52 research outputs found

    Cooperative localization for autonomous underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009Self-localization of an underwater vehicle is particularly challenging due to the absence of Global Positioning System (GPS) reception or features at known positions that could otherwise have been used for position computation. Thus Autonomous Underwater Vehicle (AUV) applications typically require the pre-deployment of a set of beacons. This thesis examines the scenario in which the members of a group of AUVs exchange navigation information with one another so as to improve their individual position estimates. We describe how the underwater environment poses unique challenges to vehicle navigation not encountered in other environments in which robots operate and how cooperation can improve the performance of self-localization. As intra-vehicle communication is crucial to cooperation, we also address the constraints of the communication channel and the effect that these constraints have on the design of cooperation strategies. The classical approaches to underwater self-localization of a single vehicle, as well as more recently developed techniques are presented. We then examine how methods used for cooperating land-vehicles can be transferred to the underwater domain. An algorithm for distributed self-localization, which is designed to take the specific characteristics of the environment into account, is proposed. We also address how correlated position estimates of cooperating vehicles can lead to overconfidence in individual position estimates. Finally, key to any successful cooperative navigation strategy is the incorporation of the relative positioning between vehicles. The performance of localization algorithms with different geometries is analyzed and a distributed algorithm for the dynamic positioning of vehicles, which serve as dedicated navigation beacons for a fleet of AUVs, is proposed.This work was funded by Office of Naval Research grants N00014-97-1-0202, N00014-05-1-0255, N00014-02-C-0210, N00014-07-1-1102 and the ASAP MURI program led by Naomi Leonard of Princeton University

    Simultaneous Trajectory Estimation and Mapping for Autonomous Underwater Proximity Operations

    Full text link
    Due to the challenges regarding the limits of their endurance and autonomous capabilities, underwater docking for autonomous underwater vehicles (AUVs) has become a topic of interest for many academic and commercial applications. Herein, we take on the problem of state estimation during an autonomous underwater docking mission. Docking operations typically involve only two actors, a chaser and a target. We leverage the similarities to proximity operations (prox-ops) from spacecraft robotic missions to frame the diverse docking scenarios with a set of phases the chaser undergoes on the way to its target. We use factor graphs to generalize the underlying estimation problem for arbitrary underwater prox-ops. To showcase our framework, we use this factor graph approach to model an underwater homing scenario with an active target as a Simultaneous Localization and Mapping problem. Using basic AUV navigation sensors, relative Ultra-short Baseline measurements, and the assumption of constant dynamics for the target, we derive factors that constrain the chaser's state and the position and trajectory of the target. We detail our front- and back-end software implementation using open-source software and libraries, and verify its performance with both simulated and field experiments. Obtained results show an overall increase in performance against the unprocessed measurements, regardless of the presence of an adversarial target whose dynamics void the modeled assumptions. However, challenges with unmodeled noise parameters and stringent target motion assumptions shed light on limitations that must be addressed to enhance the accuracy and consistency of the proposed approach.Comment: 19 pages, 14 figures, submitted to the IEEE Journal of Oceanic Engineerin

    Advances in Decentralized Single-Beacon Acoustic Navigation for Underwater Vehicles: Theory and Simulation

    Full text link
    This paper reports the theory and implementation of a decentralized navigation system that enables simultaneous single-beacon navigation of multiple underwater vehicles. In single-beacon navigation, each vehicle uses ranges from a single, moving reference beacon in addition to its own inertial navigation sensors to perform absolute localization and navigation. In this implementation the vehicles perform simultaneous communication and navigation using underwater acoustic modems, encoding and decoding data within the acoustic broadcast. Vehicles calculate range from the time of flight of asynchronous acoustic broadcasts from the reference beacon. Synchronous clocks on the reference beacon and the vehicles enable the measurement of one-way travel-times, whereby the time of launch of the acoustic signal at the reference beacon is encoded in the acoustic broadcast and the time of arrival of the broadcast is measured by each vehicle. The decentralized navigation algorithm, running independently on each vehicle, is implemented using the information form of the extended Kalman filter and has been previously shown to yield results that are identical to a centralized Kalman filter at the instant of each range measurement. We summarize herein the architecture and design of the acoustic communications (Acomms) system consisting of an underwater acoustic modem, synchronous clock, and the software necessary to run them, and salient results from the validation of the decentralized information filter using a simulated data set.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86057/1/swebster-4.pd

    Underwater & out of sight: towards ubiquity in underwater robotics

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.The Earth's oceans holds a wealth of information currently hidden from us. Effective measurement of its properties could provide a better understanding of our changing climate and insights into the creatures that inhabit its waters. Autonomous underwater vehicles (AUVs) hold the promise of penetrating the ocean environment and uncovering its mysteries; and progress in underwater robotics research over the past three decades has resulted in vehicles that can navigate reliably and operate consistently, providing oceanographers with an additional tool for studying the ocean. Unfortunately, the high cost of these vehicles has stifled the democratization of this technology. We believe that this is a consequence of two factors. Firstly, reliable navigation on conventional AUVs has been achieved through the use of a sophisticated sensor system, namely the Doppler velocity log (DVL)-aided inertial navigation system (INS), which drives up vehicle cost, power use and size. Secondly, deployment of these vehicles is expensive and unwieldy due to their complexity, size and cost, resulting in the need for specialized personnel for vehicle operation and maintenance. The recent development of simpler, low-cost, miniature underwater robots provides a solution that mitigates both these factors; however, removing the expensive DVL-aided INS means that they perform poorly in terms of navigation accuracy. We address this by introducing a novel acoustic system that enables AUV self-localization without requiring a DVL-aided INS or on-board active acoustic transmitters. We term this approach Passive Inverted Ultra-Short Baseline (piUSBL) positioning. The system uses a single acoustic beacon and a time-synchronized, vehicle-mounted, passive receiver array to localize the vehicle relative to this beacon. Our approach has two unique advantages: first, a single beacon lowers cost and enables easy deployment; second, a passive receiver allows the vehicle to be low-power, low-cost and small, and enables multi-vehicle scalability. Providing this new generation of small and inexpensive vehicles with accurate navigation can potentially lower the cost of entry into underwater robotics research and further its widespread use for ocean science. We hope that these contributions in low-cost underwater navigation will enable the ubiquitous and coordinated use of robots to explore and understand the underwater domain.This research was funded and supported by a number of sponsors; we gratefully acknowledge them below. Defense Advanced Research Projects Agency (DARPA) and SSC Pacific via Applied Physical Sciences Corp. (APS) under contract number N66001-11-C-4115. SSC Pacific via Applied Physical Sciences Corp. (APS) under award number N66001-14-C-4031. Air Force via Lincoln Laboratory under award number FA8721-05-C-0002. Office of Naval Research (ONR) via University of California-San Diego under award number N00014-13-1-0632. Defense Advanced Research Projects Agency (DARPA) via Applied Physical Sciences Corp. (APS) under award number HR0011-18-C-0008. Office of Naval Research (ONR) under award number N00014-17-1-2474

    Cooperative Navigation for Low-bandwidth Mobile Acoustic Networks.

    Full text link
    This thesis reports on the design and validation of estimation and planning algorithms for underwater vehicle cooperative localization. While attitude and depth are easily instrumented with bounded-error, autonomous underwater vehicles (AUVs) have no internal sensor that directly observes XY position. The global positioning system (GPS) and other radio-based navigation techniques are not available because of the strong attenuation of electromagnetic signals in seawater. The navigation algorithms presented herein fuse local body-frame rate and attitude measurements with range observations between vehicles within a decentralized architecture. The acoustic communication channel is both unreliable and low bandwidth, precluding many state-of-the-art terrestrial cooperative navigation algorithms. We exploit the underlying structure of a post-process centralized estimator in order to derive two real-time decentralized estimation frameworks. First, the origin state method enables a client vehicle to exactly reproduce the corresponding centralized estimate within a server-to-client vehicle network. Second, a graph-based navigation framework produces an approximate reconstruction of the centralized estimate onboard each vehicle. Finally, we present a method to plan a locally optimal server path to localize a client vehicle along a desired nominal trajectory. The planning algorithm introduces a probabilistic channel model into prior Gaussian belief space planning frameworks. In summary, cooperative localization reduces XY position error growth within underwater vehicle networks. Moreover, these methods remove the reliance on static beacon networks, which do not scale to large vehicle networks and limit the range of operations. Each proposed localization algorithm was validated in full-scale AUV field trials. The planning framework was evaluated through numerical simulation.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113428/1/jmwalls_1.pd

    Sensor-Based Legged Robot Homing Using Range-Only Target Localization

    Get PDF
    This paper demonstrates a fully sensor-based reactive homing behavior on a physical quadrupedal robot, using onboard sensors, in simple (convex obstacle-cluttered) unknown, GPS-denied environments. Its implementation is enabled by our empirical success in controlling the legged machine to approximate the (abstract) unicycle mechanics assumed by the navigation algorithm, and our proposed method of range-only target localization using particle filters. For more information: Kod*la

    A parallel hypothesis method of autonomous underwater vehicle navigation

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2009This research presents a parallel hypothesis method for autonomous underwater vehicle navigation that enables a vehicle to expand the operating envelope of existing long baseline acoustic navigation systems by incorporating information that is not normally used. The parallel hypothesis method allows the in-situ identification of acoustic multipath time-of-flight measurements between a vehicle and an external transponder and uses them in real-time to augment the navigation algorithm during periods when direct-path time-of-flight measurements are not available. A proof of concept was conducted using real-world data obtained by the Woods Hole Oceanographic Institution Deep Submergence Lab's Autonomous Benthic Explorer (ABE) and Sentry autonomous underwater vehicles during operations on the Juan de Fuca Ridge. This algorithm uses a nested architecture to break the navigation solution down into basic building blocks for each type of available external information. The algorithm classifies external information as either line of position or gridded observations. For any line of position observation, the algorithm generates a multi-modal block of parallel position estimate hypotheses. The multimodal hypotheses are input into an arbiter which produces a single unimodal output. If a priori maps of gridded information are available, they are used within the arbiter structure to aid in the elimination of false hypotheses. For the proof of concept, this research uses ranges from a single external acoustic transponder in the hypothesis generation process and grids of low-resolution bathymetric data from a ship-based multibeam sonar in the arbitration process. The major contributions of this research include the in-situ identification of acoustic multipath time-of-flight measurements, the multiscale utilization of a priori low-resolution bathymetric data in a high-resolution navigation algorithm, and the design of a navigation algorithm with a exible architecture. This flexible architecture allows the incorporation of multimodal beliefs without requiring a complex mechanism for real-time hypothesis generation and culling, and it allows the real-time incorporation of multiple types of external information as they become available in situ into the overall navigation solution

    VLBL autonomous underwater vehicle navigation using a single transponder

    Get PDF
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis (Nav. E. and S.M. in Ocean Systems Management)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (leaves 73-75).(cont.) Therefore, accurate underwater navigation using a single location transponder would provide dramatic time and cost savings for underwater vehicle operations. This thesis presents a simulation of autonomous underwater vehicle navigation using a single transponder to create a virtual long baseline (VLBL). Similarly to LBL systems, ranges in a VLBL are calculated between the vehicle and the transponder, but the vehicle position is determined by advancing multiple ranges from a single transponder along the vehicles dead reckoning track. Vehicle position is then triangulated using these successive ranges in a manner analogous to a 'running fix' in surface ship navigation. Navigation data from bottom survey operations of an underwater vehicle called the Autonomous Benthic Explorer (ABE) were used in the simulation. The results of this simulation are presented along with a discussion of the benefits, limitations, and implications of its extension to real-time operations. A cost savings analysis was also conducted based both on the idea that a single surveyed beacon could be deployed for underwater navigation and on the further extension of this problem that the 'single beacon' used for navigation could be located on the ship itself.Acoustic long baseline (LBL) navigation systems are often used for precision underwater vehicle navigation. LBL systems triangulate the position of the vehicle by calculating the range between the vehicle and multiple transponders with known locations. A typical LBL system incorporates between two and twelve acoustic transponders. The vehicle interrogates the beacons acoustically, calculates the range to each beacon based on the roundtrip travel time of the signal, and uses the range data from two or more of the acoustic transponders at any point in time to determine its position. However, for accurate underwater navigation, the location of each deployed transponder in the array must be precisely surveyed prior to conducting autonomous vehicle operations. Surveying the location of the transponders is a costly and time-consuming process, especially in cases where underwater vehicles are used in mapping operations covering a number of different locations in succession. During these extended mapping operations, the transponders need to be deployed, surveyed, and retrieved in each location, adding significant time and, consequently, significant cost to any operation.by Cara E.G. LaPointe.Nav.E.and S.M.in Ocean Systems Managemen

    Upravljanje autonomnim površinskim plovilima u svrhu lokalizacije podvodnoga vozila korištenjem jednostrukih akustičkih mjerenja udaljenosti

    Get PDF
    Mobile beacon vehicles are used as a navigational aid for autonomous underwater vehicles when performing navigation using single range measurements. They remove the constraints imposed on the underwater vehicle trajectory by executing trajectory that provides informative range measurements. In thesis, a novel control algorithm for the beacon vehicle which ensures observability of the underwater vehicle's navigation filter is presented. The algorithm was tested in real--life environment and the acquired experimental results were validated using a metric proposed in the thesis. In the case when it is not possible to acquire range measurements, time difference of arrival of an acoustic signal can be used for localization. Therefore, control algorithm for an autonomous surface system consisting of two acoustic receivers, capable of measuring the time difference of arrival of an underwater acoustic signal and utilizing this value in order to steer the system towards the acoustic source, is presented. Furthermore, simulation results are shown, where the influence of a constant disturbance caused by sea currents, and a relationship between the time difference of arrival measurement noise and the sensor baseline are investigated. Experimental results in which the algorithm was deployed on two autonomous surface vehicles equipped with acoustic receivers have shown that the algorithm successfully steers the vehicle formation towards the acoustic source, despite the noisy and intermittent measurements. Scientific contributions of the thesis are novel control algorithms for acoustic localization and navigation of the underwater vehicles and validation method for underwater navigation and localization algorithms using single range measurements.Ljudi od davnina teže istraživanju različitih prostora koji ih okružuju. Od kopnenih površina, mora i morskih dubina do neba i svemirskih prostranstva. Istraživanje svakog od tih područja predstavljalo je, i dan danas predstavlja znatne izazove. Posebno se to odnosi na istraživanje morskih dubina. Naime, iako smo okruženi morima i oceanima uz dostupnu tehnologiju još uvijek vrlo malo znamo o najvećim morskim dubinama i tajnama koje skrivaju. Razlozi tomu su višestruki, od velikih hidrostatskih tlakova prisutnih na velikim dubinama, sigurnosti ljudski posada pod morem pa sve do problema koji se javljaju pri navigaciji u dubinama. U posljednje vrijeme sve je veći interes istraživača za korištenjem autonomnih podvodnih vozila koja bi samostalno mogla pokriti velika podmorska prostranstva i omogućiti nove spoznaje. Veliku prepreku uspješnom istraživanju podmorja predstavlja upravo navigacija pod morem. Na kopnu su dostupni razni oblici lokalizacije vozila i tu se ponajprije misli na globalni pozicijski sustav, odnosno GPS. Korištenje GPS signala pod vodom, i općenito komunikaciju pod vodom onemogućavaju fizikalna svojstva vode, naime, pod vodom se elektromagnetski signali jako brzo prigušuju i nije moguće uspostaviti takav oblik komunikacije i lokalizacije. Stoga se autonomna podvodna vozila oslanjaju na koračnu navigaciju, korištenjem mjerenja dobivenih od senzora brzine i inercijalnih senzora, zbog koje imaju neograničnu lokalizacijsku pogrešku koja raste s vremenom, brzinom ovisnom o kvaliteti senzora i navigacijskog algoritma. Mnoga autonomna podvodna vozila zbog toga povremeno izranjaju na površinu kako bi dobili GPS mjerenje i time odredili vlastitu poziciju. Alternativna tehnika lokalizacije i komunikacije, i ona koja se najviše koristi kod podvodnih vozila, jest korištenje akustičkih uređaja za komunikaciju i lokalizaciju. Međutim, postojeća rješenja koja se temelje na akustičkoj navigaciji su nepraktična i često preskupa. Primjerice, postavljanje podvodnih LBL ( engl. Long baseline) sustava, kod kojih se u podmorje spušta veći broj predajnika i potom se iz mjerenja udaljenosti vozila u odnosu na njih i poznavanja njihovoga točnoga položaja može trilateracijom odrediti položaj vozila, vrlo je zahtjevno. Nedostatak USBL-a ( engl. Ultra short baseline), uređaja koji osim mjerenja udaljenosti, daje i mjerenja kuta između vozila i predajnika, predstavlja njegova vrlo visoka cijena. Navedeni problemi u lokalizaciji jesu jedan od glavnih razloga zašto veliki interes pobuđuje istraživanje navigacije korištenjem jednostrukih mjerenja udaljenosti koje predstavlja jeftiniju alternativu danas dostupnim tehnikama podvodne navigacije. Doktorski rad rezultat je istraživanja u području podvodne lokalizacije i upravljanje autonomnim plovilima korištenjem jednostrukih mjerenja udaljenosti. Istraživanje je usredotočeno na upravljačke algoritme za plovila koji potpomažu lokalizaciju podvodnih objekata kada su dostupna mjerenja udaljenosti. Temeljem upravljačkih algoritama i metodologija za validaciju algoritama razvijenih unutar doktorata izdvojena su tri znanstvena doprinosa: ∙ Algoritam upravljanja autonomnim površinskim plovilom s ciljem povećanja pokazatelja osmotrivosti navigacijskog sustava podvodnog vozila koje koristi jednostruka mjerenja udaljenosti od predajnika na površinskom plovilu ∙ Algoritam kooperativnog upravljanja dvama autonomnim površinskim plovilima koji koristi razliku vremena dolaska akustičkog signala s podvodnog izvora u svrhu njegove lokalizacije ∙ Postupak validacije kvalitete algoritama za podvodnu navigaciju i lokalizaciju korištenjem jednostrukih mjerenja udaljenosti, te njegova primjena u analizi rezultata terenskih eksperimenata. Doktorski rad podijeljen je na uvodni dio, matematičko modeliranje plovila, navigaciju i upravljanje plovilima korištenjem jednostrukih mjerenja udaljenosti, upravljanje mobilnim predajnikom pri navigaciji jednostrukim mjerenjima udaljenosti, traženje izvora signala korištenjem razlike vremena dolaska signala te zaključni dio. Prvo poglavlje („1. Introduction“) daje kratak pregled tehnika podvodne lokalizacije i poteškoća prilikom iste. Potreba za jednostavnom i dostupnom podvodnom lokalizacijom u prisustvu više vozila opremljenih akustičkim senzorima naglašena je kao motivacija za disertaciju. Nadalje, razrađene su hipoteze i doprinosi doktorskog rada. Poglavlje završava pregledom ostalih poglavlja doktorskog rada i opisom autonomnih vozila i akustičkih senzora korištenih unutar disertacije. Matematičko modeliranje podvodnih plovila obrađuje se u drugom poglavlju („2. Mathematical modelling of underwater vehicles”). Unutar poglavlja, proveden je teoretski pregled i prikazani su osnovni matematički modeli raspodjele potiska, dinamičkih i kinematičkih modela koji su korišteni tijekom istraživanja. Prikazani su isključivo podjednostavljeni modeli koji su korišteni prilikom sinteze sustava upravljanja i simulacijama predstavljenim u drugim poglavljima Također, prikazana je struktura navigacije, vođenja i upravljanja korištena na vozilima za potrebe simulacija i provođenja eksperimenata. Treće poglavlje (“3. Navigation and Control of Marine Vehicles Using Single Range Measurements”) započinje pregledom tehnika akvizicije akustičkih mjerenja udaljenosti. U podvodnom okolišu mjerenja udaljenosti uobičajeno se pribavljaju korištenjem akustičkih modema. Udaljenost se može odrediti korištenjem tehnike mjerenja jednostrukog puta ili dvostrukog puta signala. Kod tehnike jednostrukog puta udaljenost se odreduje iz vremena putovanja akustičkog signala koji se propagira između modema na iv strani predajnika te na strani vozila. Takvo mjerenje zahtijeva vrlo precizne satove kako bi se postigla sinkronizacija. Tehnika mjerenja dvostrukog puta signala najčešće je korištena tehnika mjerenja udaljenosti budući da ne zahtijeva preciznu sinkronizaciju satova, već zahtijeva interakciju između dva modema tako da modem na strani vozila akustički šalje zahtjev modemu na strani predajnika koji odgovara na zahtjev. Modem na strani vozila prima odgovor i na temelju ukupnog vremena propagacije signala estimira se udaljenost između uredaja. Korištenje mjerenja udaljenosti pribavljenih akustičkom komunikacijom predstavlja veliki izazov budući da takva mjerenja nisu dostupna u svakom trenutku. Također ona su pod utjecajem raznih čimbenika koji uvode pogrešku poput promjenjive brzine zvuka u vodi, refleksija od fizičkih prepreka, opadajućem omjeru snage signala i šuma kako se udaljenost između dva objekta povećava. U nastavku poglavlja, prikazana je navigacija korištenjem jednostrukih mjerenja udaljenosti u odnosu na statični i mobilni predajnik. Obrađen je problem osmotrivosti pri navigaciji jednostrukim mjerenjima udaljenosti koji predstavlja jednu od glavnih prepreka prilikom navigacije jednostrukim mjerenjima udaljenosti jest pitanje osmotrivosti sustava budući da jedno mjerenje udaljenosti, zajedno s mjerenjem dubine vozila, ograničava moguću poziciju na skup rješenja opisanih kružnicom. Između pojedinih mjerenja udaljenosti relativno gibanje vozila estimira se koristeći mjerenja brzine i orijentacije vozila. Pokazano je da postoji velik broj radova koji se bave ostmotrivošću navigacije jednostrukim mjerenjima udaljenosti korištenjem različitih metodologija i generalni zaključak navedenih radova jest da kako bi se postigla osmotrivost sustava u slučaju nepoznatih struja, vozilo mora izvršavati trajektorije sa odredenom zakrivljenošću, odnosno trajektorije koje dovoljno pobuđuju sustav. Slučaj u kojemu predajnik miruje zanimljiv je za primjene poput pronalaženja neke početne točke ronilice, lociranja objekata poput ‘crnih kutija‘ pri avionskim nesrećama. No kao što je već spomenuto, nedostatak leži u tome što kako bi vozilo estimiralo svoj položaj mora putovati dovoljno informativnom trajektorijom kako bi sustav bio osmotriv i pritom ne može obavljati neke druge zadatake koji zahtjevaju trajektorije koje nisu pogodne za estimaciju položaja. Stoga je zanimljiv pristup gdje je predajnik također vozilo, površinsko ili podvodno, koje se može gibati. U tom slučaju vozilo koje koristi navigaciju jednostrukim mjerenjima udaljenosti može odrađivati svoj zadatak bez obzira koliko je zadana trajektorija informativna, dok se predajnik giba kako bi mjerenja udaljenosti u odnosu na vozilo bila dovoljno informativna, a samim time i sustav navigacije osmotriv. Pri takvoj navigaciji bitno je da predajnik dobro zna svoj položaj što je u slučaju površinskoga predajnika lako ostvarivo korištenjem GPS mjerenja. U poglavlju su predstavljeni i pokazatelji kvalitete korišteni za validaciju trajektorija mobilnoga predajnika pri navigaciji korištenjem jednostrukih mjerenja udaljenosti koji u obzir uzimaju v osmotrivost ostvarenih trajektorija mobilnoga predajnika i ukupan ostvaren put za postiznje iste. Osim teme navigacije, obrađena je i tema upravljanja koje koristi jednostruka mjerenja udaljenosti. Ponekad je cilj vozila postići isključivo ekstrem nekoga kriterija, primijerice minimizirati udaljenost vozila i nekoga objekta, i pritom apsolutna pozicija vozila nije bitna informacija. U literaturi koja se dotiče podvodnih vozila postoje pristupi kod kojih se unutar navigacijskog filtra, najčešće proširenog Kalmanovog filtra, estimira položaj izvora koristeći jednostruka mjerenja udaljenosti, a potom se konvencionalni upravljački algoritmi koriste kako bi se dosegnula željena točka. Također, korištenje tehnike traženja ekstrema (engl. Extremum seeking) za navigaciju autonomnih vozila prema nepoznatom izvoru u okolišu bez GPS signala koristeći mjerenja koja daju vrijednost nekoga polja u pojedinoj točki je čest istraživački problem. Tehnika traženja ekstrema uobičajeno se primjenjuje u slučaju kada je model sustava slabo poznat ili u potpunosti nepoznat. Njegova velika prednost leži u tome da konstantni poremećaji koji djeluju na vozilo poput gravitacije, plovnosti te struja se automatski kompenziraju unutar upravljačke petlje. U poglavlju je prikazan kratak pregled tehnike traženja ekstrema , i pokazano je kako se ista može koristiti kao sredstvo navigacije prema podvodnim objektima kad su dostupna isključivo mjerenja udaljenosti. Pokazatelji kvalitete za validaciju takvih algoritama, koji uzimaju u obzir ukupan put i ukupno vrijeme potrebno za pronalaženje signala, su uvedeni i primijenjeni na simulacijskim i eksperimentalnim rezultatima koji su pokazali primjenjivost algoritma u realnim uvjetima. U četvrtom poglavlju (“4. Mobile Beacon Control in Single Range Navigation”) prikazan je algoritam za upravljanje mobilnim predajnikom u svrhu smanjenja lokalizacijske pogreške prilikom navigacije podvodnoga vozila jednostrukim mjerenjima udaljenosti. Prikazani algoritam karakteriziraju vrlo niski računalni i komunikacijski zahtjevi što ga čini izrazito pogodnim za zadatke poput praćenja podvodnih objekata uz istovremeno pružanje dovoljno informativnih mjerenja udaljenosti za potrebe lokalizacije objekta. Glavna ideja algoritma jest vođenje površinskoga mobilnoga predajnika uz trajektorije koje smanjuju lokalizacijsku pogrešku podvodnoga vozila. Površinski predajnik akustički šalje svoju apsolutnu poziciju navigacijskome filtru koji se izvodi na podvodnome vozilu. Informacija generirana u navigacijskome filtru se koristi kako bi se izračunao skalarni pokazatelj lokalizacijske pogreške podvodnoga vozila. Navedeni skalarni pokazatelj, se potom akustički šalje mobilnome predajniku, koji ga koristi u upravljačkoj shemi inspririranoj upravljačkim shemama kakve se koriste pri tehnikama traženja ekstrema, kako bi vodio mobilni predajnik prema trajektorijama kojima se ostvaruje osmotrivost navigacijskog filtra na podvodnom vozilu. U upravljačkoj shemi referenca brzine zaošijanja ima konstantan iznos, dok je referenca unaprijedne brzine porporcionalna iznosu pokazatelja vi lokalizacijske pogreške. Ponovnim slanjem pozicije predajnika prema podvodnom vozilu dobiva se mjerenje udaljenosti između mobilnoga predjanika i podvodnoga vozila te se time i zatvara upravljačka petlja. Predstavljeni algoritam rezultira sprialnim trajektorijama kojima mobilni predajnik prilazi podvodnome vozilu, te u konačnici kružnim trajektorijama predajnika oko podvodnoga vozila za koje je pokazano da osiguravaju osmotrivost lokalizacijskoga sustava, što je potvrđeno simulacijskim rezultatima. Dan je i matematički uvid u stabilnost algoritma. Pokazuje se da prilikom spiralnoga gibanja, u trenucima kada su kut između vektora relativne udaljenosti i vektora relativne brzine približno ortogonalni, vrijednost pokazatelja lokalizacijske pogreške se smanjuje što uzrokuje da mobilni predajnik prilazi vozilu brže nego što se udaljava od njega, odnosno u prosjeku udaljenost između vozila i predajnika se smanjuje, sve dok se ne uspostavi kružna trajektorija predajnika oko podvodnoga vozila. Naposljetku, prikazani su opširni eksperimentalni rezultati, za podaktuirani i nadaktuirani mobilni predajnik te su primijenjeni odgovarajući pokazatelji kvalitete za usporedbu predstavljenoga algoritma s već postojećim. U situacijama kada su mjerenja udaljenosti nedostupna, tehnika mjerenja razlike dolaska akustičkoga signala na fiksne prijemnike se može koristiti za lokalizaciju akustičkih izvora signala. Kako bi se to ostvarilo potrebna su minimalno tri fiksna prijemenika. U petom poglavlju (“5. Time Difference of Arrival Source Seeking”), predstavljen je algoritam namjenjen autonomnom površinskom sustavu opremeljenom s isključivo dva akustička senzora koji omogućuju mjerenja razlike vremena dolaska podvodnog akustičkog signala i korištenje tog signala kako bi se naveo sustav prema izvoru signala. Dva akustička prijemenika su postavljena tako da tvore osnovicu kojom je moguće upravljati u horizontalnoj ravnini. Upravljački algoritam sastoji se od sheme za traženje ekstrema zadužene za upravljanje orijentacijom sustava odnosno okretanje osnovice prema izvoru akustičkoga signala, te regulatora unaprijedne brzine koji je zadužen za gibanje osnovice prema izvoru signala. Stabilnost predloženoga algoritma analizirana je korištenjem aproksimacije Lievim zagradama, gdje je pokazano da sustav konvergira prema izvoru akustičkoga signala u horizontalnoj ravnini. U pratećim simulacijskim rezultatima, posebna pažnja je posvećena vezi između mjernoga šuma i udaljenosti između dva akustička senzora. Izazovi prisutni u praktičnoj implementaciji algoritma, vezani uz činjenicu da je pozicija izvora akustičkoga signala nepoznata, su istraženi. Konačno, prikazani su ekspermentalni rezultati u kojima su korištena dva autonomna površinska plovlila opremljena jednim akustičkim prijemnikom. Navedena konfiguracija omogućava promjenu duljine osnovice ovisno o mjernom šumu senzora. Rezultati pokazuju da je algoritam, usprkos mjernom šumu i isprekidanim mjerenjima, primjenjiv u stvarnim uvjetima. vii Doktorski rad završava elaboracijom hipoteza i doprinosa prezentiranih u sadržaju doktorskoga rada
    corecore