the Loomis
and Whitney inequality, one can prove Han's inequality. In order to do this we must find a way
to represent a random variable with a set. If the random variable X were uniform, we could use
the same approach as before: the set A = range(X) reflects the distribution of X. But since Han’s
inequality holds for general random variables, we must find a way to build sets that reflect the

distribution of the random variables.

In order to establish such a way to associate a set to a random variable X, consider the following.

First, assume that X assumes only finitely many values (say, range(X) = X, |X| = m), and that its
m

distribution is given by Pr(X = x;) = p; for each x; € X, with Z pi = 1. Assume, furthermore,

i=1
that all the p; are rational. Then, we build a set A C XX in the cartesian product of the range of X,

for a certain k, as follows. For each (y1,...,yx) € X k we include it in A if among the k coordinates
exactly p;k of them are equal to x;, for all i. For this to be possible, we need to take a k such that
pik is an integer for all i, but this can be achieved because there are only finitely many values, and
each of them is rational. In this way, if we take an element of A and pick one of its coordinates
uniformly at random, the probability that it is x; is p;, so we recover the random variable. And A

is the set of all elements of X’* for which this can be done.
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Using Stirling’s formula and the construction for A presented above, we have that

o\
il 27tk ()

~

k) = T m (p)
-1 k
By (E ) ()

(27tk) m k (27tk)
({1) (11, )

= exp <1 log(27tk) — = Zlog pi—k Z pilog Pz) = FH(X)+0(logk)
1 1 i=

( k
pik, pak, ...

18)  |A] =

Nl—

NN
NI

where the last equality is obtained by observing that the random variable X is fixed, so the only
variable is k, and the definition of entropy.

With this construction, one can prove Han’s inequality starting from the Loomis and Whitney
inequality.

Theorem 3.3 (Ruzsa). Theorem 3.1 and Theorem 3.2 are equivalent.

Proof. We already proved the fact that the Loomis and Whitney inequality can be derived from
Han’s inequality, as this is the way in which we proved the Loomis and Whitney inequality. Now
let us see the converse.

Let X = (Xy,...,X,). First, assume that X assumes only finitely many values, each of them with
a rational probability. Let B; be the range of X;, for i € [n], and write X = By X ... x B, for the
range of X. Now build a set A C X* as described above. By (18) we know that log |A| ~ kH(X).

Observe that there is a natural correspondence X* = (B x ... x Bn)k >~ Bk x ... x BX. Then, the
projections 77; of X' defined in Theorem 3.1 naturally induce the projections 7t¥ : X¥ — Bf x ... x
Bf‘ 1 X BF i1 X X Bk. Now we have two “operations” (functionals), the projection and the way
in which we construct a set, and we may build the following diagram with them.

X make set A

Tt J{
Aj
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Observe that this diagram is commutative. Indeed, we have that A is built by taking all those
elements of ¥ such that x € X appears exactly pyk times in its vectorial expression, where
px = Pr(X = x). Then, the projection onto one of the coordinate hyperplanes deletes one of
the coordinates of the elements in the range of X. One may think of each element in A as a ma-
trix with n columns, corresponding to the ranges of the n random variables, and k rows, in such
a way that in the columns, the elements x = (xi,...,x,) appear exactly pyk times. Then, the
projection 71; consists in deleting the i-th column in each of the elements in A, and each element
mi(x) € B x ... x Bk 1 X BZ+1 X ... x BX now appears as many times as it appeared for each of
the possible values of the i-th coordmate, that is, it appears k Z Pr(X = (x1,...,%,)) times.
X;€B;
On the other hand, the projection 77; of X deletes the i-th random variable in the joint distribution.

Then, Pr(m;(X) = (x1,...,Xi_1,Xi11,--.,%n)) = Y_ Pr(X = (x1,...,x4)), so the same value of
X;€B;
k for which pyk is an integer for all x € X also works for their projections. Building now the

set corresponding to 77;(X) gives matrices with n — 1 columns, each corresponding to each B; for
j € [n]\ {i}, and with the same number of rows as before, in such a way that each element appears
kPr(m;j(X) = (x1,...,Xj_1,Xi41,-..,Xn)). But this is exactly the same as above (except maybe for
a reordering of the rows).

As a consequence, we have that log |A;| = kH(7;(X)) + O(logk) by (18). Now, by Theorem 3.1
we have that

" n
A <TTlAl = (n—1)log|A| < ) log A
i=1 =1

= (n—1) [kH(X) + O(logk)] i kH(7t;(X)) + O(logk)]
=1

= (n—1)kH(X <kiH (i(X)) + O(log k)
i=1

n
= (n—1H(X) < ) H(m(X +O<101%k).
i=1

Now, if we let k go to infinity (when building the set A, we may take the smallest k such that pyk
is integer for all x, and then take multiples of this k), the asymptotic term goes to zero. Since the
other two terms do not depend on k, this becomes Han’s inequality.

A standard limiting argument extends the above argument to the general case of real probabilities.
O

With this, we have that Han’s inequality and the Loomis and Whitney theorem are not only analo-

gous in their formulation, but actually equivalent. Ruzsa took this idea even further, and managed
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to prove an equivalence theorem between sizes of linear functions of sets restricted to graphs, and
entropy of linear functions of random variables. First, let us write a more general version of Defi-
nition 2.2

Definition 3.1. Let A and B be two finite sets in an additive group G, and let I be a bipartite graph
I'(A, B). Given any function f on two variables, we say that the partial function of A and B along T
is

f()={f(a,b):a€ A beB,a~rb}.

Using this notation, Ruzsa’s equivalence theorem can be stated as follows.

Theorem 3.4 (Ruzsa). Let l,1y,...,1, be linear functions in two variables with integer coefficients. Let
&1, ..., 0y be positive real numbers. Then, the following are equivalent:

(i) For every pair (A, B) of finite sets in a torsionfree commutative group and a bipartite graph T (A, B),

uwnsﬁMGWﬂ

(ii) (i) holds when A and B are sets of integers.
(iii) For every pair of (not necessarily independent) random variables X and Y taking values in a torsionfree
commutative group such that the entropy of each 1;(X,Y) is finite, the entropy of (X, Y) satisfies

H(I(X,Y)) < Y wH(L(X, ).
i=1

(iv) (iii) holds for integer-valued random variables.

One must note that linear functions in two variables restricted to a bipartite graph are the same as
linear projections. Indeed, the set of edges of the graph can be written as E = {(a,b) :a € A,b €
B,a ~r b} C A x B, and then f(I') = f(E). With this fact in mind, we can rewrite Theorem 3.4 in
terms of subsets of Cartesian products of groups.

Theorem 3.5 (Ruzsa). Let l,1y,...,1, be linear functions in two variables with integer coefficients. Let
&1, ..., 0y be positive real numbers. Then, the following are equivalent:

(i) For every torsionfree commutative group G, for any finite set A C G x G we have that
n
(A < TTH(A)"
i=1

(ii) (i) holds when taking G = Z.
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(iii) For every pair of (not necessarily independent) random variables X and Y taking values in a torsionfree
commutative group such that the entropy of each 1;(X,Y) is finite, the entropy of (X, Y') satisfies

H(I(X,Y)) < iaiﬂai(m)).

(iv) (iii) holds for integer-valued random variables.

Proof. We trivially have that (i) implies (ii) and (iii) implies (iv), as they are particular cases of the
more general statements (i) and (iii), respectively. Now let us prove a few other implications.

First we prove that (ii) implies (i). To do so, replace the group G by the group H generated by
all the coordinates of A. We observe that H is a subgroup of G, and that it is finitely generated.
It is known that finitely generated torsionfree groups are isomorphic to Z¢, for some integer d.
Now take a linear map Z? — Z that separates the images enough; for example, one may take
(x1,...,%3) — x1 +kxa + ...+ k% lx,, for a large enough integer k. With the composition of the
isomorphism and this linear function, we map A onto A’ C Z x Z. Finally, we can make k large
enough so that |I(A”)| = |I(A)| and |[;(A")| = |I;(A)| for all i. Then,

1(4)] = 1(A)] < f{vim’)!“" - ﬁlim)w

Next, we show that (iv) implies (ii). For each z € I(A) choose a pair (x,y) € A such that!(x,y) =z

(that is, a representative of the preimage of z by I). Define a random variable (X,Y) such that

Pr(X =xY =y) = l(fﬁﬁl for pairs (x,y) as defined above, and Pr(X = x,Y = y) = 0 ev-
erywhere else. With this, we have that /(X,Y) is distributed uniformly over /(A), and using the

properties of entropy we have
n n n
log|[l(A)| = H(I(X,Y)) < }_aiH(L(X,Y)) < ) a;log li(A)] =log [ T|li(A)[,
i=1 i=1 i=1

where the last inequality comes from the fact that [;(range(X), range(Y)) C [;(A), and the result
follows by exponentiating.

Finally, we show that (i) implies (iii). For this, first assume that the random variable (X, Y) assumes
only finitely many values, and that each of these occurs with rational probability. Now build a set
A C (G x G)F as described before, so log |A| = kH(X,Y) + O(logk). We have a natural bijection
(G x G)k = GF x GF. Let A’ be the image of A through this map. Then we can build the following
diagram (in which we can consider  to be represented among the [;).
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( X, Y ) make set Al
L
(X, Y) P (A)

As in the proof of Theorem 3.3, the diagram is commutative. This is proved in the same way as
before; we omit the details here. As a consequence, log |I;(A")| = kKH(I;(X,Y)) + O(logk) by (18).
Using (i) we have

[H(A)] < lilli(A)I“i = log|l(A)] < é"‘i [1i(A)]

5

Il
—_

— KH(I(X,Y)) + O(logk) < kY a;H(I;(X,Y)) + O(log k)

1

= H((X,Y)) < me(li(x,Y)) +0 (lofk),
i=1

which gives the desired result when letting k tend to infinity. As before, the passage to the general
case is a routine limiting argument. ad

Let us briefly present an application of this equivalence theorem. The following result, due to Katz
and Tao [15], is a well-known inequality relating the size of a sumset and a difference set along a
graph T

Theorem 3.6. Let A and B be two sets in a commutative torsionfree group, and let I be a bipartite graph
on them. Then,

r 2 T 1
|4 = B| < (|4][B])3|A + B|2.
Although we do not present its proof, we can easily obtain its entropy analogue, as presented by

Ruzsa.

Theorem 3.7. Let X and Y be two (not necessarily independent) discrete random variables with values in
a torsionfree commutative group, and such that their entropies and the entropy of their sum are finite. Then,
the entropy of X — Y is also finite and satisfies

H(X-Y) < %(H(X) +H(Y)) + %H(X +Y).

Proof. The result follows directly from Theorem 3.6 by applying Theorem 3.4. O

Observe that the graph I' along which the set operations are calculated corresponds to the non-
independence of the random variables in this entropic result.
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Recently, Gyarmati, Matolcsi and Ruzsa [12] proved an analogue of Han’s inequality and the
Loomis and Whitney theorem in the theory of set addition. They did so by combining the pro-
jection inequality of Loomis and Whitney with a lexicographic ordering. We present this result
here.

Theorem 3.8 (Gyarmati, Matolcsi, Ruzsa). Let By, ..., B, be finite nonempty sets in a commutative
group. Let S =By +...+Byand S; =By + ...+ Bj_1 + Bjy1 + ... + By. Then,

n
st <TTlsil-
i=1

Proof. First, list the elements of the sets in some order, say, By = {bi1,b12,..., b1, },..., By =
{bn1, b2, ..., bus, }. For each element s € S consider the decomposition s = ay;, + ap;, + ... + ap;,
such that the sequence of second indices of the summands (i1, 7, . . ., i) is minimal in lexicographi-
cal order. Now, define a function ¢ : S — By X ... X B, by ¢(s) = (al,-l,aziz, ..+, 0y;, ). This function
is well defined, and its image is a set of “representatives” of each possible sum. Say that the image
of Sby ¢ is A C By x ... X By; we obviously have that |S| = |A|. Now define A; = 71;(A) as in the
statement of Theorem 3.1. Its application yields

n
A <TTlAl
i=1

so now it is enough to see that |A;| < |S;].

Assume there are two elements z,z’ € Aj, with coordinates z = (@iy, -y Bj1i; 4 B4 lifsys s Ani,)

! __ /
and z’ = (all’i’ A ,a]'_li;_il, aj+1i],.+1/ ey ﬂm’;), such that z 7£ z' and

ay, + ...+ Aj—1ij_4 + a4

i1 +...+ﬂm'n = alia —|—...+ﬂ]'711'}71 +aj+1i;+1 ... +ﬂm'£l.

We may assume without loss of generality that (i1, ..., 1441, -, in) < (#,..., i;_l, i;-+1, e i)

in lexicographical order. Now, since z’ € A;, there must exist elements u € S and d € B; such that
W=y ey +d+aj+1i;+1 +...Fay;, and @(u) = (ayy, . '-rajflz‘;flfd/”jJrli}Hr e pit) €
A. But then we also have that u = ay;, +...+ aj-1i , + d+ Aj1ip, + -t iy and, by the hypoth-
esis about the lexicographical order, (ﬂlil/-~-/ﬂj—1ij,1rdr aj+1ij+1/-~-/ﬂnin) < (”1i3r--~r“j—1i}7lfdr
i, - sy ), S0 @(u) # (ayy,. ..,ajfll-;_l,d, i, - .-,y ), and we reach a contradiction.
With this, the sum of the coordinates of each element in Aj is distinct, but since these coordinates
belong to By,...,Bj1,Bj;1,..., By, respectively, we have that [Aj| < [By + ...+ Bj_1 + Bj;1 +
...+ B,| and the proof is complete. O
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Notice that Theorem 3.8 is a particular case of Theorem 2.10. Indeed, consider the case when
j = h — 1 in the statement of Theorem 2.10. In such a case,

e (A B T (L
Bigl = 14+ Byl < \IT—z— ) 141 = (TTBp!)

i=1
All the inequalities follow either from the statement of the theorem or from trivial estimates. We
recover Theorem 3.8 by taking the (h — 1)-th power, so this is a Pliinnecke-type inequality. How-
ever, it is not clear that one can recover this particular case of Theorem 2.10 from Theorem 3.8.

Now one might want to try to prove one of the previous Theorem 3.1 or Theorem 3.2 starting
from here, and in such a way obtain an equivalence among all three. However, this has not been
achieved so far, and it seems likely that is cannot be done. The reason for this is the fact that,
during the last proof, we have only considered subsets of the projections, sorted in lexicographical
order. In this way we have reduced the cardinalities of the sets, so it seems unlikely that one can
work the other way around.

One may also wonder whether there is an analogue of this theorem in the entropy setting (there is
Han’s inequality as an analogue, but we refer to an analogue using entropies of sums of random
variables). If there was, it may be stated as follows: given n independent discrete random variables
Xy,..., X, we have

n
(n—1H(Xy,...,Xy) < ZH(Xl +.o X+ X +...+Xn).
i=1
4.

This problem will be adressed in section 3.

3.2. Shearer’s inequality

From here on, we shall use the more compact notations introduced in Chapter 1 for sumsets and
random variables. For projections, we introduce a similar notation, corresponding to the one of
random variables: given a set A in the Cartesian product of n spaces, for any subset of indices
S C [n] we write Ag to denote the projection of A onto the coordinates indexed by S. In particular,
A = Ap,). In general, we have that writing S as a subscript will stand for the projection onto the
coordinates indexed by S, while if this subscript is accompanied by a ‘+’ sign as a superscript,
then we refer to the sum of the coordinates indexed by S. Using this notation, we can write the
main theorems from section 3.1 as follows:

e Theorem 3.1: \A[n]|”7l <TT1App -
i=1
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-

—_

e Theorem 3.2: (n — 1) H(X,;) < ) H(X\iy)-

i=
n
e Theorem 3.8: \A[*;l””_l < 111|AB'1]\{1.}|.

Generalizations of these results came by using what are known as covers.

Definition 3.2. A k-cover is a multiset S of subsets of [1] (this may be noted as S C 21y such that
each element i € [n] appears in at least k of the members of S. We say that a k-cover is uniform if
every element i € [n] appears in exactly k members of S. When we have a 1-cover, we will simply

call it a cover.

For example, the multiset {{i} : i € [n]} is a trivial cover of [n], and with it one has the trivial

bounds .
Ayl < TTlAil
i=1
for projections, or

H(X,,) < éH(Xz-)

for entropies. A different example is that of the multiset {[n] \ {i} : i € [n]}, which gives an
(n — 1)-cover. This cover corresponds to the statements of the theorems from section 3.1. It is
appropriate then to wonder if similar inequalities can be obtained for different covers of [n].

The first generalization of Han’s inequality came soon after the original result, when Shearer [6]
proved the following.

Theorem 3.9 (Shearer). Let X = (Xq,..., Xn) be the joint distribution of n discrete random variables.
If § is a uniform k-cover of [n], then

kH(X) < ) H(Xs).
Ses

Proof. Take a member S € S, and say that S = {ij,...,i;}, ordered in such a way that i; < i <

... < i;. We can use the chain rule for entropy (Lemma 1.5) to write
t t
H(Xs) = H(X;, ..., X)) = ) H(X [ Xy, Xi ) > Z%H(Xij|X1,X2,...,Xij_1),
=

where the inequality comes from the dropping condition (Lemma 1.6). Now, summing over all
S € § we have that

n
Y H(Xg) > kY H(X|Xy,...,Xi—1) = kH(Xq,..., Xy),
Ses i=1
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where the factor k in the equality appears because S is a uniform k-cover, that is, each element
i € [n] appears exactly k times, and the inequality comes from a second use of the chain rule. O

The proof is, indeed, very similar to that of Han’s inequality, so we observe that it is a very direct
generalization. Notice that, in fact, it is enough to have a k-cover, not necessarily uniform. This is a
consecuence of the fact that H(X) is monotone increasing on S, so if we make any of the members
of S bigger we are only incresing the right hand side of the inequality.

The generalization of the projection inequality of Loomis and Whitney is known as the uniform
cover inequality and, as happened before, can be proved directly using its entropy analogue.

Theorem 3.10 (Uniform cover inequality). Let n > 2, let By, ..., B, be arbitrary finite sets, and let
A C By X ... X By beasubset of their Cartesian product. If S is a uniform k-cover of [n], then

AR < TT|As]-
ses

Proof. Define a random variable X = (Xj, ..., X;;) with a uniform distribution over A. By Shearer’s

inequality,
klog|A] = kH(X) < ) H(Xs) < ) log|As],
Ses Ses
whence the statement follows by exponentiating. O

As in the case of Shearer’s inequality, notice that it is enough to have a k-cover. Indeed, given
any uniform k-cover S, by adding more elements to its members one simply increases the right
hand side of the inequality. The reason why this result is known as the uniform cover inequality
comes from its original formulation for bodies, where uniformity is needed because the size of a
projection with a set of indices S may be smaller than one, and by duplicating this set one can
make the right hand side product smaller than any positive number.

Using the same approach as Ruzsa, Balister and Bollobas [1] proved that the uniform cover in-
equality and Shearer’s inequality are in fact equivalent.

Theorem 3.11. Theorem 3.9 and Theorem 3.10 are equivalent.

Proof. The fact that Shearer’s inequality implies the uniform cover inequality is trivial, as this is
how we showed the second statement. We now prove the converse.

Let X = (Xy,...,Xy) be the joint distribution of #n random variables, assuming X; takes values
in B;. First, assume that the random variable takes only finitely many values, each of them with
a rational probability. Take a value of k such that kp, € IN for all x € range(X), and build the
set A C XK as described in the previous section, so that log |A| = KH(X) + O(logk) by (18).
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Now, given any set of indices S C [n], we may define the projection 75 as the projection onto the
coordinates indexed by S. For A C (By x ... x B, )k = B’lC x ... x BX we consider the projection n’s‘

analogous to that of the proof of Theorem 3.3. In such a way, we have the diagram

X make set A

which, again, is commutative, as we already saw. Then, log|Ag| = kH(Xs) + O(logk) for all
S C [n]. By the uniform cover inequality, given a k-cover S of [n] we have that
|A[F < TT 1As| = klog|A| <k ) log|As]
Ses Ses§

= kH(X) 4+ O(logk) < k )_ H(Xs) + O(logk)
seS§
logk
H(X) < H(X o\—71,
— 100 < TH) +0 ()

whence the result follows by letting k tend to infinity.
The passage to the general case follows from a routine limiting argument. O

Finally, we turn to the sumset analogue of Shearer’s inequality and the uniform cover inequality.
As happened with the other results in this section, the generalization follows in a very natural
way, and using the same type of arguments.

Theorem 3.12. Let By, ..., B, be finite nonempty sets in an additive group. Given a uniform k-cover S of
[n], we have

Bl < TT 1B,
Ses

Proof. Again, we first give an order to the elements of the sets, and we embed B[Z] into B =
By X ... X B, by mapping s € B[J;] to the minimal element (in lexicographical order) of B whose
coordinates add up to s. Let this embedding be noted as ¢, and call A = (p(B[J;]) C By X...XBy.
In more generality, define maps ¢g : B{ — Bg for each S C [n] (again, by taking each element to
the lexicographically minimal whose sum of coordinates gives the element). Note that |B[Z] | = |A]
and, in general, |BS| = |@s(B{)|. Now let S be a uniform k-cover of [1] and apply Theorem 3.10
to this set A, which results in

n
[A[F < TT |As]-
seS
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Finally, we want to see that |Ag| < |B{|.

It is enough to see that As C ¢s(BY), as [B| = |ps(BS)|. Indeed, assume S = {iy,...,ig}

and take z = (z1,...,2z4) € A, so that it is the lexicographically minimal element of B whose

coordinates sum up to some s € B[fl]. Then, (zj, .. 2 S‘) must also be lexicographically minimal

among those elements of Bs whose coordinates have the same sum as this one. Indeed, assume
!/

there was a lexicographically smaller element (zfl, ey Zim) with the same sum. Then, taking z; =

n n
z; foralli ¢ S, we would have that Z zZ; = Z zibut (z},...,2),) < (z1,...,2zn), which contradicts
i=1 i=1
the fact that (z1,...,2z,) € A. |

As we did with Theorem 3.8, we may now want to compare this result to Theorem 2.10. We can
use the same arguments as before to obtain a weaker bound from Theorem 2.10. If we are given
the multiset of all sets of size k, then

1 1
|A"+BL|\ oD )
Byl < 14"+ B)| < <H|A,|S A" < | TT 1B
SeS Ses
n—1
— |B[‘;]|(k—1) < H |B§'|
Ses

1
But the multiset of all sets of size k results in a uniform )-cover, so Theorem 3.12 gives the

n J—

k—1
same bound as above. One must note that the bound is slightly weaker than that of Theorem 2.10
but, on the other hand, it extends the result to general uniform k-covers. It is reasonable to argue,

then, that this entropic result is more general than the former.

As happened with Shearer’s inequality and the uniform cover lemma, uniformity is not needed
in Theorem 3.12, as each of the sets has size at least 1. Also, this again gives rise to the following
question: given n independent random variables Xj, ..., X, and a (uniform) k-cover S of [n], does
+ +
KH(X[) < ) H(X{)
Ses

hold? This, again, will be answered in section 3.4.



3. Entropy, projections and sumsets 53

3.3. Compressions and fractional covers

3.3.1. Madiman and Tetali’s work

Recently, Madiman and Tetali [20] strengthened Shearer’s inequality by introducing conditional
entropies. Furthermore, they were able to use their approach to obtain a lower bound as well.
Their result may be stated as follows.

Theorem 3.13 (Madiman, Tetali). Let X = (X,..., X,) be a sequence of n random variables such that
H(X) is finite, and let S be a uniform k-cover of [n|. For each S C [n] with minimal element a > 1 and
maximal element b < n, define S, = {1,...,a—1}and S* ={i ¢ S:1 <i < b—1}. Then,

Y H(Xs|Xs+) <kH(X) < ) H(Xs|Xs,).
Ses SeS

In fact, what they proved is a stronger result, from which Theorem 3.13 follows as a simple corol-
lary. In order to prove this result, we must first provide a generalization of the definition of covers

given in section 3.2.

Definition 3.3. Consider a multiset S of subsets of [n]. A functiona : S — R such thata(S) = ag
is called a fractional cover if for each i € [n] we have that
Z ag > 1.
SeS8:ies
Similarly, we say that a function § : S — R4 with B(S) = Bg is called a fractional packing if for each
i € [n] we have that
ag < 1.
SeS8:ies
Finally, a function 7 : S — R4 with y(S) = s is called a fractional partition if for each i € [n],

Z 0(521.

SeS:ies

In particular, observe that if a collection of subsets of [n], S, is a cover, then the trivial function
taking wg = 1 for all S € S is a fractional cover. Furthermore, if S is a uniform k-cover of [n], then
taking ag = } for every S € S results in a fractional partition of [n] using S.

With this, we may already prove the more general result which follows.

Theorem 3.14. Let X = (Xy,..., Xn) be a sequence of n random variables such that H(X) is finite, and
consider a collection S of subsets of [n]. For each S C [n] with minimal element a > 1 and maximal element
b <mn, defineS. ={1,...,a—1}and S* = {i ¢ S: 1 <i < b—1}. Given any fractional covering «,
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fractional packing B, and fractional partition -y, the following two statements hold:

Y BsH(Xs|Xs+) < H(Xp,)) < ) asH(Xs|Xs,),

Ses SeS
Y rsH(Xs|Xs) <H(Xy) < ) vsH(Xs|Xs,).
SeS SeS

Proof. We first prove the second statement, and see that the proof of the first is done in the same
way. Consider the chain rule given in Lemma 1.5. If we consider a further conditioning in both
sides of the equality, it still holds (we may think of this as applying the chain rule to a random
variable which is already conditioned). Hence, we may write

H(Xs|Xs.) = ) H(Xj[Xsqj-1), Xs,)-

jes
With this,
Y 1sH(Xs[Xs,) = Y vs ) H(Xj|Xgnj-1), Xs.)
SeS seS§S  jes
> ) s ) H(X1X|jq)
se§  jes
n
= Y H(XjIXjj_q) Y vsljes

Ses

. —.
I" Sl
—

H(X;|X[j_1) = H(X}y),
1

J
where the inequality comes from the dropping condition Lemma 1.6, the next equality comes from
interchanging the sums, the next from the definition of a fractional packing, and the last, from the
chain rule (Lemma 1.5). Thus finishes the proof of the upper bound. Notice that, if we had a
fractional covering «, the second to last equality would be an inequality, and that would be the
proof for the upper bound in the first expression.

We now turn our attention to the lower bound. It is proved in a similar way. As before, from the

chain rule we may write

H(Xs|Xs) = ) H(Xj Xgn[j-1), Xs+),
jes
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and using this,

Y rsH(Xs|Xs) = ) vs Y H(Xj|Xgn 1), Xs+)

Ses seS  jes

<Y rs Y H(X[Xj_q)
Ses jes
n

=Y H(X;|X|i_1)) Y rsljes
j=1 Ses
n

=Y H(Xj|X}j_q) = H(X,),
=1

where each of the inequalities and equalities follow in the same way as before, completing the
proof of the lower bound. In the case of a fractional packing, we again have that one more in-
equality appears in the chain of inequalities. O

In fact, Madiman and Tetali worked in a more general setting than this. Instead of working with
entropy, they work with a function f, under the assumption that f(2) = 0 and that f is submod-
ular. With these two conditions, one can prove that many of the basic properties of H, such as the
chain rule or the dropping condition, actually hold in a more general setting, so one can obtain
results for any function for which the conditions hold. As the topic of this thesis is the application
of entropy, we have only showed this particular case.

Observe that, indeed, Theorem 3.13 follows from Theorem 3.14 by considering that the uniform
k-cover gives a fractional partition when taking s = ¢ forall S € S.

3.3.2. Balister and Bollobéas’s work

Balister and Bollobds [1] obtained a further generalization of Theorem 3.13, and their approach
turned out to be rather simple: one simply needs to define a certain poset, and use basic properties
of entropy. This poset is given by the definition of compressions of multisets.

Definition 3.4. Let M, ,, be the family of multisets of nonempty subsets of [n] with a total of m
elements (the sum of the number of elements in each set in each multiset of the family is m). Given
a multiset S = {S1,...,5;} € M, with non-nested sets S; and S; (meaning that neither S; C S;
nor S; C §;), let 8’ = 5(ij) be obtained by replacing S; and S; by S; U S; and 5; N S;, keeping only
S;US; when §;N'S; = &. We then say that S’ is an elementary compression of S. The result of a
sequence of elementary compressions is called a compression.
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Note that the need for sets S; and S; in the definition to be non-nested comes from the fact that we
want S to be different from S’. If one set was nested in the other, then their union and intersection
would remain the same as the original sets.

Now let us define a partial order on M,, , by setting S > 7 when 7 is a compression of S. The
fact that this defines a partial order follows from the fact that, if S’ is an elementary compression

of S, then
Y IsP< Y IsP
Ses Ses’

One can notice that for every multiset S € M, ;; there exists a unique minimal multiset S ¢ domi-
nated by S. This minimal multiset consists of the sets Sf = {i € [n] : i lies in at least j of the sets S €
S}. As it turns out, S is the unique multiset that is totally ordered by inclusion and has the same

multiset union as S. We encourage the reader to check these simple facts.

Example 3.1. Consider S = {{1,2},{1,3,4},{2,4}} € Myy. An elementary compression with
the first two sets results in 8" = {{1,2,3,4},{1},{2,4}}. A second elementary compression gives
8" =1{{1,2,3,4},{1,2,4}}. No more elementary compressions are possible, so S =g,

With only this, we may already prove a very strong generalization of Shearer’s inequality.

Theorem 3.15 (Balister, Bollobas). Let X = (X1,..., X;) be a sequence of random variables with finite
entropy, and let S and T be finite multisets of subsets of [n]. If S > T, then

Y H(Xs) > Y H(X7).

Ses TeT
Proof. 1t is enough to check that the inequality holds for an elementary compression. Assume that
§={S1,...,5}and T = §;;) for some i # j. Then, the statement is equivalent to
H(st‘) + H(XS]) Z H(XS,'US]‘) + H(Xsiﬁsj‘)r
which follows by submodularity (Lemma 1.7). O

With this, we have a very simple proof of a very powerful result. From here, one may obtain many
others.

Example 3.2. Consider the same multiset from Example 3.1. If we have four random variables
X1, X2, X3 and X4, applying Theorem 3.15 to this multiset and its compressions yields

H(X1, Xp) + H(X1, X3, Xa) + H(X2, X4) > H(Xq, X2, X3, Xa) + H(X1) + H(X2, X4)
> H(Xy, Xp, X3, X4) +H(Xq, X3, Xy).
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One can also easily derive Shearer’s inequality from this result. Indeed, consider a uniform k-cover
S of [n]. Then, it is easy to check that S* is composed of k copies of [1], so a direct application of
the theorem yields

kH(X) < ) H(Xs).
ses
Even more, we can easily derive Theorem 3.13.

Proof of Theorem 3.13. By Lemma 1.3 we know that H(Xs|X71) = H(Xsur) — H(Xr). Using this,
we can rewrite each of the inequalities in the statement. The upper bound becomes
kKH(X)+ ) H(Xg,) < ) H(Xgus,)-
Ses Ses
Now we observe that C; = k{[n]} U{S. : S € S} is a totally ordered multiset (by inclusion).
Furthermore, since S is a uniform k-cover of [n], it is clear that it has the same multiset union as
C,={SUS,:5€S8},50C; = Cg, and the inequality holds by Theorem 3.15.

Similarly, the lower bound can be rewritten as
KH(X)+ Y H(Xg) > Y H(Xsus).
seS§ seSs
Here, we have that C3 = {SUS* : S € S} is a totally ordered multiset. Indeed, if we denote
bs = max{i : i € S}, we have that C3 = {[bs] : S € S}. Furthermore, it has the same multiset
union as Cy = k{[n]} U{S*: S € S§},s0C3 = Cﬁ, and the inequality follows by Theorem 3.15. O

It is important to note, however, that this general result in entropy theory does no longer have an
analogue with projections. If it did, it would be stated along the lines Let By, ..., B, be arbitrary
finite sets, and let A C By X ... X By, be a subset of their Cartesian product. Let S and T be finite multisets

of subsets of [n]. If S > T, then
I[T1Asl > T 1Az

Ses TeT
However, there are simple counterexamples for this. For instance, let A = {(0,0,0),(1,0,0),

(0,1,0),(1,1,0),(0,0,1)} C Z°. Itis clear that |A| = 5, [A1] = |As] = |As] = 2, [Apay| = 4,
‘A{1,3}| = |A{2’3}| = 3. Then we have that 10 = |AHA3| > |A1/3 |A2’3| =9, but {{1,2,3}, {3}} <
{{2,3},{1,3}}, which contradicts the statement.

Along with Theorem 3.12, Balister and Bollobds also presented a generalization of the sumset
theorem, in which they take subsets of the sumsets. Their result is as follows.

Theorem 3.16. Let A, By, ..., B, be finite sets in an abelian group. Consider a set D C Ba;]. Then,

n
|A+D|" < D" 'T]|A+Bj|.
i=1
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Proof. Call B,;1 = A, and for each S C [n + 1] define the map ¢ as in the proof of Theorem 3.12
(set of lexicographically minimal representatives of BJ). Let A’ = Png1)(D + Byy1). In the same
way as in the proof of Theorem 3.12, one can check that |A’[n] | <|D| and |A{{i,n+1}| < |B; + Bj11].
Now, consider a uniform n-cover given by taking the pairs {1,n +1},{2,n +1},...,{n,n + 1},

and n — 1 copies of the set [1n]. Applying Theorem 3.10 yields the desired inequality. O

It is clear that the covers that are considered in this case are much more restrictive than those of
the more general theorem. It is natural to wonder whether this can be extended to more general

covers. We shall answer this question in section 3.4.

3.4. Partition-determined functions

Recently, Madiman, Marcus and Tetali published a paper [19] in which they present a unifying
theory for most of the results presented in this chapter. Furthermore, their approach allows them
to obtain several very general results in different contexts as simple corollaries. For instance, the
very general Theorem 3.15 of Balister and Bollobas will turn out to be a direct corollary of these
new results, and we will see that their proofs are also elementary. We now start with all the due
definitions in order to present this new theory; several of them correspond to notation that we
have already been using, and are simply restated to remind the reader.

3.4.1. Definitions and examples

Let Ay,..., A, be finite sets. We may define A = A = A1 x...x Ay Forany S C [n] we

write A = [[A; = ms(A) for the projection of A onto the coordinates indexed by S. This
i€S

same projection 715 : At — Ag can be defined for every S C T C [n] in the natural way: if

S = {i1,...,ijs)} (assume the indices are ordered increasingly), for each a € Ar let ms(a) =

(ail,...,ai‘s‘).

Write Q(A1, Ay, ..., Ay) to denote the space that is the disjoint union of the spaces Ag correspond-

ing to non-empty S C [n]. This can be written as

Q(A1, Az, ..., An) = || As.
2#5C[n]
Let B be any space and consider a function f : Q(A;,..., A,) — B. For any non-empty S C [n], we
define fs : As — B as the restriction of f to the inputs that come from Ag. When given S C T C [n]
and a € T, we abuse notation and write fs(a) to mean fg(7g(a)). The reader may think of this
as Q(Ay, ..., Ay) = Ay, since, for most applications, we will consider functions that are defined
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in the same way in each of the projections Ag of the bigger space A. However, it is interesting to
write the results in the more general way.

Definition 3.5. Consider S C [n], and let S = [n] \ S. We say that a function f defined over
Q(Ay, ..., Apn) is partition-determined with respect to S if for every x,y € Q(Ay,...,A,) we have
that f(x) = f(y) whenever fs(x) = fs(y) and fs5(x) = fs(y). Informally, one may say that
f is partition-determined with respect to S if fs(x) and fg(x) uniquely determine f(x). If we
have a collection of subsets S C 2], we say that f is partition-determined with respect to S if it is
partition-determined with respect to every S € S. Finally, we say that f is partition-determined if it
is partition-determined with respect to 2lnl,

Remark 3.1. It is reasonable to wonder what happens when defining f, which corresponds to
taking S = [n] and considering its complement. It is natural to take the projection, considering
the full notation, to write fz(x) = f(7z(x)), which does not have any actual arguments. Hence,
it should be a constant function. Later we will see that this is indeed useful when considering

entropies, in which case we will want this function to bring no information.
Consider the following example.

Example 3.3. Let A} = Ay =...=A, ={0,1,...,9} (so we can think of A|,; as numbers with
digits), and consider f : Q(A1,..., Ay) — Z to compute the sum of the digits. It is clear that, if we
have the sum of a certain set of digits, and the sum of all the others, the overall sum is computed
as the sum of these two. Hence, the sum of the digits is a partition-determined function.

There are many more examples of partition-determined functions. For instance, we present two
which we have been using so far: projections and sumsets.

Lemma 3.17. Let V be a vector space over the reals with basis vectors {vy,...,v,}. Let A1,..., Ay CR
be sets of real numbers, and define a function f : Q(A1,...,An) — V by
fs(a) =) mi(a)v;
=

for every S C [n]. Then, f is partition-determined.

Proof. Consider a subset T C [1] and take a € Ar. Consider a collection of subsets S C 2"/, For
any S € S we have that

fla) =Y mi(a)o; = Y, ma)oi+ )Y m(a)v; = fs(a)+ fs(a),

icT iesSNT ieSNT

so knowing fs(a) and fg(a) uniquely determines f(a). This can be done for any collection S. O
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Lemma 3.18. Let (G, +) be an additive group, and let A4, ..., Ay, C G be finite. Let cq,...,cn € Z.
Define a function f : Q(Ay,..., An) = G by
fs(a) =Y cimi(a)
ieS

for every S C [n]. Then, f is partition-determined.

Proof. It works in the same way as before. Consider a subset T C [n] and take ¢ € Ar, and
consider a collection of subsets S C 2[". For any S € S we have that
fla) =) cmi(a) =) cm(a)+ ), cmi(a) = fs(a) + fs(a),
i€T ieSNT ieSNT

so knowing fs(a) and fq(a) uniquely determines f(a). O
The following is an example of a function that is not partition-determined.

Example 3.4. As in Example 3.3, consider the sets Ay = Ay = ... = A, = {0,1,...,9}. Now, the
function f computes the number of distinct digits of any element in Q(A1, ..., A,). This function
is clearly not partition-determined. For instance, assume n =4, S = {1,2},and a = (1,0,1,2) €
A[n}. It is clear that fs(a) = 2 and fg(a) = 2 while f(a) = 3. However, for a’ = (1,0,1,0) and
a”" = (1,0,2,3) we have the same values for fs and fg, while f(a’) =2 and f(a") = 4.

Partition determined functions can have an even stronger property.

Definition 3.6. We say that f : Q(Ay,..., An) — B is strongly partition-determined if it is partition-
determined and for any @ € A, and disjoint sets 5,T C [n] one has that fsyr(a) and fr(a)
completely determine fg(a).

For example, the function defined in Example 3.3 is strongly partition-determined. So are the
functions defined in Lemma 3.17 and Lemma 3.18.

Madiman, Marcus and Tetali were able to prove several entropic results for these partition-determined
functions. From them, they obtain several results for sums, projections, and others, as corollaries

of the general results they obtain, bounding the cardinalities of compound sets.

Definition 3.7. A compound set is a set of the form {f(ay,...,a,) : a1 € Ay,...,a, € Ay}, where
the sets Ay, ..., A, are subsets of an appropriate algebraic structure so that f is well defined. This
compound set is denoted as f(Aj1,..., An).

Obviously, a similar notation can be used when considering random variables. The image in this
case is not a set, but a new random variable, which we may write as f(X3, ..., X,). Similarly, we
would have fs(Xj, ..., X,) tobe a random variable for each S C [n]. For ease of notation, however,
we will usually note this random variable simply as fs.
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3.4.2. General results

Once the definitions have been established, one can obtain several entropy inequalities in the very
general setting of partition-determined functions. In particular, we shall prove three very strong

results. We first start with a useful lemma.

Lemma 3.19. Suppose that Aj, ..., Ay are finite sets, and consider a partition-determined function f :
Q(A;1,...,An) — B, where B is any space. Let Xy, ..., Xy be random variables such that X; ranges over
A;. Then, for any disjoint sets S, T C [n],

I(fsur; fr) > H(fsur) — H(fs)

holds, with equality if f is strongly partition-determined and the variables X1, . .., X, are independent.

Proof. Since conditioning reduces entropy (Lemma 1.6), we have that

H(fsur) — H(fs) < H(fsur) — H(fs|fr)-

Since f is partition-determined, we have that fsyr = ¢(fs, fr) for some function ¢. Then, by the
data processing inequality (Lemma 1.10) and a trivial property of entropy we have that

H(fs|fr) = H(fs, frlfr) > H(fsurlfr)-

Substituting this above readily yields the desired inequality, by the definition (6) of mutual in-
formation. For the case of equality, observe that we have equality in the first inequality when
the random variables are independent, and equality in the second when the function is strongly
partition-determined (in such a case, the function ¢ corresponds to a bijection, so no information

is lost and the entropy remains the same). O

We can now prove a submodularity result, in the same spirit as Lemma 1.7, for partition-determined
functions. This is a simple result that follows from the previous lemma and other basic properties

of mutual information and entropy.

Theorem 3.20 (Submodularity for strongly partition-determined functions). Let A;,..., A, be
finite sets, and take a strongly partition-determined function f : Q(A1,..., Ay) — B. Let Xq,..., X, be
independent random variables, with X; taking values in A;. Then, for any nonempty sets S, T C [n],

H(fsur) + H(fsnr) < H(fs) +H(fr).

Proof. First of all, notice that it is enough to prove that the statement holds when n = 3. This is
so because any other case can be written using only three random variables, considering each of
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them as a joint distribution of several others. For this particular case we have that

H(frz) + Hfusy) — H(fuas) — B(fy) = [H( frizy) — H(f{l})} - [H(f{l,z,s}> - H(f{1,3}>]
=1(fr2p fray) — Wfp3y fray)s

where the last equality comes from Lemma 3.19. We want to see that this quantity is nonnegative.
Indeed, we have that

19 Wfpupsy fioy) < Wfaoy fiay fioy) = Wfaoy fioy) + Wy froy frey) = ey fizy),

where the inequality comes from the fact that f is partition determined and the data processing
inequality, the first equality corresponds to (7), and the second comes as a consequence of the
independence of the random variables. The result follows by reordering the terms. O

Remark 3.2. Here we realise that we must define H(fy) for the case when S and T are disjoint.
Corresponding to what we said in Remark 3.1, we have that this entropy is zero, which is what we
needed to enssure that the above statement makes sense.

Notice that Lemma 1.7 corresponds to the case when f is the identity function (the projection to
the coordinates indexed by S and T).

The next result is stated in a very similar way to Theorem 3.15. In fact, it is its straightforward
generalization for strongly partition-determined functions, once we have been able to show their
submodularity. It is based in the same partial order defined using compressions over multisets of

subsets of [n].

Theorem 3.21. Let Xy, ..., X, beasequence of independent random variables taking valuesin A1, ..., Ay,
respectively, where the A; are finite sets, and let f : Q(A1, ..., Ay) — B bea strongly partition-determined
function. Let S and T be finite multisets of subsets of [n]. If S > T with the partial order defined by com-
pressions, then

Y H(fs) > ) H(fr).

ses TeT

Proof. The proof follows that of Theorem 3.15. First, we observe that it is enough to prove it for
an elementary compression, because of the transitivity of the partial order. But in the case of an
elementary compression we have that 7 = ;) for some i # j, and since most terms cancel out,

we simply have to prove that

H(fs,) + H(fs;) = H(fs,us,) + H(fsns;),

which follows by submodularity (Theorem 3.20). O



3. Entropy, projections and sumsets 63

Observe that Theorem 3.15 is just a particular case of this new theorem, the case in which f is
taken to be the identity (or projection) function. Many other results can be obtained by considering
different functions. We refer to this later on.

In order to prove one final general result, we use again the fractional covers introduced in sec-
tion 3.3. With them, we can prove the following, which can be though of as a different general-
ization of Shearer’s inequality. It is the generalization of Theorem 3.14 to the case when we use
entropies of partition-determined functions.

Theorem 3.22. Let Aq,..., A, be finite sets, and let f : Q(A1,...,Ay) — B be a strongly partition-
determined function. Consider independent random variables Xy, ..., Xy such that X; ranges over A;.
Then, for any fractional covering a using any collection S of subsets of [n],

H(fp,) < ) asH(fs).

sesS

Proof. The proof closely follows that of Theorem 3.14. As was stated in section 3.3, this result
actually holds for any submodular function g such that g(@) = 0. In particular, we may define
g(S) = H(fs), which means that g(@) = 0 by the convention we have taken. Furthermore, define
g(S|T) = g(SUT) —g(T), and call this g conditional on T (assuming S and T are disjoint). By
the chain rule (we encourage the reader to prove the chain rule for general submodular functions
such that ¢(@) = 0, which can be proved by induction), we may write
8(8) = 28({i}|5 nli-1j,
ic

and using this,

Y asg(S) =) as) g({i}Isn[i—1])

ses seS§  ieS
> ) asy g({iH|li—1])
ses ieS
— Y g({iHli— 1) ¥ aslies
i=1 seS

where the first inequality comes from the dropping condition, the first equality is an interchange
of the sums, the second inequality is a result of the definition of a fractional covering, and the last
equality is a second use of the chain rule (Lemma 1.5). O
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3.4.3. Corollaries

The three theorems from the previous subsection are the key elements for the remainder of this
chapter. We shall see how we can obtain some very general results in very different settings.
We begin with entropy corollaries: the first example is obtained when taking f to be the identity
function. In this case we obtain many of the results that have already been proved throughout this
thesis: Theorem 3.20 becomes Lemma 1.7, Theorem 3.21 becomes Theorem 3.15, and Theorem 3.22
turns into a part of Theorem 3.14. We have already studied all these results, but with this we have

presented a unified way to prove them.

Now let us consider a different function. In this case, let us assume that A4, ..., A, are sets in an
abelian group (G, +), and let f be the sum function (which is strongly partition-determined, as we
proved in Lemma 3.18).

Corollary 3.23. Let X3,..., X, be independent random variables taking values in a commutative group
(G, +). Then,

(i) The set function H(Xgr) is submodular, that is, for any sets S, T C [n],
H(Xg,r) + H(X{r) < H(X{) + H(X7).
(ii) Let S and T be two collections of subsets of [n]. If S > T, then
Y H(X$) > ) H(XP).
ses TeT
(iii) For any fractional covering a using any collection S of subsets of [n],
H(X[j;]) < ) agH(XY).
ses

Proof. Substitute f for the sum of the variables in Theorem 3.20, Theorem 3.21, and Theorem 3.22,
respectively. O

Some of these results had already been stated before. For instance, the submodularity of the en-
tropy of sums of random variables was already discussed by Madiman in [18]. He also mentioned
(ii) and stated and proved (iii) of the previous corollary. The approach we have showed has the
advantage that it gives the same inequalities for a very wide class of functions, and not only for

sums.

Notice, in particular, that if S is a uniform k-cover of [n] and we let ag = % forall S € S, then
item (iii) positively answers the questions stated at the end of section 3.1 and section 3.2. Further-
more, item (i) serves to give an entropy analogue of Ruzsa’s twin to the triangle inequality. This
result states the following.
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Proposition 3.24. Let A, B and C be finite non-empty sets in a (not necessarily commutative) group.
Then,
|A||B+C| < |B+ A||A+C|.

Its entropy analogue, in the abelian setting, can be stated as follows.

Proposition 3.25. Let X, Y and Z be independent random variables with values in any commutative
group. Then,
H(X)+H(Y+Z) <H(X+Y)+H(X+Z).

Proof. Consider item (i) in Corollary 3.23. By submodularity, we have that H(X) + H(X + Y +
Z)<H(X+Y)+H(X+Z),and itis clear that H(X + Y + Z) > H(Y + Z) by Lemma 2.2. O

Remark 3.3. In the previous proof, we could have used item (ii) instead. The proof would be
equally simple and direct.

One can now use this to prove a slightly stronger version of Theorem 2.11.

Theorem 3.26. Let X and Y be two G-random variables, where G is an additive group, and let H(X +
Y) — H(X) = B. For any positive integers k,1, let Y1,..., Yy, Y], ..., Y] be independent copies of Y. Then,

HYi+...+ Y=Y —...—Y]) <H(X) + (k+1)B.

Proof. Observe that, by item (i) of Corollary 3.23, given any three G-random variables we have
that

(20) H(X)+H(X+Y+Z) <H(X+Y)+H(X+ 2).
First we are going to prove by induction that
(21) HX+Y+...+Y,) <H(X) +np.

for any n > 1. The base case n = 1 holds with equality by assumption, so now let us assume
that the statement holds for some n > 1, and let us prove that it also holds for n + 1. Simply, let
Z =Y, +...+Y,. Then, by (20),
HX+Y+... + Y+ Y1) SHX+Y 4.0 4+ Yy) + HX + Y41) — H(X)
<H(X)+nB+H(X)+p—H(X) =H(X) + (n+1)B.
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Now, as we did in the proof of Theorem 2.11, apply Theorem 2.4, taking X = —X’, X’ being an
independent copy of X, Y = Y1 +... 4+ Y,and Z = Y] +... 4+ Y. As H(X) = H(—X), this yields
HY;+...+ Y% —Y —...—Y])
<HX' +Y1+...+ ) +HX +Y]{+...4Y)) —H(X')
<H(X) +klogo[X] +H(X) +Ilogo[X] — H(X)
=H(X) + (k+1)logo[X],

where the last inequality comes from applying (21). O

Here, B somewhat substitutes the role of the Ruzsa distance. It is the entropy analogue of the
value & from the statement of Theorem 2.9. Observe that we have obtained an exact analogue of
this theorem in the case j = 1. Observe, furthermore, that (21) is the analogue of Theorem 2.8 in
the case j = 1. And the proof we have shown here is much simpler than that from chapter 2.

From Corollary 3.23, one can also obtain entropy analogues of Pliinnecke-Ruzsa-type inequalities,
in a very general fashion. These Pliinnecke-Ruzsa-type inequalities will be presented later on.

Theorem 3.27. Let Xy, Xy, ..., Xy be independent discrete random variables taking values in an abelian

group G, and let « be a fractional covering using the collection S of subsets of [n]. Let ¢ = Z «g. Then,
Ses§

cH(X0+X[:]) < (c— 1)H(X[J;]) +S§aSH(XO+X;).

Proof. For convenience, write Xo = Xj,1. Consider the collection of subsets of [n + 1] given by
S'={n}u{s'=su{n+1}:5€S}.

ForeachsetS € S let Ysu{nt1) = “75, and let Yin) = 1-— %, which is nonnegative, since ¢ > 1. With
this, vy is a fractional covering for [n + 1] using S’. Indeed, for the index n + 1 one has

Z Ysu{n+1} = L
SeS

and for each j € [n], since « is a fractional covering,
1 g
Yt ) ’Ysu{n+1}:1—z+ Yy —=>1
SeS8ijes SeS8:jes

The statement follows by applying item (iii) of Corollary 3.23 to this fractional covering. O
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Theorem 3.28. Let Xy, Xy, ..., Xy, be independent discrete random variables taking values in an abelian

group G, and let a be a fractional covering using the collection S of subsets of [n]. Let ¢ = Z «g. Then,
Ses§

H(X +X[+ Y asH(Xp + XJ) — (c — 1)H(Xo).
Ses

Proof. By Lemma 3.19, we have that H(X; + X») = H(Xj) + I(X; + Xp; X3), because X; and
X, are independent and the sum is a strongly partition-determined function. By applying this
recursively to independent random variables, we obtain a chain rule,

n

) =H(X1)+ ) I(X[; X))

(22) H(X[jl

In our particular case, for each S € S we may write
H(Xo—f—X;_) XO -i-ZI ]ﬂS’X)
i€S

Hence,

Y asH(Xo+X$) = ) ag [H(Xp) +21 l]ﬁs,x > thsH Xo) +Za521x ; X)),
ses Ses Ses i€eS

where the inequality comes from (19) in the particular case when f is the sum. By an interchange

of sums, the definition of fractional coverings and, again, (19), we have

2 OésH(XO + )(Jr z DésH XQ + 2 I Z g
Ses Ses ie[n] SeSi:ieS
> 2 DésH X(] + 2 I Xz)
Ses ie[n]
> ) asH(Xo) + ) 1(Xo + Xj; Xy).
Ses i€[n]
Now, using again (22),

Y agH(Xo+ XJ) > (Z ng — 1) H(Xy) + H(Xo + X[J,;]).
SesS Ses

The statement follows by rearranging the terms. O

These two results can be written in a way that looks closer to the usual way of writing Pliinnecke-
type inequalities. In order to do so, por each S € S define a constant g such that H(Xo + XJ) =
H(Xy) + Bs. Then, the inequalities from Theorem 3.27 and Theorem 3.28 can be written as

H(Xo + X[J;]) < H(XO) + (1 - i) [ + Z xsPs

SeS
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and

+
H(XO + X[n}) S H(XO) + S;g D(S,BSI
respectively. It is interesting to remark that neither of these bounds seems to be better than the

other. When trying to compare them, one must compare H(X [Z]) to Z «gBg, which is not simple

seSs
at all. One may write

Z wsﬁs = Z Qg [H(Xo + Xgr) — H(Xo)] < Z asH(Xgr).

Ses Ses Ses
This is also an upper bound for H(X[jl]) (item (iii) from Corollary 3.23), so we may write a common
upper bound as a weaker result,

H(Xo + X;]) <H(Xo)+ ) agH(XJ).
Ses

In particular, take S to be the collection of singletons in Theorem 3.28, taking the fractional cover-
ing given by a; = 1 for all i € [n]. This results in
n
H(Xo + X)) < H(Xo) + ) (H(Xo + X;) — H(X0)),

I i=1

which is the analogue of Theorem 2.10, the case with different summands, when j = 1. In general,

we may consider S as the multiset of all sets of size k, which results in a uniform (Zj)—cover.
1,1 .
Taking fractional partitions given by ag = (Zf%) forall S € S results in

X+ X)) < Bty U1

] (H(Xo + Xg ) — H(Xo)),
SC[nl:|S|=k
which is the general analogue of Theorem 2.10. Therefore, as Theorem 3.28 serves for any frac-

tional covering, it is a generalised version of the entropic analogue of Theorem 2.10.

We now turn our attention towards corollaries related to set cardinalities. Most of the proofs now
are an extension of the arguments used by Gyarmati, Matolcsi and Ruzsa to prove Theorem 3.8,
defining arbitrary linear orders in the spaces, and considering the lexicographical order for ele-
ments in the Cartesian product of the spaces. We will consider the following: we are given  finite
discrete spaces, Ay, ..., Ay, and a function f : Q(Ay,..., A,) — B, where B is any space. Then,
given a set B € f(A,)) that we want to bound in size, we define r(b) to be the smallest element
of f~1(b) in lexicographical order, for each b € B. Then, set R = {r(b) : b € B}. In this way, each
b € B has a unique representative preimage r(b), and |R| = |B].

We first present a simple lemma, which will be the key for most of the results we are going to
present.
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Lemma 3.29. Let X be a discrete random variable uniformly distributed over R. If f is a partition-
determined function with respect to S C [n], then

H(Xs|f(Xs)) = 0.

Proof. Xg takes values in 7rg(R), so it is enough to show that the restriction of f to this domain
is a one-to-one function (this would mean that Xg can be retrieved from f(Xs), so we already
know all the information about it and there is no additional uncertainty). Assume that there are
two elements & # &’ in 715(R) such that f(a) = f(a’) and Pr(Xs = a) # 0, Pr(Xs = /) # 0.
Consider their preimages with respect to the projection 7tg, that is, the elements a,4’ € R such that
ns(a) = a and 7tg(a’) = o', Itis clear that a # a/, as @ # a. Without loss of generality, assume
that a <j @', and define a” € A, by

n ) ai forie€s,

B { a, fori¢S§.
Since f(a) = f(a’) and f is partition determined with respect to S, we have that fs(a”) = f(a) =
f(a') = fs(a') (as a; = a; when i € S)and f5(a") = f5(a’), so f(a") = f(a’). As a’ was chosen to
be the representative of f(a’), by construction we must have a’ <jo, a”/. However, as a <je, @/, itis
clear that a” <o, @/, so we reach a contradiction. Hence, there cannot be two such elements, and
the restriction of f to 7rg(R) is a one-to-one function. O

We can now start proving several results.

Theorem 3.30. Suppose that f is a partition-determined function with respect to a collection S of subsets
of [n], and let o be a fractional covering of [n] using S. Then, for any set B C f(Aj,)) we have that

Bl < TT|s (£ ®)

as

Proof. For any set B as in the statement, define its respective set of representatives R. Let X be a
random variable uniformly distributed over R, and define X; = m;(X) for all i € [n]. Then, we
have

log|R| = H(X) <} asH(X5),
Ses
where the inequality comes from Theorem 3.22 in the case when f is the identity. On the other

hand, by the chain rule for entropy we have

H(Xs|f(Xs)) + H(f(Xs)) = H(Xs, f(Xs)) = H(f(Xs)|Xs) + H(Xs)
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foreach S € S. We know that H(f(Xs)|Xs) = 0since f(Xs) is completely determined by Xs, and,
furthermore, H(Xs|f(Xs)) = 0 because of Lemma 3.29, so the previous becomes

H(f(Xs)) = H(Xs).

With this,
log |B| =1log |R| < ) asH(Xs) = ) asH(f(Xs))
Ses Ses
< 2 aslog|fs(R)| < Z aslog |fS(f[;]1(B))|-
Ses Ses
The result follows by exponentiating. O

In particular, by considering the whole set we have the following corollary.

Corollary 3.31. Suppose that f is a partition-determined function with respect to S, and that « is a
fractional covering of [n] using S. Then,

F(Ap)] < TTIf(As)]%.

Ses

Using Theorem 3.30 we can now obtain results in many settings. Consider, for instance, that of
projections, with which we have been dealing all along this chapter. In this particular case, we
obtain the following.

Corollary 3.32. Let By, ..., By be arbitrary finite sets, and take some set A C By,. Then, for any frac-
tional covering w of [n] using a collection S of subsets of [n],

Al < T s (A)]s.

Ses

Proof. Apply Theorem 3.30 taking fs = g, which is a partition-determined function for every
collection S. 0

Note that Theorem 3.1 and Theorem 3.10 are simple particular cases of this result, when S is a
uniform k-cover of [n]. Thus, we have obtained a much more general result than we had so far.

When dealing with sumsets in abelian groups, we also obtain some very general results. From
Corollary 3.31 we obtain the following.

Corollary 3.33. Let Ay, ..., Ay, be finite sets in an abelian group (G, +), and let « be a fractional covering
of [n] using a collection S of subsets of [n]. Then,

Al = TT1AgI*.
Ses
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Proof. Substitute f by the sum in Corollary 3.31; the sum is a partition determined function, as we
showed in Lemma 3.18. O

Again, Theorem 3.8 and Theorem 3.12 are particular cases of this result, which is the sumset ana-
logue of Corollary 3.32. In particular, since this result is more general than Theorem 3.12, one
can also think of it as a more general, although slightly weaker, version of Theorem 2.10. A more

general variant of the previous result can be obtained when considering subsets of the sumset.

Theorem 3.34. Let A, By, ..., By be finite sets in an abelian group (G, +). Let a be a fractional covering
of [n] using the collection S of subsets of [n], and let c = Y _ wg. Then, for any set D C B[Z],
Ses§

|A+D|° < DI T TT |A+ B&|%.
Ses

Proof. The proof is analogous to that of Theorem 3.27. Call B, 11 = A, and set By to be the

Cartesian product of all the sets B;, as usual. As we saw in Lemma 3.18, the function fg(b) = 2 b;
ieS
is partition-determined with respect to any collection S’ of subsets of [n+1]. As D C B [J;], let us
define C = f_l(D), so C C By,, and let us write
[n] [n]

E=D+A={f(by,...,by,a):(b1,...,by) € C,a € A}.
Now, choose the collection of subsets S” defined by
S ={n}u{Su{n+1}:5€S},

and take the fractional covering 1y for [n + 1] given by ys,(, 41} = s foreach S € S, and V) =
1-— % Applying Theorem 3.30,
El< ] "
S'es’
As fi1) (E) = C x 4, itis clear that f, ( f[;_lH](E)) = D and fou:1) ( f[;_lH](E)> C A+ B for
any S’ # [n], so

fS’ (f[;_l‘_l] (E))

|E| < |D|7[n] H |A 4 B;F|75U{n+l}‘
Ses
Finally, the result follows by substituting the values of each ¢ and taking the c-th power. O

From this, one can obtain many different corollaries by considering different coverings. For ex-
ample, given a uniform k-covering with a collection S of subsets of [n], and taking the fractional
covering given by ag = % forall S € S, we have that

—k
|A+D|ISI < |DIISIFFTT 1A+ BL .
Ses
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In the particular case where S is the uniform 1-cover given by the collection of all singletons, the
inequality becomes
n
|A+D[" < [D|"'TTIA+Bil.
i=1
so we are generalizing Theorem 3.16 of Balister and Bollobés for all possible fractional coverings.

Theorem 3.34 would be the sumset analogue of Theorem 3.27. However, we do not have an ana-

logue for Theorem 3.28 so far, and its statement remains as an open conjecture.

Using Theorem 3.30, Madiman, Marcus and Tetali obtained corollaries for several other compound
sets using partition-determined functions. In particular, they proved an extension to the non-
commutative setting of some of the previous results, as well as some bounds for polynomial com-
pound sets. In this thesis, we are mainly interested in sumsets in abelian groups, so should the
reader be interested, we recommend to check [19]

The following diagram illustrates the relationships between the main statements presented in the

chapter.
Loomis & Whitney Han (n — 1)-cover sumsets
Uniform cover inequality Shearer k-cover sumsets

Madiman & Tetali

Ballister & Bollobés

Fractional cover inequality «—— Partition-determined functions —— Fractional cover sumsets



Chapter 4
The Ruzsa device

In this chapter we revisit the way in which Ruzsa contructed sets that capture the distribution of
a random variable X [25]. We first presented this at the beginning of Chapter 3. We shall show
that his method can in fact be generalised and used in a much wider context, in such a way that
it allows us to obtain many of the results presented in he previous chapters in a very general and
unified way. In fact, what we shall see is that we can prove sumset inequalities starting from
entropy inequalities, or viceversa. In this sense, we can trivially obtain sumset inequalities whose
entropy counterpart is known and proved, and entropy inequalities whose sumset counterpart
is known too. In order to illustrate the power and flexibility of the method, we introduce a new
application related to expanders.

4.1. The Ruzsa device

Remember that, given a random variable X defined over a set X that takes a finite number of

values, each of them with rational probability, we construct a set A C X’* for a suitable k. The

way in which we construct this set is by considering vectors of length k whose coordinates are

such that, if one of these coordinates is chosen uniformly at random, then we are choosing an

element in X" with the same probability as the randomqvariable X does. To be precise, assume X
1

takes values {x1,...,x,}, each with probability p; = Py for some g;,7; € IN (in such a way that

1

n

Z pi = 1). Then, take k = lem(r; : i € [n]), and consider all vectors of length k with entries in X
i=1
such that each element x; appears exactly p;k times. A is the set of all these vectors.

Obviously, once this set has been constructed for a certain value of k (for which lem(r; : i € [n])
is the minimum possible value), then a set A can be constructed for any multiple of k; simply put,
each of the elements x; will appear as many times as the same multiple of the original number of

73



74 Entropy methods for sumset inequalities

times it appeared before. Remember that, with such a construction, one can prove (18),

log |A| = kH(X) + O(logk).

Ruzsa used this construction to prove the equivalence between Han's inequality and the Loomis
and Whitney theorem. This same approach was later used by Ballister and Bollobds to prove the
equivalence between Shearer’s inequality and the uniform cover inequality in [1]. The main idea
they used came from observing that one can build a set from a random variable and a different set
from its projection onto a certain subspace, and that the resulting set in the second case is nothing

more than the projection of the first one. That is, the following diagram is commutative.

X make set,

A
T Jnf‘

7 X) make set A,

Using this fact, one can separately compute the sizes of A and its projections in terms of the en-
tropy of the random variables, through (18). If a relationship between the sizes of the set and
its projections is known, a relationship between the entropies of the variable and its projections
follows (when letting k tend to infinity). The converse is found by considering the uniform distri-

bution on one of the sets, and using the most standard entropy inequalities (namely, Lemma 1.2).

Ruzsa took the idea behind these commutative diagrams a bit further. Instead of considering sim-
ple projections, he took linear functions defined over two variables, and again proved that making
a set and applying linear functions commute. He used this to prove his equivalence theorem,
Theorem 3.4. In this section, we try to go even further, and see that the diagram must always be

commutative, no matter which function f we consider.

Let X be a random variable (any random variable, it may be the joint distribution of several others)
that takes finitely many values in a set X, each of them with rational probability. Consider the set
A that is built when capturing the information given by X in the way that was described above.
Let f be any function defined over X, f : X — f(X). This function takes an element in X
and transforms it in some way; hence, the same thing can be done for each of the entries of the
elements of A. Let us denote f¥ to the function f* : X* — f(X)* such that fk(xi,...,x,’() =
(f(x}), ..., f(x})). The diagram now looks like this.
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X make set

A
f Jfk
F(X) makesgt gk A)

Proposition 4.1. Let X be a random variable taking values in a finite set X and let f be a function defined
over X. Assume that the probability function of X takes only rational values. Then, the following diagram

X make set A

Pk
F(X) " fE(A)

is commutative.

Proof. Assume that X takes values {xy, ..., x,}, each with probability p; = q for some g;,7; € N,

and construct the set A as described above. Now consider f(X). It is clear that the number of
values it may take is bounded by n. Assume that it takes m values, f(X) € {y1,...,ym}. The
probability that each value y; is taken by f(X) is the sum over all the preimages of y; of their

probabilities; that is, if f~'(y;) = {x;,...,x;}, then Pr(f(X) = y;) Z pi,- Each of these

probabilities can be computed once the original distribution of X is known so the distribution of
/

f(X) is also known. So assume that f(X) takes each value y; with probability p;- = % for some

q;, rl € N (it is clear that p; € Q since it is the sum of finitely many rational values). In this case,
one may have that lcm( :j € [m]) < k, but it will always be one of its divisors. This means, in
particular, that we can construct aset B C f(X)K, since k is a good value, by making each of the Y;
appear exactly p ]k times in each vector. B will be the set of all such vectors. We would like to see
that f¥(A) = B.

Clearly, the image by f* of a vector x € A is a vector in which every y € f(X') appears precisely
k 2 Pr(X = x) times, and thus f¥(A) C B. Reciprocally, let y be a vector in B. Each y € f(X)

xef~1(y)
appears k )~ Pr(X = x) times iny. For each y € f(X) let J, C [k] be the set of coordinates of y
xefHy)
which are equal toy, y; = y for each j € J,, so that |],| =k ) Pr(X = x). There is a vector x € A
xef~1(y)
which has the elements in f ~!(y) placed at the coordinates of Jy for each y € f(X’). For this vector

we have f¥(x) = y. This shows that B C f¥(A). O
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Once we have that the diagram is commutative, we can prove the following result.

Theorem 4.2. Let f,f1,..., fu be any functions defined over a set X. Let ay,...,a, be positive real
numbers. Then, the following are equivalent:

(i) Forany finite set A C X we have that

n
A <TTIfiA)"
i=1
(ii) For any finite set A C X, for every random variable X with support in A, the entropy of f(X) satisfies

H(f(X)) <} aiH(fi(X)).

i=1

Proof. Showing that (ii) implies (i) is easy. One needs to define an adecuate random variable X.
To do so, consider f(A), and for each b € f(A) consider a unique representative of its preimage,
a* € f~1(b). Let the set of these representatives be A*, so that f(A*) = f(A). Define a random
variable X has having probability \f(#f‘)\ of taking each value in A*, and zero probability otherwise.
In such a way, f(X) is uniformly distributed over f(A), so, by the properties of entropy,

n

<) wlog|fi(A

i=1

M:

(23) log|f(A)| = H(f(X)) <

I
—_

i

as it is clear that f;(A*) C f;(A) for all i.

To prove the converse, first assume that X takes finitely many values, each of them with rational
probability, and build sets B C X* and f(B), f:(B) C f(X) for each i € [n] as in Proposition 4.1.
For each of these, by (18), we know their asymptotic size. Using (i), we have that

KH(£(X)) + O(logk) < 21 ak H(f (X)) + O(a; log k)

log k
:}H ZDCI +O< I%),

and the result follows by letting k tend to infinity. The passage to the general case of variables with
real probabilities follows by a routine limiting argument. O

The reason that the numbers a7, ...,a, have to be positive is that the inequality in (23) is not
guaranteed to hold otherwise. However, the second part of the proof also works when these

values are negative. This allows us to write the following.
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Theorem 4.3. Let f, f1,..., fu be any functions defined over a set X, and let ay,...,a, be any real
numbers. If for any finite set A C X we have that

£(4)] < q (A",

then

n

H(f(X)) < ) aH(fi(X))

i=1
holds for every random variable X with support in A.

The fact that we have negative coefficients is what prevented us from proving the sumset versions
of Theorem 2.7 and Theorem 2.11 directly from their entropy counterparts. We observe that this

same problems extends to the general use of Ruzsa’s device.

Now, Theorem 4.2 and Theorem 4.3 can be used as a black box to prove several of the entropy theo-
rems we showed in Chapter 2. As they are entropy analogues of sumset inequalities, having their
counterpart proved in the sumset theory is enough to ensure that they also hold in the entropy
setting. For instance, the trivial inequalities given by Lemma 2.2 can be obtained by considering
the projections and the sum as functions. Similarly, both Ruzsa’s triangle inequality and its twin

inequality can be obtained.

Theorem 4.4. Let X, Y and Z be three independent G-random variables, where G is any (not necessarily
commutative) group. Then,
dR(Y, Z) < dR(Y, X) + dR(X, Z).

Proof. We must prove that
HX)+H(Y-2) <H(Y-X)+H(X - 2).

Let A = range(X), B = range(Y), and C = range(Z), and let D = A x B x C. Define several
functions over D as follows: f(x) = (m2(x) — m3(x)), f1(x) = (m2(x) — m11(x)), fa(x) = (m1(x) —
m3(x)), and f3(x) = 7m1(x), where 7; refers to the projection to the i-th coordinate as usual. By
Theorem 2.3, |f(D)| < |f1(D)||f2(D)||f3(D)| 1, so the result follows by Theorem 4.3. O

Notice, in particular, that we have do not remove any assumption about the independence of the
random variables, so this result is the same as Theorem 2.5. The twin to the triangle inequality
is proved in the same way. We can also prove the analogue of Theorem 2.6 using this approach
(notice that, in this case, it is actually enough to use Theorem 3.5, as all the sets we are considering

are linear functions of two sets).
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Theorem 4.5. Let X and Y be two independent G-random variables, where G is an additive group. Then,

dr(X,—Y) < 3dg(X,Y).

Proof. We want to see that
H(X -Y) <3H(X+Y) - H(X) — H(Y).

Let A = range(X) and B = range(Y), and let C = A x B. For each x € C define the functions

f(x) =m(x) — m(x), f1(x) = m(x) + m2(x), fo(x) = m(x) and f3(x) = mp(x). By Theorem 2.6,
1£(O)] < 1A(C)P|f2(C) 7Y f3(C)| 71, so Theorem 4.3 directly yields the result. O

Even more interesting, we can very easily prove and strengthen the entropic Pliinnecke-Ruzsa-
type inequalities. We may start with the Pliinnecke-Ruzsa inequalities. We can prove the following
generalization, in the entropic setting, to the general case (for different values of j) of the sumset
inequalities.

Theorem 4.6. Let X and Y be G-random variables ranging over finite sets in a commutative group, and
let j be a positive integer. Let Y1,...,Yy,Y],..., Y] be independent copies of Y for some positive integers k
and 1 such that j < min{k,1}. Then,

k+1
mn+m+n—ﬂ—m—mgHmH~%4Hm+n+m+m—Hm»

Proof. Let A = range(X) and B = range(Y). Define C = A x B X Bx k+) xB. For each x € C

define the functions f(x) = mp(x) + ... + Te1(x) — Mo (x) — oo — M1 (x), f1(x) = mp(x) +
kil — kil

7 (x) + ...+ iy 1(x) and for(x) = 711(x). By Theorem 2.9, [f(C)| < |f1(C)| 7 |f2(C)|1 /. Theo-

rem 4.3 yields the desired result. a

Even more, we can easily obtain an analogue of Theorem 2.10.

Theorem 4.7. Let j and h be two positive integers such that | < h. Let X,Yi,...,Y), be G-random
variables, where G is any commutative group. For any I C [h], let Y; = ZYZ-. Then,
i€l

() < Hx)+ S S () ).
(=D i

Proof. Let A = range(X),B; = range(Y;),..., B, = range(Y},), and define C = A x B x Bx M.
xB. Consider the functions f(X) = m(x) + ...+ m,.1(x), f1(x) = my(x) and, for each | C [h]
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such that |J| = j, fj(x) = m1(x) + ) _ 71;(x). By Theorem 2.10, we have that

ic]
(=DM h—j)!
) (=D1(h—))!
A+Bf[) " £ (O
felsiaBls | 1 a<imel IT(fa)
SERVEG R jefin= N1
The claim follows by applying Theorem 4.3. O

Hence we have a very simple proof of a corollary of Theorem 3.28.

These are just a few examples of the many entropic results that can be achieved in this way. Simi-
larly, we can obtain sumset results starting from entropy inequalities, provided there are no nega-
tive coefficients in the entropy inequalities, by using Theorem 4.2. For instance, from Theorem 3.22
we obtain the following.

Theorem 4.8. Let Ay,..., Ay be finite sets, and let f : Q(A1,...,Ay) — B be a strongly partition-
determined function. Then, for any fractional covering « using any collection S of subsets of [n],

(Ao Al < TT | fs(Av ..., Au)|s.
Ses

Proof. Consider independent random variables Xj, ..., X, ranging over Aj, ..., A;, respectively.
By Theorem 3.22, we have that

H(fjy) < ) asH(fs).

Ses
Now, since all the values ag are nonnegative, we may apply apply Theorem 4.2. The statement

follows swiftly. O
In the particular case of sums, we have the following.

Corollary 4.9. Let Ay,..., Ay be finite sets, and let f : Q(Aq,...,Ay) — B be a strongly partition-
determined function. Then, for any fractional covering « using any collection S of subsets of [n],

ALl < TT1A¢1s.
Ses

Proof. The statement follows from Theorem 4.8, since the sum is a strongly partition-determined

function. O

Similarly, from Theorem 3.27 we get the following.
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Theorem 4.10. Let Ay, A1, ..., Ay be finite sets in an abelian group G, and let o be a fractional covering
using the collection S of subsets of [n]. Let c = Y wg. Then,
Ses

|AO +A[J;,]|C < |A[f1]|071 H |A0 +As+|as'
Ses

Proof. Consider any independent random variables Xy, Xj, ..., X, ranging over Ag, Ay,..., Ay,
respectively. By Theorem 3.27 we have
+ + +
cH(Xo+ Xpy) < (= DH(X,) + S;S asH(Xo + XT).

Since all the coefficients are nonnegative, the result follows by applying Theorem 4.2. O

Notice that we cannot obtain a sumset analogue of Theorem 3.28 in a similar way as we did for
Theorem 3.27 because there are negative coefficients involved. This is related to some observations
about the difference in nature of Theorem 3.27 and Theorem 3.28 pointed out in [19]. We believe

the existence of negative coefficients plays an important role in this sense.

4.2. Expanding functions

There is a very important open conjecture, by Erd6s and Szemerédi, that states that if A is a finite
set of integers, then
max{|A + A|,|A- A|} > c|A]*

for any positive 6 and for some positive constant c. A lot of effort has been directed at solving this
open problem, but the best bounds known today are still far from the conjectured 2 — 6. The wide
interest directed at this problem derived in many other similar problems, such as the statement of
similar ones in sets other than the integers. For instance, Bourgain, Katz and Tao [5] extended the
problem to finite fields [F, for prime p, and were able to prove a non-trivial lower bound, namely,
that given a set A C IFp, such that p* < |A| < p!=%, then max{|A + A, |A- A|} > c(a)| AT, for
some ¢ = ¢(a) > 0.

In a different sense, this problem arose the question of whether other functions have a similar
effect on the size of their compound sets, and some interest was directed to polynomials. The
natural question is as follows: given a polynomial in two (or more) variables f, does its domain
blow when applied on any sets? That is, is it true that, for any sets A, B C F;, of comparable size,
f(A, B) is ampler than the size of A?
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We know that the answer is negative for f(x,y) = x + y because we have |f(A, A)| = 2|A| -1
when A is an arithmetic progression, and we are looking for functions with |f(A, A)| > |A['*.
To be more precise, the following definition of expander polynomials is given in [4].

Definition 4.1. For any prime p, let f, : ]F’;, — IF, be an arbitrary function in k variables in F).
We say that the family of maps 7 = {f, : pisaprime} is an expander (in k variables) if, for
any #, 0 < « < 1, and for any L1, L, € R4 there exist ¢ = ¢(a) > 0 and a positive constant
¢ = ¢(F, Ly, L) not depending on a such that for any prime p and any k-tuple (Ay, ..., Ax) of
subsets of IF, satisfying Lip* < |A;| < Lpp®, one has that

|f(A1/' . 'rAk)| > CPIX+8'

Informally, we may understand this definition as saying that a function f(xi,...,xx) is an ex-

£ 1im (AL A

ander if lim ——————+~
P p oo IA]

they differ by a constant factor, as in the definition above). Very little is known about explicit con-

= oo whenever Ay, ..., Ay are of comparable sizes (meaning that

structions of expanders. In 2005, Bourgain [4] showed that the bivariant function f(x,y) = x* + xy
is an expander. In fact, what he proved was that, given any two sets A and B of comparable sizes

AB
such that p* < |A| < p'~%, W > p7 for some positive but inexplicit y. More recently,

Hegyvari and Hennecart [14] proved that a more general class of functions is a class of expanders.

Theorem 4.11 (Hegyvari, Hennecart). Let k > 1 be a positive integer, and let f and g be two polynomi-
als with integer coefficients. Now, consider the function F : 7> — 7. given by F(x,y) = f(x) 4+ xFg(y).
Assume, furthermore, that f(x) and x* are affinely independent. Then, F induces a family of expanders.

The tools used by these authors come from incidence geometry. Other authors have used tools
from spectral graph theory (see [27], by Solymosi) to obtain similar results about expanders. In any
case, the examples of expanders are scarse, and building any new ones would be an interesting
topic.

In this sense, we now consider Theorem 4.2. On the one hand, we can use it to prove entropy
analogues of expanders. For instance, we can use the expander defined by Bourgain, f(x,y) =
x? + xy. On the other hand, if we have a bound in the entropy setting, we may obtain bounds for
cardinalities. And we may use this to try and find new expanders.

In the case of Bourgain’s expander, remember that we have

£(4,B)]
ar oV
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for some positive 7, for any sets A and B of comparable size and such that p* < |A| < p!~%. Using
basic properties of logarithms, we may write that

log p
|f(A,B)| > p’YlA| = ’Al,ylog\A|p|A| — |A|1+710g\A\'

A direct application of Theorem 4.2 tells us that, for any random variable X defined over IF%, with
supportin A x B,

HU0) > (1+95 88 ) B ()

This means that

H(F(X)) ~ H(m (X)) > 1 BhH(m (00)

and this difference would tend to infinity as the entropy of the projection of the random variable
does.

This motivates the following definition.

Definition 4.2. For any prime p, let f}, : ]F’;] — IF, be an arbitrary function in k variables in F).
We say that the family of maps F = {f, : pis a prime} is an entropic expander (in k variables) if,
forany «, 0 < a < 1, and for any Lq,L, € Ry there exist e = e(a«) > 0 and a positive constant
¢ = ¢(F, Ly, Lp) not depending on «a such that for any prime p and any random variable defined
over a k-tuple (Ay, ..., Ay) of subsets of [F, satisfying L1 +alogp < H(X;) < L +alogp, one has
that

H(f(X)) > c+ («+¢)log p.

Now, if we were able to find a function which is an entropic expander we would automatically
recover an expander, by using Theorem 4.2. The author has no knowledge of such an entropic

inequality, but if it were found, it would lead to the contruction of new families of expanders.



Conclusions

Throughout this work, we have been able to observe a great deal of the interaction between en-
tropy theory and additive combinatorics. The importance of the entropic method in additive com-
binatorics has been made clear through its many varied and useful applications, especially in the
way in which it simplifies many proofs or allows to extend previous ideas to some new results.
Conversely, we have seen how many ideas from additive combinatorics can be applied in the en-
tropic setting, and how this has allowed for a lot of information theoretic inequalities to be proven.
Furthermore, we have seen that not only basic inequalities can be obtained in such a way: the ana-
logue of the Balog-Szemerédi-Gowers theorem is a much more involved result, and many other

important results might be obtained in similar ways.

The different techniques that have been showed are part of a still developing new theory. The func-
tional submodularity method introduced by Tao is a very versatile one, and can be used in many
settings, as long as one can find the right functions. The method presented by Madiman, Marcus
and Tetali using partition-determind functions, with mutual information being a key ingredient,
is equally powerful in many cases, and allows for the statement of theorems in settings other than
that of sumset inequalities. Similarly, the Ruzsa device becomes a powerful and easy-to-use tool.
Although still under study, it is clear that it can be used to obtain results in a very general way,

and also in settings other than that of sumsets.

This work may be continued in several ways. On the one hand, Kontoyiannis and Madiman
have shown [16] that mutual information techniques allow to prove similar entropy inequalities
when considering differential entropies. Differential entropy is the generalization of entropy to
continuous random variables, and the more traditional results do no longer hold in this setting (for
one, differential entropy may be negative, and many of the entropy results we have are based on its
nonnegativity; similarly, one can prove that differential entropy is not functionally submodular).
A thorough study of differential entropy inequalities analogous to sumset inequalities is certainly

interesting by itself, and more so if accompanied by the results discussed in this thesis.

83
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In a different direction, one may consider inverse problems in additive combiantorics, and ask
if there are any parallel results for entropy. And the answer is positive: Tao [31] studies sev-
eral inverse properties of entropic inequalities, and proves a theorem analogous to the celebrated
Freiman-Ruzsa theorem. A study of these results, although quite more advanced in technique
than what we have been showing, would be a nice complement for this thesis.

Finally, one must consider a more thorough study of the Ruzsa device. Its usefulness has been
clearly shown, and what we still lack is a clear application in more general settings. The problem
of finding new polynomial expanders is an exciting one.
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