110 research outputs found

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, correspond to a distinguished class of function generalising algebraic functions: they are actually diagonals of rational functions. As a consequence, the power series expansions of the, analytic at x=0, solutions of these linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. We also give several results showing that the unique analytical solution of Calabi-Yau ODEs, and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal weights, are always diagonal of rational functions. Besides, in a more enumerative combinatorics context, generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity of ODEs.Comment: This paper is the short version of the larger (100 pages) version, available as arXiv:1211.6031 , where all the detailed proofs are given and where a much larger set of examples is displaye

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, are actually diagonals of rational functions. As a consequence, the power series expansions of these solutions of linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. Besides, in a more enumerative combinatorics context, we show that generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We give a large set of results illustrating the fact that the unique analytical solution of Calabi-Yau ODEs, and more generally of MUM ODEs, is, almost always, diagonal of rational functions. We revisit Christol's conjecture that globally bounded series of G-operators are necessarily diagonals of rational functions. We provide a large set of examples of globally bounded series, or series with integer coefficients, associated with modular forms, or Hadamard product of modular forms, or associated with Calabi-Yau ODEs, underlying the concept of modularity. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity (in particular integrality of the Taylor coefficients of mirror map), introducing new representations of Yukawa couplings.Comment: 100 page

    The colored Jones function is q-holonomic

    Full text link
    A function of several variables is called holonomic if, roughly speaking, it is determined from finitely many of its values via finitely many linear recursion relations with polynomial coefficients. Zeilberger was the first to notice that the abstract notion of holonomicity can be applied to verify, in a systematic and computerized way, combinatorial identities among special functions. Using a general state sum definition of the colored Jones function of a link in 3-space, we prove from first principles that the colored Jones function is a multisum of a q-proper-hypergeometric function, and thus it is q-holonomic. We demonstrate our results by computer calculations.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol9/paper29.abs.htm

    The Quantum Dynamics of the Compactified Trigonometric Ruijsenaars-Schneider Model

    Full text link
    We quantize a compactified version of the trigonometric Ruijse\-naars-Schneider particle model with a phase space that is symplectomorphic to the complex projective space CP^N. The quantum Hamiltonian is realized as a discrete difference operator acting in a finite-dimensional Hilbert space of complex functions with support in a finite uniform lattice over a convex polytope (viz., a restricted Weyl alcove with walls having a thickness proportional to the coupling parameter). We solve the corresponding finite-dimensional (bispectral) eigenvalue problem in terms of discretized Macdonald polynomials with q (and t) on the unit circle. The normalization of the wave functions is determined using a terminating version of a recent summation formula due to Aomoto, Ito and Macdonald. The resulting eigenfunction transform determines a discrete Fourier-type involution in the Hilbert space of lattice functions. This is in correspondence with Ruijsenaars' observation that---at the classical level---the action-angle transformation defines an (anti)symplectic involution of CP^N. From the perspective of algebraic combinatorics, our results give rise to a novel system of bilinear summation identities for the Macdonald symmetric functions

    Rarefied elliptic hypergeometric functions

    Get PDF
    Two exact evaluation formulae for multiple rarefied elliptic beta integrals related to the simplest lens space are proved. They generalize evaluations of the type I and II elliptic beta integrals attached to the root system CnC_n. In a special n=1n=1 case, the simplest p0p\to 0 limit is shown to lead to a new class of qq-hypergeometric identities. Symmetries of a rarefied elliptic analogue of the Euler-Gauss hypergeometric function are described and the respective generalization of the hypergeometric equation is constructed. Some extensions of the latter function to CnC_n and AnA_n root systems and corresponding symmetry transformations are considered. An application of the rarefied type II CnC_n elliptic hypergeometric function to some eigenvalue problems is briefly discussed.Comment: 41 pp., corrected numeration of formula

    Calogero-Sutherland Approach to Defect Blocks

    Full text link
    Extended objects such as line or surface operators, interfaces or boundaries play an important role in conformal field theory. Here we propose a systematic approach to the relevant conformal blocks which are argued to coincide with the wave functions of an integrable multi-particle Calogero-Sutherland problem. This generalizes a recent observation in 1602.01858 and makes extensive mathematical results from the modern theory of multi-variable hypergeometric functions available for studies of conformal defects. Applications range from several new relations with scalar four-point blocks to a Euclidean inversion formula for defect correlators.Comment: v2: changes for clarit

    Collapsing D-Branes in Calabi-Yau Moduli Space: I

    Get PDF
    We study the quantum volume of D-branes wrapped around various cycles in Calabi-Yau manifolds, as the manifold's moduli are varied. In particular, we focus on the behaviour of these D-branes near phase transitions between distinct low energy physical descriptions of the resulting string theory. Whereas previous studies have solely considered quantum volumes in the context of two-cycles in perturbative string theory or D-branes in the specific example of the quintic hypersurface, we work more generally and find qualitatively new features. On the mathematical side, as we briefly note, our work has some interesting implications for certain issues in arithmetics.Comment: 77 pages, 15 figure
    corecore