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Sums of Gauss Sums and Weights of
Irreducible Codes

Robert W. Fitzgerald
and

Joseph L. Yucas

Abstract

We develop a matrix approach to compute a certain sum of Gauss
sums which arises in the study of weights of irreducible codes. A lower
bound on the minimum weight of certain irreducible codes is given.

KEYWORDS: Gauss sums, codes, weights.

1 Introduction

Let d be a positive odd integer and set e = ordd(2), the order of 2 mod d. We
will let L denote the field F2e , and for a positve integer s, we set K = F2se .

For a multiplicative character, χ : K∗ → C, the Gauss sum of χ is defined
as

gK(χ) =
∑

β∈K∗
(−1)tr(β)χ(β),

where tr denotes the usual trace map trK/F2 . Basic results on Gauss sums
may be found in [8] and [6].

Computing Gauss sums over K can be reduced to computing them over
L via the Hasse-Davenport Theorem [5].

Theorem 1.1. (Hasse-Davenport) Suppose λ is a multiplicative charac-
ter on L. Let χ be the multiplicative character on K defined by χ = λ ◦ N
where N is the usual norm map NK/L. Then

gK(χ) = (−1)s−1gL(λ)s.
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Generally, it is hard to determine Gauss sums explicitly. They have only
been computed when the subgroup generated by 2 in (Z/dZ)∗ has index 2 or
contains -1, see [15], [2], [11] and [7]. For applications of these computations
to irreducible codes see [2], [4], [3], [12] and [14].

Let c(x) be an irreducible polynomial over F2 of degree se and order
n = (2se − 1)/d. The irreducible code C based on c(x) is the cyclic code
generated by (xn−1)/c(x) over F . For background information on irreducible
codes see [9].

The code C may be described explicitly. Let θ be a primitive nth root of
unity in K. There is one code word for each β ∈ K, namely,

cw(β) = (tr(β), tr(βθ), . . . , tr(βθn−1)).

In [14], Van Der Vlugt has shown that

wt(cw(β−1)) =
1

2d
[2se −

∑
χ(β)gK(χ)],

where wt denotes the weight of the code word and where the sum is over all
non-trivial characters χ satisfying χd = ε.

The sum ∑
χ(β)gK(χ)

will be the main concern of this paper. In section 2 we develop a matrix
approach for computing this sum. We then use this matrix technique in
section 3 to obtain a lower bound for the minimal weight of C in the case
s = 2 and d = 2k − 1 for some positive integer k. In section 4 we discuss
applications of this sum in linear recurrences and diagonal equations.

Although we restrict our attention to binary codes, the methods of this
paper can also be applied to codes in odd characteristic.

2 The Matrix Approach

2.1 The sum

Define an equivalence relation on Z/dZ by: a ∼ b iff a = b2t for some t ∈ Z.
Let H be the subgroup of (Z/dZ)∗ generated by 2. The equivalence classes
of ∼ have the form cH = {ch : h ∈ H}, for c ∈ Z/dZ. These are the
well-studied cyclotomic cosets .
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The following theorem is well known. It follows for example from Theorem
2.47 of [8].

Theorem 2.1. (1) The number of equivalence classes of ∼ is given by

NC(d) =
∑

f |d

φ(f)

ordf (2)
.

When f = 1 we take φ(f)/ordf (2) to be 1.
(2) For any 0 6= c ∈ Z/dZ, |cH| = ordf (2), where f = d/(c, d).
(3) For any b, c ∈ Z/dZ, |bcH| divides |cH|.

Lemma 2.2. Let χ be a multiplicative character of K. Then gK(χ2) =
gK(χ).

Proof:

gK(χ2) =
∑
x∈K∗

(−1)trxχ2(x) =
∑
x∈K∗

(−1)tr(x2)χ(x2) = gK(χ),

since K2 = K.

Throughout, we fix a primitive root α of L and a primitive dth root
of unity, ω. Let λ denote the multiplicative character of L sending α to
ω. Then the list of multiplicative characters of L with trivial dth power is:
ε, λ, λ2, . . . , λd−1.

Pick a primitive root δ of K such that NK/L(δ) = α. Set χ = λ ◦ NK/L.
Then χi = λi ◦ NK/L and the characters of K with trivial dth power are χi

for 0 ≤ i ≤ d− 1. The sums we want to compute then become

d−1∑
i=1

χi(δj)gK(χi).

We will let C denote a fixed and ordered set of representatives of the
cyclotomic cosets mod d.

For s ≥ 0, define Sum(j, s) by

Sum(j, s) =
∑

06=c∈C

[∑
i∈cH

λi(αj)

]
gL(λc)s.
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Lemma 2.3.
d−1∑
i=1

χi(δj)gK(χi) = (−1)s−1Sum(j, s).

Proof:

d−1∑
i=1

χi(δj)gK(χi) =
∑

0 6=c∈C

[∑
i∈cH

χi(δj)

]
gK(χc) by Lemma 2.2

= (−1)s−1
∑

06=c∈C

[∑
i∈cH

χi(δj)

]
gL(λc)s,

by the Hasse-Davenport Theorem. Now,

χj(δj) = λi(NK/L(δj)) = λi(αj).

Proposition 2.4. Sum(2j, s) = Sum(j, s).

Proof: Let
C(j, c) =

∑
i∈cH

λi(αj).

Notice that

C(2j, c) =
∑
i∈cH

λi(α2j) =
∑
i∈cH

ω2ij =
∑
i∈cH

λ2i(αj) = C(j, c),

since the sum is over cH and 2i ∈ cH if and only if i ∈ cH. Hence, by the
Lemma 2.3 we have,

Sum(2j, s) =
∑

06=c∈C
C(2j, c)gL(λcs) =

∑

06=c∈C
C(j, c)gL(λcs) = Sum(j, s).

Consequently, we have now reduced the computation of the sums down
to computing just Sum(c, s) for c ∈ C.
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Theorem 2.5. Let c(x) be an irreducible polynomial over F2 of degree se
and order n = (2se − 1)/d. Further, let C be the irreducible code based on
c(x).

(1) The maximum number of distinct non-zero weights of C is NC(d).
(2)Assume that C has exactly NC(d) many distinct weights. Then the

number of codewords of weight

1

2d
(2se + (−1)sSum(c, s))

is |cH|n.

Proof: (1) is by Proposition 2.4. For (2) note that χd = ε implies χ(δd) =
1. Then for any integers c, h, j we have Sum(ch+ jd, s) = Sum(ch, s), which
is in turn equal to Sum(c, s) by Proposition 2.4. Then for each ch ∈ cH and
each 0 ≤ j < n, the codeword cw(δ−(ch+jd)) has weight

wc =
1

2d
(2se − (−1)s−1Sum(c, s)),

by van der Vlugt’s formula and Lemma 2.3. Let N(wc) denote the number
of codewords of weight wc. We have just shown N(wc) ≥ n|cH|. Suppose
the wc’s, as c runs through C, are distinct. Then

2se − 1 =
∑
c∈C

N(wc) ≥
∑
c∈C

n|cH| = nd = 2se − 1

We thus have equality throughout: N(wc) = n|cH|.

The reason for the hypothesis in Theorem 2.5(2) is simply that sometimes,
for small s, it can happen that Sum(b, s) = Sum(c, s) for distinct b, c ∈ C.
Then the frequency is the sum |bH|n + |cH|n.

2.2 The matrix

As before, fix a primitive dth root of unity ω ∈ C. For b ∈ Z/dZ, set

βb =
∑

x∈bH

ωx.
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Lemma 2.6. For b, c ∈ Z/dZ

|cH|
|bcH|βbc =

∑
x∈cH

ωbx.

Proof Map ψ : cH → bcH by x 7→ bx. We Claim that if y, y′ ∈ bcH
then |ψ−1(y)| = |ψ−1(y′)|. Namely, suppose ψ−1(y) = {x1, x2, . . . , xr}. Now
y′ = yh0 for some h0 ∈ H. Then x1h0, x2h0, . . . , xrh0 are distinct elements of
cH and each is mapped to yh0 = y′. Hence |ψ−1(y)| ≤ |ψ−1(y′)|. Reversing
the roles of y and y′ gives the other inequality and proves the Claim.

Let Y be the common value of the |ψ−1(y)|’s. Then |bcH| = Y |cH|.
Thus:

∑
x∈cH

ωbx =
∑

y∈bcH

∑

x∈ψ−1(y)

ωbx =
|cH|
|bcH|

∑

y∈bcH

ωy =
|cH|
|bcH|βbc.

Corollary 2.7. For b ∈ Z/dZ

Sum(b, s) =
∑

0 6=c∈C

|cH|
|bcH|βbcgL(λc)s.

Proof: By Lemma 2.3 we have

Sum(b, s) =
∑

0 6=c∈C

[∑
i∈cH

λi(αb)

]
gL(λc)s.

Now λi(αb) = ωib so the result follows from Lemma 2.6.

Set, for c ∈ Z,

Ac =

2e−1
d
−1∑

i=0

(−1)tr(αc+id).

We will write the range of summation in Ac more simply as m ≡ t
(mod d).

Lemma 2.8. For each non-zero b ∈ C we have

gL(λb) =
∑
c∈C

|cH|
|bcH|Acβbc.
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Proof: Let α generate L∗ and let ω ∈ C be a primitive d root of unity.
We have

gL(λb) =
2e−2∑
i=0

(−1)tr(αi)λb(αi) =
2e−2∑
i=0

(−1)tr(αi)ωbi

=
d−1∑
t=0




2e−1
d
−1∑

m=0

(−1)tr(αt+md)


 ωbt =

d−1∑
t=0

Atω
bt.

We Claim that At = A2t, with the subscripts taken modulo d. Namely,

At =
∑

m≡t (mod d)

(−1)tr(αm) =
∑

2m≡2t (mod d)

(−1)tr(αm)

=
∑

2m≡2t (mod d)

(−1)tr(α2m) =
∑

`≡2t (mod d)

(−1)tr(α`) = A2t.

Thus there are at most |C| distinct At’s, namely the Ac for c ∈ C. Then

gL(λb) =
d−1∑
t=0

Atω
bt =

∑
c∈C

∑
j∈cH

Ajω
jb

=
∑
c∈C

Ac

∑
j∈cH

ωjb =
∑
c∈C

Ac
|cH|
|bcH|βbc,

by Lemma 2.6.

For a, b, c ∈ C define

D(a, b, c) = N(x + y = c),

the number of solutions to x + y = c where x ∈ aH and y ∈ bH.

Lemma 2.9.

|aH|
|amH|

|bH|
|bmH|βamβbm =

∑
c∈C

|cH|
|cmH|D(a, b, c)βcm.
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Proof: From Lemma 2.6 we have

|aH|
|amH|βam

|bH|
|bmH|βbm =

∑
x∈aH

ωmx
∑

y∈bH

ωmy

=
∑
x∈aH

∑

y∈bH

ωm(x+y)

=
∑
c∈C

∑
z∈cH

N(x + y = z)ωmz,

where N(x + y = z) is the number of solutions with x ∈ aH and y ∈ bH.
For each z ∈ cH, N(x + y = z) equals N(x + y = c). We thus have

|aH|
|amH|βam

|bH|
|bmH|βbm =

∑
c∈C

D(a, b, c)
∑
z∈cH

ωmz =
∑
c∈C

D(a, b, c)
|cH|
|cmH|βcm,

using Lemma 2.6 again.

Let r = |C|. Define the r × r matrix E by

E(a, c) =
|cH|
|aH|

∑

b∈C
AbD(a, b, c).

Lemma 2.10.

βamgL(λm) =
∑
c∈C

|amH|
|cmH|E(a, c)βcm.

Proof: Each of the following sums is over C.

βamgL(λm) = βam

∑

b

|bH|
|bmH|Abβbm by Lemma 2.8

=
∑

b

|amH|
|aH| Ab

|aH|
|amH|

|bH|
|bmH|βamβbm

=
∑

b

|amH|
|aH| Ab

∑
c

|cH|
|cmH|D(a, b, c)βcm by Lemma 2.9

=
∑

c

|amH|
|aH|

|cH|
|cmH|

(∑

b

AbD(a, b, c)

)
βcm

=
∑

c

|amH|
|aH|

|cH|
|cmH|

|aH|
|cH|E(a, c)βcm,
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which gives the result.

Theorem 2.11.

Sum(a, s + 1) =
∑
c∈C

E(a, c)Sum(c, s).

Proof Again each sum is over C.

Sum(a, s + 1) =
∑

b6=0

|bH|
|abH|βabgL(λb) · gL(λb)s by Corollary 2.7

=
∑

b6=0

|bH|
|abH|gL(λb)s

∑
c

|abH|
|bcH|E(a, c)βbc by Lemma 2.10

=
∑

c

E(a, c)
∑

b6=0

|bH|
|bcH|βbcgL(λb)s

=
∑

c

E(a, c)Sum(c, s),

by Corollary 2.7 again.

Let Ss be the (column) vector with entries Sum(c, s), over c ∈ C (includ-
ing c = 0). Further, let v0 = (1− d, 1, . . . 1).

Corollary 2.12. For all s ≥ 0 we have

Ss = −Esv0,

Proof: By Theorem 2.11, it suffices to check only that v0 = S0. By our
definition of Sum(j, s) we have

Sum(b, 0) =
∑

06=c∈C

∑
i∈cH

λi(αj) =
∑

0 6=c∈C

∑
i∈cH

ωbi =
d−1∑
y=1

ωbi

which is d− 1 if b = 0 and -1 otherwise.

Combining this with Theorem 2.5 yields
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Theorem 2.13. Let c(x) be an irreducible polynomial over F2 of degree se
and order n = (2se − 1)/d. Further, let C be the irreducible code based on
c(x). The non-zero weights of C are given by

1

2d
(2sej − (−1)sEsv0) .

where j is the vector consisting of r 1’s.

2.3 Properties of E

Lemma 2.14. For a, b and c ∈ C, D(a, b, c) = |(c− aH) ∩ bH|.
Proof: D(a, b, c) is the number of pairs, x ∈ aH, y ∈ bH, such that

x + y = c. Thus D(a, b, c) = |(c− aH) ∩ bH|.

Lemma 2.15. For a fixed pair a, c ∈ C,
∑

b∈C
D(a, b, c) = |aH|.

Proof: By the previous lemma,

∑

b∈C
D(a, b, c) =

∑

b∈C
|(c− aH) ∩ bH|.

For each ah ∈ aH, c− ah is in exactly one bH hence the result follows.

For a, b and c ∈ C, set

T (a, b, c) = |(a + bH) ∩ cH|.

Lemma 2.16. For a, b, and c in C, T (a, b, c) = T (a,−c,−b)

Proof: T (a, b, c) is the number of solutions to a + y = z, with y ∈ bH
and z ∈ cH. T (a,−c,−b) is the number of solutions to a − z = −y, with
z ∈ cH and y ∈ bH. These are clearly the same.
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Proposition 2.17. For a, b and c ∈ C, we have

E(a, c) =
∑

b∈C
AbT (a, b, c)

. In particular, the entries of E are integers.

Proof; Let M(a, b, c) = |{(x, y, z) : x + y = z, x ∈ aH, y ∈ bH, z ∈ cH}|.
Say aH = {ah1, ah2, . . . , aht1}. Then given z ∈ (a + bH) ∩ cH, multiply by
each hi, 1 ≤ i ≤ t1, to get a solution x + y = z counted by M(a, b, c). We
obtain

M(a, b, c) = |aH|T (a, b, c)

Similarly, if cH = {ch1, ch2, . . . , cht2}, then given z ∈ (a−cH)∩bH, multiply
by each hi, 1 ≤ i ≤ t2, to get a solution x + y = z counted by M(a, b, c).
Hence,

M(a, b, c) = |cH|D(a, b, c).

Now,

E(a, c) =
|cH|
|aH|

∑

b∈C
AbD(a, b, c) =

1

|aH|
∑

b∈C
AbM(a, b, c) =

∑

b∈C
AbT (a, b, c).

Let j be the vector consisting of r 1’s.

Proposition 2.18. j is an eigenvector of Es corresponding to the eigenvalue
(−1)s.

Proof: It suffices to show that j is an eigenvector of E with eigenvalue
−1. The ath coordinate of Ej is

(Ej)a =
∑
c∈C

E(a, c) =
∑
c∈C

∑

b∈C
AbT (a, b, c) =

∑

b∈C
Ab

∑
c∈C

T (a, b, c).

Now consider the sets {(a + bH) ∩ cH} for c ∈ C. These are disjoint since
the cH’s are. Further,

⋃
c∈C

[(a + bH) ∩ cH] = (a + bH) ∩
⋃
c∈C

cH = a + bH.

Hence,
∑
c∈C

T (a, b, c) =
∑
c∈C

|(a + bH) ∩ cH| = |a + bH| = |bH|.
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We thus have,

(Ej)a =
∑

b∈C
Ab|bH| =

∑

b∈C
|bH|

2e−1
d
−1∑

i=0

(−1)tr(αb+di)

=
∑

b∈C

∑

y∈bH

2e−1
d
−1∑

i=0

(−1)tr(αy+di) =
∑

β∈L∗
(−1)tr(β) = −1.

Corollary 2.19. Esv0 = (−d[Es(a, 0)]a∈C + (−1)sj)T .

Proof: Let u be the vector with first entry −d and 0 elsewhere.

Esv0 = Es(u + j) = Es(u) + Es(j) = (−d[Es(a, 0)]a∈C + (−1)sj)T

by the previous proposition.

Example 1: Using these techniques it was relatively straight forward to
write a computer program to compute the weights of the codewords of an
irreducible code. We ran this program for all d < 400 with e < 18 and the
program ran quickly. But of course the time increases as e does. Here is the
output for d = 51.

d = 51

H = {1, 2, 4, 8, 16, 32, 13, 26}
e = 8

C =

c |cH|
0 1
1 8
3 8
5 8
9 8
11 8
17 2
19 8

12



v = [5, 1, 1,−3,−3, 1, 5, 1]

E =




5 8 8 −24 −24 8 10 8
1 4 4 0 0 −12 −2 4
1 −4 −4 8 −8 4 −2 4
1 4 4 0 0 4 −2 −12

−3 8 −8 0 0 0 2 0
−3 −8 8 0 0 0 2 0

5 −8 −8 8 8 −8 10 −8
1 −4 −4 −8 8 4 −2 4




With s = 2 the vector of non-zero weights, 2sej − (−1)sEsv0, is

[704, 664, 648, 632, 640, 640, 672, 616]

and with s = 3 it is

[163584, 164448, 164768, 164064, 164480, 164736, 163968, 164640].

Note that when s = 2, one weight (640) occurs for two cyclotomic cosets
while for s = 3, the cyclotomic cosets have distinct weights. Hence, when
s = 2, we have n = 1285 and C has

# of codewords weight
1n = 1285 704
8n = 10280 664
8n = 10280 648
8n = 10280 632
16n = 20560 640
2n = 2570 672
8n = 10280 616

Similarly, when s = 3, we have n = 328965 and C has

# of codewords weight
1n = 328965 163584
8n = 2631720 164448
8n = 2631720 164768
8n = 2631720 164064
8n = 2631720 164480
8n = 2631720 164736
2n = 657930 163968
8n = 2631720 164640 .
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Next, we illustrate the use this matrix technique in deriving a formula for
the weights of C in the case d = 2k + 1. This formula also follows from the
work in [4].

Set L0 = {β ∈ L : tr(β) = 0}.
Lemma 2.20. Let d = 2k + 1, for some positive integer k. For c ∈ C, set
Vc = {αc+md}∪{0} for m = 0, . . . , 2k−1. Then V0 is a subfield of L contained
in L0 and Vc, for c 6= 0, is a subspace of L with |Vc ∩ L0| = 2k−1.

Proof: First notice that 22k − 1 = (2k − 1)(2k + 1) = 0 (mod d), hence
e = 2k. Next we show that V0 is a subfield of L contained in L0. Suppose
0 ≤ m ≤ 2k − 1. (αmd)2k−1 = αm(2e−1) = (α2e−1)m = 1. Hence, V0 is a
subfield of L isomorphic to F2k .

tr(αmd) = αmd + (αmd)2 + · · ·+ (αmd)2k−1

+ (αmd)2k

+ · · ·+ (αmd)2e−1

= αmd + (αmd)2 + · · ·+ (αmd)2k−1

+ (αmd) + · · ·+ (αmd)2k−1

= 0,

and thus V0 ⊂ L0. To show Vc is a subspace of L for c 6= 0, suppose
0 ≤ m,m′ ≤ 2k − 1. αc+md + αc+m′d = αc(αmd + αm′d) = αcαm′′d for some
0 ≤ m′′ ≤ 2k−1 since V0 is a subspace of L. Hence, αc+md +αc+m′d = αc+m′′d

and Vc is a subspace of L. Finally notice that since L0 is a hyperplane in L,
either Vc ⊂ L0 or | Vc ∩ L0 |= 2k−1. If Vc ⊂ L0 then since Vc ∩ V0 = {0}, we
would have the 2k-dimensional space Vc + V0 contained inside the (2k − 1)-
dimensional space L0, a contradiction.

Corollary 2.21. Let d = 2k + 1, for some positive integer k. For c ∈ C, we
have

Ac =

{
2k − 1 if c = 0
−1 otherwise

.

Proof: Recall that

Ac =

2e−1
d
−1∑

i=0

(−1)tr(αc+md).

In this case (2e − 1)/d = 2k − 1. The result now follows from the previous
lemma.
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Theorem 2.22. Let d = 2k + 1 for some positive integer k. Suppose c(x) is
an irreducible polynomial over F2 of degree 2ks and order n = (22ks − 1)/d.
Then the irreducible code C based on c(x) has two non-zero weights given by

1

2d
(22sk − (−1)s2sk) and

1

2d
(22sk + (−1)s(d− 1)2sk).

Proof: We use the previous corollary in the following computation.

E(a, c) =
|cH|
|aH|

∑

b∈C
AbD(a, b, c)

=
|cH|
|aH| [2

kD(a, 0, c)−
∑

b∈C
D(a, b, c)]

=
|cH|
|aH|(2

kD(a, 0, c)− |aH|),

by Lemma 2.15. Since

D(a, 0, c) =

{
1 if a = c
0 otherwise

we have

E(a, c) =

{
2k − |cH| if a = c
−|cH| otherwise

.

Now, for s ≥ 0 set

F (s) =
s∑

i=0

(−1)i2(s−i)k.

Notice that

2kF (s) =
s∑

i=0

(−1)i2(s−i+1)k = F (s + 1)− (−1)s+1,

so that

(2k−1)F (s)+2kF (s−1) = F (s+1)−(−1)s+1−F (s)+F (s)−(−1)s = F (s+1).

That is, for s ≥ 1, F satisfies the recurrence

F (s + 1) = (2k − 1)F (s) + 2kF (s− 1).

15



We Claim that the first column of Es, for s ≥ 1, is given by [F (s),−F (s−
1), . . . ,−F (s − 1)]T . We prove this claim by induction on s. If s = 1, the
result is easy to check. For s > 1, notice that

Es+1(0, 0) = (2k − |0H|)F (s) +
∑

c∈C\{0}
|cH|F (s− 1)

= (2k − 1)F (s) + 2kF (s− 1) = F (s + 1),

and for a 6= 0,

Es+1(a, 0) = −|0H|F (s)− 2kF (s− 1) +
∑

c∈C\{0}
|cH|F (s− 1)

= −F (s)− 2kF (s− 1) + 2kF (s− 1) = F (s).

This proves the Claim.
Next, notice that

2kF (s) =
s∑

i=0

(−1)i2(s−i+1)k = 2(s+1)k +
s∑

i=1

(−1)i2(s−i+1)k

= 2(s+1)k +
s−1∑
i=0

(−1)i−12(s−i)k = 2(s+1)k − F (s) + (−1)s,

so that
dF (s) = 2(s+1)k + (−1)s.

By Corollary 2.19, we have

Esv0 = [−d[Es(a, 0)]a∈C + (−1)sj]T

= [−dF (s) + (−1)s, dF (s− 1) + (−1)s, . . . , dF (s− 1) + (−1)s]T

= [−2(s+1)k, 2sk, . . . , 2sk]T .

The result now follows from Theorem 2.13.

3 Minimal Weights

3.1 Some results of Niederreiter

In this subsection we generalize some results of Niederreiter. These gener-
alizations will be needed in the next subsection to obtain a lower bound on
the minimal weight of C in the case d = 2k − 1.

16



We begin with p being a prime and q being a power of p. For a non-trivial
additive character χ of Fq, let χ(s) denote the additive character obtained by
lifting χ to an extension field Fqs .

For a, b ∈ Fq, with ab 6= 0, and β ∈ F ∗
q , define

Kβ(χ; a, b) =
∑
c∈F ∗q

χ(acβ + bc−1).

Theorem 3.1. There exist complex numbers ω1 and ω2(only depending on
χ, a and b) that are either complex conjugates or both real such that for any
positive integer s we have

Kβ(χ(s); a, b) = −ωs
1 − ωs

2.

Proof: Note that if β = 1, this theorem is precisely Theorem 5.43 of [8].
The proof of [8] Theorem 5.43 will work here as well. Just replace line 6 of
page 277 with γβ(g) = χ(ac1β + bck−1c

−1
k ), if ck 6= 0.

Corollary 3.2. The complex numbers ω1 and ω2 of Theorem 3.1 satisfy |ω1+
ω2| ≤ 2

√
q.

Proof: As in the proof of Theorem 5.43 of [8], we have

L(z) = 1 + Kβz + qz2 = (1− ω1z)(1− ω2z).

Hence ω1ω2 = q and

|ω1 + ω2| ≤ |ω1|+ |ω2| = √
ω1ω2 +

√
ω2ω1 = 2

√
q.

We will need these results only in the case when q = 2e, a = b = s = 1
and χ is the character on L defined by χ(β) = (−1)tr(β). In this case we have

Corollary 3.3. There exists complex numbers ω1 and ω2 that are complex
conjugates or both real such that

∑
γ∈L∗

(−1)tr(βγ+γ−1) = −ω1 − ω2.

Further, |ω1 + ω2| ≤ 2
√

2e.
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For β ∈ L, let Ψβ denote the linear map Ψβ : L → F , defined by Ψβ(γ) =
tr(βγ). Further, let L−1

0 = {β−1 ∈ L∗ : β ∈ L0}.
The next proposition was inspired by the proof of [13] Theorem 2.

Proposition 3.4. For β ∈ L∗, we have

|L−1
0 ∩KerΨβ| ≥ 1

4
(2e − 3− 2

√
2e).

Proof:

|L−1
0 ∩KerΨβ| =

∑
γ∈L∗

(
1

2

∑

a∈F2

(−1)γtr(γβ))(
1

2

∑

b∈F2

(−1)btr(γ−1))

=
1

4

∑
γ∈L∗

[(−1)0 + (−1)tr(γβ)][(−1)0 + (−1)tr(γ−1)]

=
1

4
(
∑
γ∈L∗

1 +
∑
γ∈L∗

(−1)tr(γβ) +
∑
γ∈L∗

(−1)tr(γ−1) +
∑
γ∈L∗

(−1)tr(γβ+γ−1)

=
1

4
[(2e − 1) + (−1) + (−1)− (ω1 + ω2)]

≥ 1

4
(2e − 3− |ω1 + ω2|) ≥ 1

4
(2e − 3− 2

√
2e)

by Corollary 3.3.

3.2 The bound

We begin this section with d arbitrary but will later restrict d = 2k − 1, for
some positive integer k. This is a case where the Gauss sums have not been
computed.

For each a ∈ C, define the r × r matrix STa by STa(b, c) = T (a, b,−c).
Notice that STa(c, b) = T (a, c,−b) = T (a, b,−c) = STa(b, c), by Lemma 2.16.
Hence STa is a symmetric matrix. Consider the quadratic form Qa(x) =
xT STax and recall that v = [Ab]b∈C.

Proposition 3.5. The first column of E is given by E(a, 0) = A−a and the
first column of E2 is given by E2(a, 0) = Qa(v).

18



Proof: First notice that |0H| = 1 and

D(a, b, 0) = |(0− aH) ∩ bH| =
{ | − aH| if b ∈ −aH

0 otherwise
.

Consequently,

E(a, 0) =
|0H|
|aH|

∑

b∈C
AbD(a, b, 0) =

1

|aH|(A−a| − aH|) = A−a.

For the second part notice that

E2(a, 0) =
∑
c∈C

E(a, c)E(c, 0) =
∑
c∈C

∑

b∈C
AbA−cT (a, b, c)

by the first part of this proposition and Propostion 2.17. Consequently,

E2(a, 0) =
∑
c∈C

∑

b∈C
AbA−cT (a, b, c) =

∑
c∈C

∑

b∈C
AbA−cSTa(b,−c)

=
∑
c∈C

∑

b∈C
AbSTa(b, c)Ac = vT STav = Qa(v).

Lemma 3.6. Qa(j) = d.

Proof: First notice that the bth entry of STaj is

(STaj)b =
∑
c∈C

STa(b, c) =
∑
c∈C

T (a, b,−c) =
∑
c∈C

T (a, b, c)

=
∑
c∈C

|(a + bH) ∩ cH| = |a + bH| = |bH|.

Hence,

Qa(j) = jT STaj =
∑

b∈C
(STaj)b =

∑

b∈C
|bH| = d.

Now consider the case when d = 2k − 1 for some positive interger k. It is
easy to see that e = k in this case.

Proposition 3.7. v = [(−1)tr(αb)]b∈C.
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Proof:

Ab =

[(2e−1)/d]−1∑
i=0

(−1)tr(αb+di) =
0∑

i=0

(−1)tr(αb+di) = (−1)tr(αb).

Write v = j + 2v1, where v1 = [−tr(αb)]b∈C. Further, set C0 = {c ∈ C :
tr(αc) = 0} and C1 = {c ∈ C : tr(αc) = 1}.
Theorem 3.8. The first column of E2 becomes:

E2(a, 0) = 4(|L−1
0 ∩KerΨα−a| − 2k−2) + 3.

Proof:

E2(a, 0) = Qa(v) = Qa(j + 2v1) = Qa(j) + 4Ba(j, v1) + 4Qa(v1)

= d + 4(jT STav1 + vT
1 STav1) = d + 4((jT + vT

1 )STav1) (*)

where we have used Lemma 3.6 for the fourth equality above. Now jT +vT
1 =

[1− tr(αb)]b∈C and

1− tr(αb) =

{
0 if tr(αb) = 1
1 if tr(αb) = 0

hence
(jT + vT

1 )STa = [
∑

b∈C0
STa(b, c)]c∈C

and

(jT + vT
1 )STav1 = −

∑
c∈C1

∑

b∈C0
STa(b, c) =

∑
c∈C1

∑

b∈C0
|(a + bH) ∩ −cH|

= |{bh : tr(αb) = 0, a + bh ∈ −cH for some c with tr(αc) = 1}|
= |{β ∈ L∗0 : α−aβ−1 = γ for some γ /∈ L0}| = |{β ∈ L∗0 : tr(α−aβ−1) = 1}|
= 2k−1 − 1− |{β ∈ L∗0 : tr(α−aβ−1) = 0}|
= 2k−1 − 1− |L−1

0 ∩KerΨα−a|. (**)
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Combining (*) and (**) we obtain

E2(a, 0) = d− 4(2k−1 − |L−1
0 ∩KerΨα−a| − 1)

= 2k − 1− 2k+1 + 4|L−1
0 ∩KerΨα−a|+ 4

= −2k + 4|L−1
0 ∩KerΨα−a|+ 3

= 4(|L−1
0 ∩KerΨα−a| − 2k−2) + 3.

Theorem 3.9. Let c(x) be an irreducible polynomial over F2 of degree 2k
and order 2k +1. The minimal weight of the irreducible code C based on c(x)
is no smaller than the ceiling of 2k−1 − 2k/2 + 1/2.

Proof: From Theorem 2.14, we have that the non-zero weights of C are
given by 1

2d
(2sej − Esv0). Using Corollary 2.19 and Theorem 3.8 we obtain

1

2d
(2sej − Esv0) =

1

2d
(22kj + d[E2(a, 0)]a∈C − j) =

1

2
((2k + 1)j + [E2(a, 0)]a∈C)

= [
1

2
(2k + 1 + 4|L−1

0 ∩KerΨα−a| − 2k + 3)]a∈C

= [2 + 2|L−1
0 ∩KerΨα−a|]a∈C.

Hence, the minimal weight of C is 2(|L−1
0 ∩KerΨβ| + 1), for some β ∈ L∗.

But by Proposition 3.4, 2(|L−1
0 ∩KerΨβ| + 1) ≥ 2(1

4
(2e − 3− 2

√
2e) + 1) =

1
2
2e−√2e + 1

2
= 2k−1− 2k/2 + 1

2
. Since the minimal weight is an integer, the

result follows.

Let B be the ceiling of 2k−1 − 2k/2 + 1/2. We have computed the exact
minimal weight of C for k = 2, . . . , 10. For k = 3, 5, 7, 9, the minimal weight
is B. For k = 2, 4, 6, 8, 10, the minimal weight is B + 1. Hence, we make the
following

Conjecture: The minimal weight of C is
{

B if k is odd
B + 1 if k is even

.

4 Other Applications

A kth order linear recurrence

(s) sm+k = ak−1sm+k−1 + · · ·+ a1sm+1a0sm
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(each ai ∈ F2) together with a vector of initial values I = (s0, s1, . . . , sk−1)
determine an infinite sequence (s, I). We assume that the characteristic
polynomial c(x) of (s) is irreducible. Then (s, I) is periodic with period
n = ord(c(x)). We denote the terms of one period by π(s, I).

Let m(x) be the reciprocal of c(x) and let C be the irreducible code
generated by (xn − 1)/m(x). Then the codewords of C are precisely the
periods π(s, I) as I runs over Fk

2, a result that goes back at least to [1] and
can be found in [8], p. 485. We get immediately:

Theorem 4.1. Let (s) be an irreducible linear recurrence of order se and
period n = (2se − 1)/d and let I be a non-zero vector of intial values. Then
the number of occurrences of 0 in one period of (s, I) is n−α , where α is a
non-zero weight of C.

Remark: [8] has bounds on Zs(0), the number of zeros in one period of
(s), namely,

∣∣∣∣Zs(0)− (2se−1 − 1)n

2k − 1

∣∣∣∣ ≤
1

2
(1− n

2se − 1
)2se/2.

This bound is excellent in the sense that both the upper and lower bounds
are achieved. However, relatively few of the values in this range arise as
Zs(0).

Example 2: Suppose se = 10 and n = 341. Then d = 3, e = 2 and
s = 5. By Theorem 2.22, the non-zero weights of C are 176 and 160. Then
by Theorem 4.1, Zs(0) is 165 or 181. Compare this with the bound from [8],
which gives

159.7 ≤ Zs(0) ≤ 181.

Of the 22 values in this range, only two can occur as Zs(0). In fact, both
values of 165, 181 do occur. For

c(x) = x10 + x3 + x2 + x + 1

(which is irreducible of order 341) we get Zs(0) = 165. And for

c(x) = x10 + x4 + x3 + x2 + 1

(also irreducible of order 341) we get Zs(0) = 181.
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Now we consider diagonal equations. Let N denote the number of solution
in K to the diagonal equation

s∑
i=1

xd
i = 0.

In [16] and [17], Wolfman gives a direct connection between diagonal equa-
tions and irreducible codes. His result may be stated as:

Theorem 4.2. Let c(x) be an irreducible polynomial over F2 of degree se
and order n = (2se − 1)/d. Further, let C be the irreducible code based on
c(x) and let ni be the number of codewords in C of weight i. Then

N =
1

2se

n∑
i=0

ni(2
se − 2di)s.

Example 3: From Example 1 we see that the number of solutions in
F216 to the equation

x51
1 + x51

2

is then
1

216
[1285(216 − 102 · 704)2 + 10280(216 − 102 · 664)2

+10280(216 − 102 · 648)2 + 10280(216 − 102 · 632)2

+20560(216 − 102 · 640)2 + 2570(216 − 102 · 672)2

+10280(216 − 102 · 616)2] = 3276750,

and the number of solutuions in F224 to the equation

x51
1 + x51

2 + x51
3

is 25735845156840.
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