374,960 research outputs found

    Hybrid Information Flow Analysis for Programs with Arrays

    Full text link
    Information flow analysis checks whether certain pieces of (confidential) data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.Comment: In Proceedings VPT 2016, arXiv:1607.0183

    Traffic Congestion Warning Model Based on GIS \ GPS \ GPRS \ RFID Technology

    Get PDF
    To get the road network in the vehicle's location, speed, direction and a series of information, it innovative RFID-based dynamic access, GPRS (General Packet Radio Service) two-way communications. GPS real-time positioning and GIS path tracking system of the dynamic traffic conditions can be received from information flow, data flow, timely mutual transmission and accurate identification of different vehicles. Thus, through a summary of the above information and combining GIS geographic information system, we can obtain city status in real-time traffic information. It used BP-GM hybrid model to predict traffic way and changed previous single model for efficient and accurate prediction of future time. In order to achieve travel warning and traffic congestion route, quantitative research results and timely feedbacks were used for coming period of road network conditions to prevent the occurrence of massive congestion

    Multimodal hybrid powerplant for unmanned aerial systems (UAS) robotics

    Get PDF
    Most UAS propulsion systems currently utilize either Internal Combustion Engines (ICE) or Electric Motor (EM) prime movers. ICE are favoured for aircraft use due to the superior energy density of fuel compared to batteries required for EM, however EM have several significant advantages. A major advantage of EM is that they are inherently self starting have predictable response characteristics and well developed electronic control systems. EMs are thus very easy to adapt to automatic control, whereas ICE have more complex control response and an auxiliary starting motor is required for automated starting. This paper presents a technique for determining the performance, feasibility and effectiveness of powerplant hybridisation for small UAS. A Hybrid Powerplant offers the possibility of a radical improvement in the autonomy of the aircraft for various tasks without sacrificing payload range or endurance capability. In this work a prototype Aircraft Hybrid Powerplant (AHP) was designed, constructed and tested. It is shown that an additional 35% continuous thrust power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given UAS. Dynamometer and windtunnel results were obtained to validate theoretical propulsion load curves. Using measured powerplant data and an assumed baseline airframe performance characteristic, theoretical endurance comparisons between hybrid and non-hybrid powerplants were determined. A flight dynamic model for the AHP was developed and validated for the purposes of operational scenario analysis. Through this simulation it is shown that climb rates can be improved by 56% and endurance increased by 13%. The advantages of implementing a hybrid powerplant have been baselined in terms of payload range and endurance. Having satisfied these parameters, a whole new set of operational possibilities arises which cannot be performed by non-self-starting ICE only powered aircraft. A variety of autonomous robotic aircraft tasks enabled by the hybrid powerplant is discussed

    Assessment of economic feasibility for gridconnected renewable energy system for a household application in Terengganu

    Full text link
    This article extends the conference paper ‘Simulation-based method to evaluate PV/wind hybrid renewable energy system in Terengganu’. Instead of off-grid system considered in the conference version, inspired by feed-in-tariff introduced by The Government of Malaysia, this article includes grid-connected hybrid renewable energy system to examine their feasibility to be used as power supply for a household in Terengganu. In addition, this article compares the performance of grid-only system and hybrid grid-renewable energy systems in terms of cost of electricity and emission of pollutant. The payback period is also examined based on the current sellback rate. Sensitivity analysis is done to find the best sellback rate for a hybrid grid/PV/wind system to compete with a hybrid grid/PV system. In addition, the most optimal configuration is also determined by varying the value of solar radiation, wind speed and sellback rate. Generally, it is concluded that the hybrid grid/PV system is the most practicable choice to be used as power generator to supply electricity for a household in Terengganu

    A Study on the Integration of a High-Speed Flywheel as an Energy Storage Device in Hybrid Vehicles

    Get PDF
    The last couple of decades have seen the rise of the hybrid electric vehicle as a compromise between the outstanding specific energy of petrol fuels and its low-cost technology, and the zero tail-gate emissions of the electric vehicle. Despite this, considerable reductions in cost and further increases in fuel economy are needed for their widespread adoption. An alternative low-cost energy storage technology for vehicles is the high-speed flywheel. The flywheel has important limitations that exclude it from being used as a primary energy source for vehicles, but its power characteristics and low-cost materials make it a powerful complement to a vehicle's primary propulsion system. This thesis presents an analysis on the integration of a high-speed flywheel for use as a secondary energy storage device in hybrid vehicles. Unlike other energy storage technologies, the energy content of the flywheel has a direct impact on the velocity of transmission. This presents an important challenge, as it means that the flywheel must be able to rotate at a speed independent of the vehicle's velocity and therefore it must be coupled via a variable speed transmission. This thesis presents some practical ways in which to accomplish this in conventional road vehicles, namely with the use of a variator, a planetary gear set or with the use of a power-split continuously variable transmission. Fundamental analyses on the kinematic behaviour of these transmissions particularly as they pertain to flywheel powertrains are presented. Computer simulations were carried out to compare the performance of various transmissions, and the models developed are presented as well. Finally the thesis also contains an investigation on the driving and road conditions that have the most beneficial effect on hybrid vehicle performance, with a particular emphasis on the effect that the road topography has on fuel economy and the significance of this

    Evaluation of In-Use Fuel Economy and On-Board Emissions for Hybrid and Regular CyRide Transit Buses, October 2012

    Get PDF
    The objective of this project was to evaluate the in-use fuel economy and emission differences between hybrid-electric and conventional transit buses for the Ames, Iowa transit authority, CyRide. These CyRide buses were deployed in the fall of 2010. Fuel economy was compared for the hybrid and control buses. Several older bus types were also available and were included in the analysis. Hybrid buses had the highest fuel economy for all time periods for all bus types. Hybrid buses had a fuel economy that was 11.8 percent higher than control buses overall, 12.2 percent higher than buses with model years 2007 and newer, 23.4 percent higher than model years 2004 through 2006, 10.2 percent higher than model years 1998 through 2003, 38.1 percent higher than model years 1994 through 1997, 36.8 percent higher than model years 1991 through 1993, and 36.8 percent higher for model years pre-1991. On-road emissions were also compared for three of the hybrid buses and two control buses using a portable emissions monitor. On-average, carbon dioxide, carbon monoxide, and hybrid carbon emissions were much higher for the control buses than for the hybrid buses. However, on average nitrogen oxide emissions were higher for the hybrid buses
    corecore