795 research outputs found

    Sums of Gauss Sums and Weights of Irreducible Codes

    Get PDF
    We develop a matrix approach to compute a certain sum of Gauss sums which arises in the study of weights of irreducible codes. A lower bound on the minimum weight of certain irreducible codes is given

    On the weights of binary irreducible cyclic codes

    No full text
    International audienceThis paper is devoted to the study of the weights of binary irreducible cyclic codes. We start from McEliece's interpretation of these weights by means of Gauss sums. Firstly, a dyadic analysis, using the Stickelberger congruences and the Gross-Koblitz formula, enables us to improve McEliece's divisibility theorem by giving results on the multiplicity of the weights. Secondly, in connection with a Schmidt and White's conjecture, we focus on binary irreducible cyclic codes of index two. We show, assuming the generalized Riemann hypothesis, that there are an infinite of such codes. Furthermore, we consider a subclass of this family of codes satisfying the quadratic residue conditions. The parameters of these codes are related to the class number of some imaginary quadratic number fields. We prove the non existence of such codes which provide us a very elementary proof, without assuming G.R.H, that any two-weight binary irreducible cyclic code c(m,v) of index two with v prime greater that three is semiprimitive

    On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers

    Get PDF
    We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date
    • …
    corecore