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Abstract

This thesis addresses the problem of controlling and coordinating autonomous marine vehicles.
Distributed systems has become a standard solution for a large number of engineering problems.
Marine robotics has also followed the same trend: coordinated surface and underwater vehicles
have been used as a means to distribute possibly heterogeneous equipment over regions of inter-
est. The work presented throughout this document has been motivated by recent challenges and
constraints intrinsic to marine environments.

Firstly, a control application example is presented to stabilize a hovering autonomous under-
water vehicle (AUV) in the vertical pose, that is, pitching up or down. This pose is specially
appreciated for fast and efficient descent (or ascent) maneuvers. Moreover, a guidance law to
drive the vehicle horizontally when it is in the vertical pose is proposed, envisioning potential
positioning corrections when the vehicles is diving or surfacing.

Then, two methods to solve the problem of homing a vehicle to a given reference based on
range-only measurements are provided, inspired from acoustic ranging applications. This rather
simple task can be seen as a basic exercise of coordination between a vehicle and a, possibly
moving, beacon. The first method is built from a combination of estimation and guidance while
the second approach is based on the sensor, where only the range measurements are used to guide
the vehicle towards its reference. These address the problem at kinematic level, presuming the
existence of a lower level velocity control law which is subsequently formalized.

Local automatic control of vehicles and coordination are addressed here at different levels.
Coordination of vehicle relies on the local control of each vehicle. The coordination scheme
presented is composed of three main control layers. At the dynamics level, the vehicle velocity is
stabilized around a desired reference vector, which is subsequently used in a guidance law. These
then constitute the basic layers on which the coordination algorithm builds upon. For all these
layers, special attention is given to practical problems that arise from model uncertainties and
tracking errors. Following a bottom-up development, upper bounds on tracking errors are derived
for both velocity and position in order to assess the achievable performances of the control method
and also to ensure that the tracking task is satisfactorily fulfilled. As a by-product, a compilation
of results is provided for error boundedness in velocity and position tracking.

Coordination of a team of autonomous marine vehicles is finally applied to tracking and esti-
mation of a sound source located underwater based on time-of-arrival (TOA) measurements only.
As the uncertainty of the estimate depends on the relative positions of the receivers, a solution that
optimally places the receivers in space is proposed by taking advantage of the motion capabilities
of a coordinated formation of vehicles.

Keywords: Marine vehicles, Underactuated vehicles, Homing, Vertical pose, Nonlinear con-
trol, Formation keeping, Target localization, Coordination, Communication constraints
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Resumo

A presente tese aborda o controlo e a coordenação de veículos marinhos autónomos. Os sistemas
distribuídos têm-se tornado uma solução comum para um grande número de problemas de engen-
haria. A robótica marinha tem seguido a mesma linha: veículos de superfície e submarinos têm
sido utilizados como meios para distribuir equipamento, possivelmente heterogéneo, em regiões
de interesse. O trabalho apresentado neste documento é motivado por desafios recentes e restrições
intrínsecas ao meio marinho.

Primeiro, apresenta-se um exemplo de aplicação de método de controlo para a estabilização de
um veículo submarino autónomo na pose vertical, isto é, inclinado para baixo ou para cima. Esta
pose é particularmente interessante em cenários de descida (ou subida) rápida. Por outro lado,
propõe-se uma lei de controlo para guiar o veículo horizontalmente, quando este se encontra na
pose vertical, antecipando possíveis correções de posição aquando da submersão ou da emersão.

De seguida, inspirados em aplicações que usam medições acústicas, propõem-se dois métodos
baseados apenas em medições de distância para resolver o problema de condução de um veículo
para uma dada referência. Esta simples tarefa pode ser vista como um exemplo básico de coorde-
nação entre um veículo e uma baliza acústica, a qual pode também ser móvel. O primeiro método
é construído a partir de uma combinação de estimação e controlo enquanto a segunda abordagem
basei-se apenas no sensor, na qual são usadas apenas as medições de distância para guiar o veículo
até à sua referência. Estes abordam o problema ao nível da cinemática, assumindo a existência de
um nível mais baixo de controlo de velocidade que é posteriormente formalizado.

O controlo automático local dos veículos e a coordenação são resolvidos a diferentes níveis.
A coordenação baseia-se no controlo local destes veículos. O esquema de coordenação apresen-
tado é composto por três camadas principais de controlo. Ao nível da dinâmica, estabiliza-se a
velocidade do veículo à volta de um vetor de referência, que é ulteriormente usado por uma lei
de condução que dita referências de velocidade para posicionamento. Estas constituem as ca-
madas básicas nas quais assenta o algoritmo de coordenação. Para todas essas camadas, dá-se
uma atenção reforçada a problemas práticos originados por incertezas nos modelos e erros de
seguimento (tracking). Seguindo um desenvolvimento de baixo para cima, determinam-se limites
superiores nos erros de velocidade e posicionamento, de forma a avaliar o desempenho alcançável
pelos métodos de controlo e também para garantir que a tarefa de seguimento seja cumprida de
forma satisfatória. Assim, apresenta-se uma compilação de resultados sobre limites de erros de
velocidade e de seguimento de uma referência de posição.

Por fim, a coordenação de uma equipa de veículos marinhos autónomos é aplicada ao segui-
mento e à estimação da posição de uma fonte sonora, baseados apenas nos tempos de chegada.
Tendo em conta que a incerteza da estimativa depende das posições dos recetores relativas ao alvo,
propõe-se uma solução que posiciona os recetores de forma ótima no espaço, tirando partido da
capacidade de movimento de uma formação de veículos.

Palavras-chave: Veículos marinhos, Veículos sub-atuados, Homing, Pose vertical, Controlo
não linear, Formação de veículos, Localização de alvo, Coordenação, Restrições de comunicação
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Chapter 1

Introduction

Currently, the world demands for the inclusion of robotics in several domains, a demand that has

been increasing each day. Motivated by such need, robotics has evolved considerably over the last

decades in which intensive and enthusiastic works have been developed by many researchers. Al-

though it is based on a core where electrical and mechanical engineering constitute the elementary

sciences, the multidisciplinary nature of robotics makes this domain even more challenging.

In a historical perspective, humans have always made use of tools to help themselves to ac-

complish an extensive number of tasks. Nowadays, the technology has become an important

(indispensable) tool for humans and has evolved, answering to new needs and challenges. By

following the same trend, robots have been employed as means of performing undesired or im-

possible tasks. They have replaced humans in numerous risky tasks, protecting them from injuries

and ultimately saving lives. Several examples can be found in land robotics (space and hearth)

(Squyres et al., 2004), industrial robotics (Fukuda and Nakagawa, 1988) and underwater robotics

(Antonelli et al., 2008), covering a large number of distinct applications from exploration, mon-

itoring and surveillance to transportation, intervention and rescue. The latter references are, of

course, just illustrative examples of many works in the different branches of robotics. Not only

professional needs have originated robotics solutions but also entertainment and domestic needs

have contributed for an important growth of robotic systems.

Nevertheless, the expansion of robotics is yet restrained since most robots are operated only

by their designers, experienced specialists or closely related people. However, as the interest of

the general public and non-related professionals increases, the interface with the robot must be

simple while its operation must be strongly robust and autonomous. These characteristics imply

considerable effort during the design process.

Different needs have originated different types of solutions with heterogeneous operation

methods specially specified to each problem. Land robots include wheeled and legged robots

while water environments have originated surface and underwater vehicles. In the present the-

sis, a special focus will be given on marine robotics but most of the subjects tackled here are not

constrained to this specific domain.

The underlying subject of the current work is on control and coordination of multiple robots

1
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that suffer from real practical constraints. Motivated by scenarios in which the navigation of

robots commonly depends on auxiliary equipment coherently deployed on the region of interest,

the control and coordination of robots are addressed in order to achieve more dynamic and versatile

behaviors.

1.1 Marine robotics

The domain of application of mobile marine robots is broad, comprehending fields that go from

science to defence. As for robotics in general, their tasks include operations that require skills that

humans do not compile, as well as operations in hazardous or intolerable environments. A large

number of specific tasks in different environments has given rise to several types of marine robots.

Marine robots can be divided in two large families: surface and underwater robots. The most

common applications of marine robots include archaeology, mapping, inspection, environmental

data sampling and defence.

Marine robots have taken an important role in underwater archaeology. Common operations

require large coverage and the observation of numerous interesting objects with historical rele-

vance lying on the bottom of the seas or rivers. The intrinsic constraints of underwater environ-

ment such as limited visibility and acoustic attenuation/refractions make vision systems and sonars

useless at large distances. The observation of such an environment demands for precise localiza-

tion and positioning. Underwater vehicles play an important role in this context thanks to their

ability to approach the site as close as required in order to obtain sufficiently refined data.

The sea floor topology has been studied through bathymetry and mapping in which surface

and underwater vehicles have served as platforms to carry the respective payload. Combined with

precise localization data, three-dimensional maps can be build for the purpose, thus cultivating the

knowledge on the sea bottom and contributing for topography of oceans.

Inspection of moving and stationary platforms has attracted the attention of the industry and of

the military community by understanding the capability of robots to perform such a task. Several

works have motivated the use of robots for inspection of ship hulls as well as the inspection of

offshore oil platforms. The versatility and the sensing capability make the robots instruments of

relevant value for those applications.

Not less important is the scientific data harvesting. Oceans, and underwater environments

in general, possess unique resources that are probably underexplored because of the particularly

hostile conditions. Today, several underwater robots are serving the scientific community by nav-

igating over large regions while collecting meaningful data through on-board sensors.

Within the military context yet, marine robots have applications in surveillance, recognition

and demining, just to cite a few.

1.1.1 Surface vehicles

Autonomous surface vehicles include autonomous surface crafts (ASCs) and autonomous sail-

boats. The first ones are self-propelled by means of thrusters physically coupled to the craft body.
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For ocean applications, their design makes them large enough to remain stable under adverse con-

ditions that are caused by wind, currents and waves. Their dimensions are usually above three

meters long by one meter large, depending on their shape (monohull, catamaran, trimaran). These

dimensions generally leave free space for carrying a relatively large amount of batteries, or fuel,

for propulsion and power for electronics. Besides power, ASCs usually employ a set of sensors

for measuring velocity, position, wind speed, angles, and are commonly endowed with communi-

cation devices.

For what concerns equipment, autonomous sailboats are similar to ASCs. However, instead

of using thrusters, their motion relies on the force originated by the wind blowing on one or more

sails. Heading is controlled by a combination of one or more rudders placed under the hull and

by the orientation of the sails. Although their maneuverability is generally poorer than that of the

ASCs, the low power consumption constitutes a major advantage for long trajectories.

The domain of application of autonomous surface vehicles is, at least, as large as the fields that

are covered by boats and floating platforms, including (just to cite a few) monitoring, surveillance,

rescue and inspection.

1.1.2 Underwater vehicles

There exist two classes of underwater vehicles, namely autonomous underwater vehicles (AUVs)

and remotely operated vehicles (ROVs). As their name suggest, AUVs operate autonomously and

generally do not contemplate any physical connection to control stations when they navigate. In

opposition to AUVs, one or more operators control the ROVs by means of communications that

a tether usually grants. A large variety of ROVs exists nowadays, mainly differing on dimen-

sion, actuation and payload. Their characteristics are determined according to their missions. The

dimensions and weight of common commercial ROVs range from few centimeters with few kilo-

grams to few meters and a few tons. ROVs for intervention and deep operation typically have

larger dimensions and weight than shallow water inspection ROVs. ROVs are usually designed

to navigate in confined regions where on-line observations and remote intervention are required.

On the surface, an operator commands the motion of the robot and other actuation tools, which

are carried along, by means of a connecting tether that can also be used to supply power to the

ROV. A tether can have considerable diameter and length. Since the reachable area is limited by

the length of the cable, its presence makes the operation of this type of robots conditioned. In ad-

dition, the drag forces become significantly large with long tethers and the corresponding weight

induces forces and moments on the robot.

AUVs, also known as unmanned underwater vehicles (UUVs), have been conceived to access

underwater environments and overcoming some of the limitations of ROVs. According to An-

tonelli et al. (2008), there are approximately 200 different AUVs operating in the world. Their

shapes differ on details but commonly converge to streamlined bodies such as torpedoes, spheres,

ellipsoids or flat shapes because of their low damping characteristics in viscous environments.

AUVs include propelled and buoyancy driven vehicles. The motion of the first ones is driven by

propellers and (possibly) control surfaces while the seconds make use of fins and a compartment
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where a gas is compressed and decompressed in order to vary the buoyancy of the body. During

ascent and descent, the fins are controlled in a way that makes them induce lift and therefore create

longitudinal motion. This type of vehicles are commonly referred to as gliders. While their power

consumption is very low, the low speed at which they are able to move (typical speeds are about

0.3m/s) make their operation difficult under large currents or turbulent waters.

1.2 Control and coordination

The motion of vehicles is guaranteed by means of actuators. In unmanned vehicles, actuation

commands are either given remotely or automatically by means of controllers that are used to

ensure that the desired motion of the vehicle is obtained. Nevertheless, it is frequent to find

combinations of these in order to reduce the operation complexity and/or to improve performances

according to any given performance metric that may consider precision, efficiency or stability, for

example. Besides performance improvement, deterministic behaviors and robustness over long

time operations are some of their additional characteristics that are particularly appreciated.

In the context of marine vehicles, nonlinear controllers have the capability to warrant all such

characteristics. Provided that the dynamics of marine vehicles is strongly nonlinear, it is expected

that nonlinear controllers have some advantages over linear and artificial intelligence based con-

trollers. In the former case, linear automatic controllers can not ensure stability and performing

operation over a broad state range. In many cases, artificial intelligence based controllers, which

include neural networks and fuzzy controllers, are not supported by a theoretical background that

enables stability analysis and therefore can not warrant the same determinism as that of nonlinear

controllers.

Robotic coordination, and more generally cooperation, are means of taking advantage of sev-

eral distributed robots that may have different and complementary capabilities. A multitude of

applications and motivating examples can be found in the literature to emphasize the need for co-

ordination in robotics. Coordination is used to obtain coherent motion of vehicles that makes the

overall system, which is composed of the robots in the team, perform according to the objectives

of a given mission.

In coordinated operations, robots require exchanging information on relevant quantities that

define their states with regard to the operation objectives. This exchange is obtained from sensing

or communications, or a combination of both. The stability and the robustness of the coordinated

operations under constraints imposed by current technological solutions, which contemplate de-

layed, low rate and intermittent exchange of information, has attracted the attention of several

researchers recently, encouraged by the current challenges and needs posed in robotics and espe-

cially in marine robotics.
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1.3 Motivation

The intrinsic characteristics of marine environment frequently make the operations risky, espe-

cially underwater. There is no, and there will not be, totally secure operations in the water but a

recent trend stimulated by several researchers has shown that it is possible to improve the naviga-

tion through distributed, cooperating robots.

Parker (2008) summarizes the following:

“The most common motivations for developing multirobot system solutions are

that:

1. the task complexity is too high for a single robot to accomplish;

2. the task is inherently distributed;

3. building several resource-bounded robots is much easier than having a single

powerful robot;

4. multiple robots can solve problems faster using parallelism; and

5. the introduction of multiple robots increases robustness through redundancy. ”

One can quickly identify several items that correspond to cooperative improvement of nav-

igation of vehicles, namely items 2, 3 and 5. To our knowledge, there is yet no solution that

cooperatively solves the problem of navigation of underwater vehicles with bounded error for

an unlimited region without human intervention. Moreover, very interesting results have been ob-

tained for cooperation of ground, and more generally surface, robots but the most of these methods

can not be directly applied to underwater robotics mainly due to communication constraints. Tak-

ing such constraints into consideration, the need to develop new methods has emerged. Those

methods would solve cooperative, bounded error navigation.

The natural constraints found in underwater environments makes the navigation of autonomous

robots difficult. In opposition to surface, land and aerial robots whose localization problems are

generically easier to solve thanks to the broad current sensing technology, underwater naviga-

tion poses several challenges especially when accurate, bounded error localization is required.

As previously stated, most current state-of-the-art solutions for precise bounded error underwater

navigation are time-consuming and sometimes expensive when they imply the deployment of sev-

eral equipments, such as beacons. Additionally, the localization precision varies according to the

relative position of the AUV with respect to the beacons.

The energy autonomy of underwater vehicles has been growing and it is now possible to ad-

dress several scenarios that require long range/large area missions. In those cases, static acoustic

beacons are of limited use and perception-based navigation is extremely complex due to the fea-

tureless nature of many underwater environments.

Robot cooperation becomes a valid option to overcome such constraints. By exploring the

concept of navigation aid systems, the human intervention can be significantly reduced. Ulti-

mately, deployment could be reduced to launching a small group of robots from the coast/margin.
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Additionally, the operation area would be limited only by the energy autonomy available in each

robot.

The present work is established around control and coordination of marine robots. Motivated

by navigation aided robotics applications, for which navigation aid robots have to coordinate their

operations to provide meaningful measurements or data to one or more survey robots, robust con-

trol methods and coordination schemes must be derived for the team of robots. The intrinsic

practical constraints found in underwater environments should be regarded with particular atten-

tion. These generally make the navigation problems more challenging than in surface, aerial or

ground robotics mainly because of the sensing limitations and of the communication constraints.

Different robots with different shapes and different actuator configurations originate different

dynamics. Each robot must be regarded singularly and its motion must be governed by proper,

well defined control laws. Although different, the control algorithms can be built upon a common

framework. This type of approach enables the possibility of common interactions and quick recon-

figurations for defining new roles. Moreover, the definition of a set of common elementary motion

primitives makes it possible to achieve coordination at a (desired) higher level. The capability of

coordinated vehicles to distribute resources over a region of interest can then be exploited to co-

operatively accomplish goals that may include cooperative tasking or performances improvement

according to any given metric.

1.4 Contributions

This thesis builds upon the background of control, coordination and navigation. Mainly motivated

by robust control of marine vehicles, multi-vehicle operations and robot aided navigation, several

steps towards fully autonomous coordinated operations and coordinated localization are made.

The contributions of this thesis are summarized as follows:

• Design of a control law to stabilize hovering AUVs in the vertical pose - as a demonstration

of the capabilities of the application of nonlinear control tools to achieve desired behaviors,

a control law is derived to stabilize a hovering AUV at pitching angles of ±90◦.

• Development of a new localization method using range-only measurements combined with

homing of a vehicle - using estimation, an extended Kalman filter (EKF) and a particle

filter (PF) are implemented to solve the localization problem. The estimate is then combined

with a control law that drives the vehicle to the beacon. The estimate confidence is used to

modify the trajectory of the vehicle, intending to improve the estimate.

• Design of a gradient-tracking guidance law to home a vehicle using range-only measure-

ments - localization is dispensable to home a vehicle to a beacon to which it is able to

measure ranges. A guidance law is derived to home the vehicle with surge and yaw degrees

of freedom (DOFs) and its stability is proven .
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• Development of a generic control framework for coordinated autonomous vehicles - by

adopting a layer perspective, three control loops are proposed to stabilize velocity, position

and the configuration and position (center of mass) of the formation.

• Derivation of a set of tools to compute velocity and position errors boundedness - in the

presence of model uncertainties and measurements errors, it is expectable that model-based

control and guidance laws can not guarantee null error in steady state. As such, relevant

results have been derived to assess such tracking errors.

• Extension and adaptation of the coordination scheme proposed by Egerstedt and Hu (2001)

- the centralized control method is made tolerant to communication intermittences and is

adapted so that the formation can hold its position. Moreover, the method is built so that,

if the local control and guidance laws warrant appropriate tracking, the relative positioning

errors are upper bounded and configurable.

• Derivation of the three-dimensional optimal positions of sensors in time-of-arrival (TOA)-

based localization of a sound source underwater - two cases are addressed for this problem:

1) the optimal unconstrained positions of sensors to minimize the volume of the confidence

region around the sound source; 2) the plane-constrained optimal positions of sensors to

estimate the three-dimensional position of a sound source underwater.

1.5 Organization of the thesis

The remainder of this thesis is organized as follows. Chapter 2 gives a brief overview on control

tools and estimation algorithms to support the following chapters. Additionally, and to motivate

several solutions adopted in this thesis, a technological overview on the current navigation solu-

tions is provided and the autonomous vehicles that have been employed throughout the develop-

ment of the work presented in this thesis are introduced. Chapter 3 presents an application example

where the control of a hovering AUV at pitching angle±90◦ is addressed. At the kinematics level,

the localization and the homing of an autonomous vehicle with controllable surge and yaw rate are

addressed in chapter 4 as basic exercise of coordination. Two methods are proposed for homing

the vehicle resorting only to range measurements. Firstly, homing is obtained by means of com-

bined estimation and control. Then, following a sensor-based approach, a guidance law is derived

to home the vehicle without any position estimate. Both the methods presume the existence of a

lower loop that is capable of tracking the velocity reference provided. This velocity control loop

is formalized in chapter 5. This chapter presents a model-based control law where possible mod-

elling errors may be introduced. The upper bounds on velocity tracking are derived. The velocity

inner loop is then employed in a target tracking and station-keeping guidance law for autonomous

marine vehicles. These two basic layers are subsequently used to track references given by a coor-

dination scheme presented in 6 that is capable of handling communication constraints and ensures

an upper bounded relative position error under appropriate tracking of the vehicles. Finally, the
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coordination of marine vehicles is applied to the coordinated tracking and localization of an un-

derwater sound source in chapter 7, where the optimal positions of acoustic receivers are derived.

Two cases are addressed: unconstrained positioning of sensors in three-dimensional space and

plane-constrained positioning for three-dimensional optimal estimation.

Whenever it is convenient, at the beginning of each chapter, the main background and the

related works are presented. Results of simulations, experimental data and the respective analysis

are provided at the end of each chapter.



Chapter 2

Overview

Before addressing specific problems of marine vehicle automatic guidance and control, it is im-

portant to expose the main tools used in this thesis. Firstly, this chapter aims at providing a brief

overview on mathematical dynamic and kinematic models and on control tools closely related to

the solutions adopted in the next chapters. Secondly, the fusion1 of measurements is addressed.

In real applications, sensors provide meaningful measurements on a multitude of variables that

are subsequently fused to guess the state estimate. This fusion has to be performed for two main

reasons: noise affects the measurements and the direct utilization of measurements to determine

the state may lead to very noisy state estimates, which may significantly degrade the control per-

formances; or, the state is not directly measurable (there is no closed, direct relationship between

the state and the observations) and a filter that uses (fuses) the relevant measurements has to be

employed to infer the state. In robotics, these filters are commonly utilized for both smoothing

and state estimation. For completeness and to support the forthcoming chapter, the main concepts

and formulation for two widely-used filters are presented, specifically, the extended Kalman fil-

ter (EKF) and the particle filter (PF). In a more technological perspective, this chapter ends with

an overview on the commonly employed solutions in marine localization, and on their constraints,

as well as a brief presentation of autonomous vehicles that have served as development and testing

platforms.

2.1 Notation

Throughout this document, the following notation is adopted for simplicity and compactness. For

brevity, as in Fossen (1994), the trigonometric functions are denoted s ·= sin(·), c ·= cos(·) and

t ·= tan(·). For vectors, the notation [·]i denotes the ith entry, [·]i j denotes the entry of a matrix on

the ith row and jth column. The representation | · | is used to denote the absolute value of a scalar

or a vector. In the latter case, all the resulting entries are the absolute values of the components

of the vector. The notation (·)T is used to express the transpose of a matrix or vector. Similarly,

1fusion of measurements is the process of combining different or similar measurements obtained from different
sensors with the aim of reaching a better estimate for a given quantity

9
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to {I} parametrized by ha, the velocity vectors in both referential frames {I} and {B} are related

through the following expression (see Fossen (1994)):

ḣl = Jl(ha)nl +nld

Similarly, the angular velocity relation is given through the transformation matrix Ja(ha) (see

Fossen (1994) for further details):

ḣa = Ja(ha)na

A more compact notation can be obtained by defining the pose vector h , which is the concatenation

of the linear and angular positions into a single vector. Define the block diagonal matrix J(h) that

maps the velocity vector expressed in {B} into {I}, given by

J(h) =

"
Jl(ha) 03⇥3

03⇥3 Ja(ha)

#
2 R6⇥6.

Additionally, define the concatenated velocity vector, expressed in the body frame {B},

n =

"
nl

na

#
2 R6.

and the augmented drift vector

nd =

"
nld

03⇥1

#
2 R6.

The mapping of the velocity vector, expressed in the body frame {B}, into the inertial frame {I}
is given by

ḣ =

"
ḣl

ḣa

#
= J(h)n +nd 2 R6. (2.1)

As like for many mechanical systems, mobile robots are governed by a second order differen-

tial equation which incorporates the effects of damping, added mass, restoring and applied forces

and moments. The relation between these forces and the rigid body dynamics is given by the

following six DOFs equation Fossen (1994):

Mṅ = �C(n)n �D(n)n �g(h)+ t (2.2)

where t 2 R6 is the vector of actuation forces and moments, M,C(·),D(·) 2 R6⇥6 and g(·) 2 R6.

M is a positive definite matrix, i.e. xT Mx > 0 8x 2 R6. The matrix M contains the acceleration

multiplicative terms related to rigid-body and added mass forces and moments, C(·) is originated

by the Coriolis and centriptal effects, D(·) contains the terms related to viscous damping and g(·)
is the vector of restoring forces and moments originated by the weight and the bouyancy forces.

The derivation of the parameters composing the entries of the dynamics expression matrices is

beyond the scope of this thesis. The reader is referred to Prestero (2001); Fossen (1994); Hoerner
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A more compact notation can be obtained by defining the pose vector h , which is the concatenation

of the linear and angular positions into a single vector. Define the block diagonal matrix J(h) that

maps the velocity vector expressed in {B} into {I}, given by

J(h) =

"
Jl(ha) 03⇥3

03⇥3 Ja(ha)

#
2 R6⇥6.

Additionally, define the concatenated velocity vector, expressed in the body frame {B},

n =

"
nl

na

#
2 R6.

and the augmented drift vector

nd =

"
nld

03⇥1

#
2 R6.

The mapping of the velocity vector, expressed in the body frame {B}, into the inertial frame {I}
is given by

ḣ =

"
ḣl

ḣa

#
= J(h)n +nd 2 R6. (2.1)

As like for many mechanical systems, mobile robots are governed by a second order differen-

tial equation which incorporates the effects of damping, added mass, restoring and applied forces

and moments. The relation between these forces and the rigid body dynamics is given by the

following six DOFs equation Fossen (1994):

Mṅ = �C(n)n �D(n)n �g(h)+ t (2.2)

where t 2 R6 is the vector of actuation forces and moments, M,C(·),D(·) 2 R6⇥6 and g(·) 2 R6.

M is a positive definite matrix, i.e. xT Mx > 0 8x 2 R6. The matrix M contains the acceleration

multiplicative terms related to rigid-body and added mass forces and moments, C(·) is originated

by the Coriolis and centriptal effects, D(·) contains the terms related to viscous damping and g(·)
is the vector of restoring forces and moments originated by the weight and the bouyancy forces.

The derivation of the parameters composing the entries of the dynamics expression matrices is

beyond the scope of this thesis. The reader is referred to Prestero (2001); Fossen (1994); Hoerner
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vations) and a filter that uses (fuses) the relevant measurements has to be employed to infer the

state. In robotics, these filters are commonly utilized for both smoothing and state estimation.

For completeness and to support the forthcoming chapter, the main concepts and formulation for

two widely-used filters are presented, specifically, the EKF and the PF. In a more technological

perspective, this chapter ends with an overview on the commonly employed solutions in marine

localization and on their constraints. This serves as a motivation to the background of the this

thesis, which targets at robust and versatile behaviors of marine vehicles under real constraints

imposed by the environment.

2.1 Dynamics and kinematics models

Let us consider the motion of a mobile robot in the tridimensional space. Define {I} = {XI,YI,ZI}
as the inertial referential frame and {B} = {XB,YB,ZB} as the body fixed referential frame with

origin coincident with the center of gravity and the x and y-axes being coincident with the surge

and sway axes. Adopting the same widely used notation as in Fossen (1994), the robot’s absolute

linear position in {I} is denoted by the vector hl = [x,y,z]T 2 R3, while its angular position is

denoted by ha = [f ,q ,y]T 2 R3. The relative linear and angular velocity vectors of the robot,

expressed in the {B} frame, are given by nl = [u,v,w]T 2 R3 and na = [p,q,r]T 2 R3, respectively.

During operation, the robot is assumed to be subject to the effects of drifts that are represented

by nld = [vx,vy,vz]
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Figure 2.1: Frames and position vector

(·)† is used to denote the pseudo or Moore-Penrose inverse matrix, that is, for a given matrix

Q ∈ Rm×n, its pseudo-inverse is defined to be given through the singular value decomposition

(SVD) as (Q)† = V Σ†UT where the columns of V ∈ Rn×n and U ∈ Rm×m are respectively the

right-singular and the left-singular vectors of Q, and the diagonal of Σ ∈Rm×n is composed of the

singular values of Q (Katayama, 2005).

2.2 Dynamic and kinematic models

Let us consider the motion of a mobile robot in the three-dimensional space. Define {I} =
{XI,YI,ZI} as the inertial reference frame and {B} = {XB,YB,ZB} as the body fixed referential

frame with origin coincident with the center of gravity and the x and y axes being coincident with

the surge and sway axes as depicted in figure 2.1. Adopting the same widely used notation as

in (Fossen, 1994), the robot absolute position in {I} is denoted by the vector ηl = [x,y,z]T ∈ R3,

while ηa = [φ ,θ ,ψ]T ∈ R3 denotes the vector of Euler angles as depicted in figure 2.2. The rel-

ative linear and angular velocity vectors of the robot, with regard to the fluid velocity, expressed

in the {B} frame, are given by νl = [u,v,w]T ∈ R3 and νa = [p,q,r]T ∈ R3, respectively. During

operation, the robot is assumed to be subject to the effects of constant or at least slowly-varying

drifts that are represented by νld = [vx,vy,vz]
T ∈ R3, expressed in the inertial frame {I} (Fossen,

1994). Introducing the rotation matrix Jl(ηa) (J−1
l (ηa) = JT

l (ηa)) from {B} to {I} parametrized

by ηa, the velocity vectors in both referential frames {I} and {B} are related through the following

expression, from (Fossen, 1994, pp. 86-87):

η̇l = Jl(ηa)νl +νld .

Similarly, the relation between the angular velocities expressed in {B} and the angle rates

(time-derivative of the angles) expressed in {I} is given through the transformation matrix Ja(ηa)

(see (Fossen, 1994; Diebel, 2006) for further details):

η̇a = Ja(ηa)νa.
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Figure 2.2: Sequence of rotations from the inertial frame {I} to the body-fixed frame {B}. Se-
quence: yaw→ pitch→ roll (ψ → θ → φ )

In opposition to the relation between linear velocities and the time-derivative of the position, the

matrix Ja(ηa) is not a rotation matrix. Moreover, this matrix has singularities for any sequence of

rotations chosen. For the sequence illustrated in figure 2.2, the matrix is singular for θ = ±90◦

(see (Diebel, 2006)).

A more compact notation can be obtained by defining the pose vector η , which is the concate-

nation of the linear and angular positions into a single vector. Define the block diagonal matrix

J(η) that maps the velocity vector expressed in {B} into {I}, given by

J(η) =

[
Jl(ηa) 03×3

03×3 Ja(ηa)

]
∈ R6×6.

Additionally, define the concatenated velocity vector, expressed in the body frame {B} as

ν =

[
νl

νa

]
∈ R6,

and the augmented drift vector

νd =

[
νld

03×1

]
∈ R6.

Note that it has been assumed that the drift is irrotational, that is, the angular components of the

drift vector are null. The mapping of the velocity vector, expressed in the body frame {B}, into

the inertial frame {I} is given by

η̇ =

[
η̇l

η̇a

]
= J(η)ν +νd ∈ R6. (2.1)

As for many mechanical systems, mobile robots are governed by a second order differential

equation which incorporates the effects of damping, added mass, restoring and applied forces and

moments. The relation between these forces and the rigid body dynamics is given by the following

six degrees of freedom (DOFs) equation (Fossen, 1994):

Mν̇ =−C(ν)ν−D(ν)ν−g(η)+ τ (2.2)
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where τ ∈ R6 is the vector of actuation forces and moments, M,C(·),D(·) ∈ R6×6 and g(·) ∈ R6.

The square matrix M is a positive definite matrix, that is xT Mx > 0 ∀x ∈ R6 \ 0 that contains the

acceleration multiplicative terms related to rigid-body and added mass forces and moments, C(·)
is a skew-symmetric matrix originated by the Coriolis and centripetal effects, D(·) contains the

terms related to viscous damping and g(·) is the vector of restoring forces and moments originated

by the weight and the bouyancy forces.

The derivation of the parameters composing the entries of the dynamics expression matrices is

beyond the scope of this thesis. The reader is referred to (Prestero, 2001; Fossen, 1994; Hoerner,

1965; Faltinsen, 2005; White, 2003) for a complete overview on the derivation hydrodynamic

models.

In robotics, for simplicity reasons, it is a common practice to decouple vertical and horizontal

motions to ensure independent manipulation of the respective state variables. For example, while

moving, underwater vehicles are often required to keep pre-set distances from the bottom or from

the surface, independently of the horizontal motion. Thus, several authors consider simplified

dynamics and kinematics models assuming that the cross-influences of the resulting models are

small enough. Previous works have already proven the validity and the satisfactory performance

of this approach in underwater vehicles (Fossen, 1994). In ground robotics, several works do

not even consider the vertical motion since the robots are constrained to lie in a two-dimensional

subspace.

Decoupling of motions or model order reduction is often carried out to reduce the complex-

ity of the dynamics. Cross related forces between decoupled or neglected DOFs are commonly

regarded as disturbances that must be accommodated by the controllers.

2.3 Control tools

Robots are governed through control laws that permit tracking reference signals whose values

represent desired angular or linear positions, velocities or accelerations. The correct operation of

the controllers is, at least, as important as a good localization for navigation. This fact leads us to

present some of the most common techniques used for stabilization of nonlinear systems.

Important and very interesting works have been developed in the domain of robot control

using a diversity of methods to achieve desired behaviors in a large variety of robotics platforms.

Robotic systems are commonly nonlinear. Therefore, high performances control of robots requires

nonlinear control techniques, otherwise leading to poorer, or even unstable, behaviors. In most

cases, traditional linear control theory is not sufficient to ensure stability of robotic systems over

the full range of operation.

Several books on nonlinear systems and nonlinear control theory can be found in the literature.

Undeniable references are the books by Khalil (2002) and Slotine and Li (1991). Additionally, the

reference book by Fossen (1994) presents a multitude of control techniques as well as models

for marine vehicles. The reader is referred to those books for further details. In this section,



2.3 Control tools 13

it is intended to cover some of the feedback control techniques found in the literature and used

throughout this document.

For the sake of illustration, let us consider the general nonlinear system

ẋ = f (t,x,u), (2.3)

where x ∈ Rn is the state vector, u ∈ Rp is the input vector and t ∈ R is the time variable.

Below, three of the most common tools in nonlinear control are briefly presented, namely exact

feedback linearization, Lyapunov direct method and backstepping.

2.3.1 Exact feedback linearization

Nonlinear systems can be linearized by employing exact feedback linearization technique. Con-

sidering now the more specific system

ẋ = f (x)+g(x)u, (2.4)

the problem is now related with the possibility of deriving a feedback control law of the form

u = α(x)+β (x)v and a change of variables given by a diffeomorphism2 z = T (x) such that the

system above can be transformed in the following form

ż = Az+Bβ−1(x)
(
u−α(x)

)
, (2.5)

with β (x) nonsingular and (A,B) controllable.

The general solution is such that the term α(x) in the control law cancels the undesired nonlin-

earities and the term β (x)v is designed so that the system is stabilized. Exact feedback lineariza-

tion techniques are particularly interesting since the implicit solution allows for inducing specific

performances of convergence, such as exponential convergence, by properly defining v.

2.3.2 Lyapunov direct method

Besides linearization techniques, Lyapunov-based methods are tools for designing suitable control

laws in nonlinear systems. Lyapunov methods are dual since they serve as tools for analyzing the

system stability and for designing the respective control law. Stability is evaluated by investigating

the evolution of the Lyapunov function. This important feature permits assessing the stability

of a given system, after having properly chosen the corresponding Lyapunov function, and is of

particular interest for determining regions of attraction as well as invariant sets for uncertain and/or

complex nonlinear systems.

The Lyapunov direct method can be summarized in two steps: definition of a continuously

differentiable positive definite Lyapunov function V (x)> 0,∀x ∈D\{0}, verifying V (0) = 0, and

derivation of the control input u such that dV (x)
dt < 0,∀x ∈ D \ {0}, where the domain D ⊆ Rn

2a diffeomorphism is a continuously differentiable map that has a continuously differentiable inverse
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contains the origin. This control law implies that x converges to zero in the domain D. Further

results, such as Lyapunov redesign (Khalil, 2002), were extended from this method. In particular,

the latter allows for defining a control law that stabilizes the system in the vicinity of the origin,

in the presence of bounded uncertainties with respect to the nominal model. Such methods are

useful in practical applications, since exact mathematical models are impossible to obtain for most

systems. Hence, the existence of a bounded uncertainty or disturbance implies that the origin of

the system is not asymptotically stable, that is, x does not converge asymptotically to zero, but,

in some cases, an invariant set in the vicinity of the origin can be derived, guaranteeing an upper

bound on the steady state error.

2.3.3 Backstepping

Backstepping method is particularly interesting for the purpose of deriving control laws for strict-

feedback systems, that is, systems that take the form

ẋ1 = f1(x1)+g1(x1)x2

ẋ2 = f2(x1,x2)+g2(x1,x2)x3
...

ẋn = fn(x1,x2, ...,xn)+gn(x1,x2, ...,xn)u.

(2.6)

To illustrate the method, let us consider the simpler integrator system

ẋ1 = f (x1)+g(x1)x2

ẋ2 = u.
(2.7)

and define a Lyapunov function V (x1) which is positive definite. Suppose that a function α that, if

x2 = α(x1), the time derivative of the Lyapunov function is made negative definite over a domain

D containing the origin, that is,

dV (x)
dt

=
dV (x)

dx

(
f (x1)+g(x1)α(x1)

)
< 0, ∀x1 ∈ D\{0}. (2.8)

Hence, let us introduce the tracking error z = x2−α(x1) and re-write the system as

ẋ1 = f (x1)+g(x1)α(x1)+g(x1)z

ż = u− d
dt α(x1).

(2.9)

The definition of this new error is introduced to explicitly relate x2 and the function α(x1), which

can be seen as a virtual (desired) control input. This error will be introduced in the system and

reduced to zero next.

Hence, by defining a new augmented Lyapunov function candidate as V1 =V + 1
2 zT z, the time
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derivative of this new positive-definite function results

V̇1 = V̇ + zT ż,

= dV
dx

(
f (x1)+g(x1)α(x1)

)
+ dV

dx g(x1)z+ zT (u− d
dt α(x1)),

< dV
dx g(x1)z+ zT (u− d

dt α(x1)),

(2.10)

where ż has been expanded for convenience in order to show the dependence on the input u. This

latter can then be designed to guarantee negative definiteness of V̇1.

The method follows the same steps for higher order systems, such as the one in (2.6). Under

appropriate assumptions on the functions fi(·) and gi(·), the backstepping method recursively

seeks for functions of the type xi = αi(xi−1), i = 2, ...,n, introducing error variables zi = xi−αi in

the recursively augmented Lyapunov function candidates.

2.4 Estimation background

In robotics it is common to tackle problems in which state variables can not be measured directly

due to sensing constraints. Instead, sensors provide important information from which it is pos-

sible to determine the current state but, due to noise and biases, analytical methods may not be

suitable. Therefore, estimation becomes the only solution. Several methods have been developed

and employed in robotics, from Kalman filters (KFs) (Kalman, 1960) to nonlinear observers (see

the example in (Khalil, 2002)).

Position estimation in robotics usually employs recursive methods. The literature is vast on

this subject. The reader is referred to Gelb (1999) for an overview on estimation or Thrun et al.

(2005) for application to robotics. The following sections summarize the KF and PF algorithms,

based on Thrun et al. (2005).

2.4.1 Kalman filter and extended Kalman filter

KFs have become standard tools in estimation and are very common in robotics. This filter was

first designed for linear systems and has posteriorly been adapted to nonlinear systems through

linearizations resulting in the so-called EKF.

The KF formulation assumes linear evolution of the state, that is, it assumes that the dynamics

of the state vector and the output can be expressed in the form:

x(tk) = Akx(tk−1)+Bku(tk)+w(tk),

z(tk) =Ckx(tk)+ v(tk),
(2.11)

where x(tk) ∈ RN is the state vector at time tk, u ∈ RM is the input vector, z ∈ RL the output

vector and w∼N (0,Rk), with Rk ∈ RN×N and v∼N (0,Qk), with Qk ∈ RL×L, are noise vectors

that follow Gaussian distributions. In robotics in general, z(tk) is a vector of measured variables,

obtained directly from sensors. The remaining elements are matrices of appropriate dimensions.
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For brevity, in what follows, the notation (·)k will be used to denote (·)(tk). The KF algorithm

considers two steps: prediction and update.

Denoting the expected value of the state xk as µk, after the prediction step, and as µk after the

measurement update, the KF algorithm is given by the following expressions:

Prediction

µk = Akµk−1 +Bkuk (2.12)

Pk = (AkPk−1AT
k +Rk)

−1 (2.13)

Update

Pk = (CT
k QkCk +P−1

k )−1 (2.14)

Kk = PkCT
k Q−1

k (2.15)

µk = µk +Kk(zk−Ckµk). (2.16)

In the absence of measurements or between two consecutive measurements, the prediction step

is executed iteratively. Whenever a new measurement is available, the update step is executed.

For the nonlinear case, assume that the dynamics can be written in the following form:

xk = fk(xk−1,uk)+wk

zk = hk(xk)+ vk
(2.17)

where fk(·, ·) and hk(·) are nonlinear functions of their arguments. Then, defining the Jacobian of

the functions f and h, evaluated at xk−1 and xk, respectively

Fk =
∂ f (x,u)

∂x |x=xk−1

, (2.18)

Hk =
∂h(x)

∂x |x=xk

, (2.19)

the EKF algorithm results from adaptation of (2.12)-(2.13) and (2.14)-(2.16):

Prediction

µk = fk(µk−1,uk) (2.20)

Pk = (FkPk−1FT
k +Rk)

−1 (2.21)

Update

Pk = (HT
k QkHk +P−1

k )−1 (2.22)

Kk = PkHT
k Q−1

k (2.23)

µk = µk +Kk
(
zk−hk(µk)

)
. (2.24)

For the derivation details, the reader is referred to Thrun et al. (2005).
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The EKF was classified as suboptimal (Gelb, 1999) for nonlinear systems since it approxi-

mates the nonlinear functions by the corresponding first order truncated Taylor series expansion.

It is important to note that the KF algorithms needs for an initialization of µ0 and P0, that is, initial

guesses of the state vector and of the covariance matrix.

Despite their high robustness in several problems with non-Gaussian noises, after an appro-

priate tuning of parameters, KFs are optimal only for Gaussian noises corrupting the dynamics

and the observations. For applications that do not verify the existence of such noises, enlarging

the process and the measurement noise covariances is a common practice. Several works have

employed EKF algorithm to determine the state estimate on-line. Examples of implementation of

EKF can be found in (Baccou and Jouvencel, 2002; Ferreira et al., 2010b; Folk et al., 2010; Olson

et al., 2006; Rui and Chitre, 2010), for example.

2.4.2 Particle filter

In opposition to KFs, PFs do not make any assumption on the process and measurement noise

distributions (Thrun et al., 2005). Instead of defining the posterior in a parametric way, a finite

set of particles approximate the posterior distribution function through their distribution over the

state space. The method is based on the Markov sampling: particles are vectors with the same

dimension as the estimate, and they represent possible states whose evolutions are driven according

to a given dynamics. Such a dynamics usually includes propagation based on the state model and

spreading according to a provided distribution. Recursively, the importance of each particle is

determined based on the measurements. Some algorithms, such as the sequential importance

sampling (SIS) (Arulampalam et al., 2002), resample around the most important particles in order

to keep the number of particles sufficiently small. Actually, this allows for concentrating the

particles over the regions of interest, which also permits to reduce the total number of particles

while keeping a good representation of the probability density in those regions. Even though, PFs

are known to be computationally more demanding than KFs due to the need for evaluating the

entire set of particles.

After initialization, PF algorithms generally consist of three steps: prediction, measurement

update and resampling. Let us consider the general, possibly nonlinear, system (2.17) and a set of

n particles χk = {x1
k ,x

2
k , ...,x

n
k}, where xi

k are of the same dimension as that of the state xk. A set of

importance weights Wk = {w1
k ,w

2
k , ...,w

n
k}, wi

k ∈ R, is associated with the particles. Accordingly,

the state estimate can simply be obtained by the weighted sum of the particles.

The prediction is obtained by drawing the particles according to their prior value and to the

input of the system:

xi
k ∼ p(xk|xi

k−1,uk). (2.25)

In a practical perspective, this step results in driving the particles according to the dynamics

and the input and spreading them according to a given process noise. Measurement updates af-

fect only the weights by modifying their values according to the probability of the corresponding
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particle to generate the measurement zk:

wi
k ∝ p(zk|xi

k), (2.26)

wi
k =

wi
k

∑
n
i=1 wi

k
. (2.27)

For the purpose of resampling, let us define a set of indices I = {i1, i2, ..., in} and the discrete

density of probability p(i) = wi
k. Sample the indices of the set I as follows:

i j ∼ p(i) (2.28)

Finally, resampling is achieved by setting:

χ = {xi1
k ,x

i2
k , ...,x

in
k } (2.29)

and the weights wi
k = 1/n.

Resampling too often, however, may reduce the diversity of particles and may increase com-

putational requirements. It is common to adopt alternatives that reduce the resampling frequency

by doing so only when 1
∑

n
k=1 wi

k
2 is above a given threshold (Arulampalam et al., 2002).

One of the most infamous issues in PFs is the deprivation: due to their nature, PFs may fail to

cover the vicinity of relevant regions. This happens because of the finite number of particles used

to approximate the posterior. Indeed, the impossibility of having an infinite number of particles due

to computational constraints is a major drawback in PFs. This can lead to lack of representativity

of the posterior in the state space.

2.5 Underwater localization technology

Localization is essential in mobile robotics applications since it constitutes one of the two funda-

mental components of navigation along with control. In robotics, localization aims at determining

the current position by means of collected measurements.

The following subsections focus on the problem of robot position estimation, with emphasis on

marine robotics. As the localization problems can not be decoupled from the current technology

available, some of the most important equipment used for position estimation will be covered.

2.5.1 Dead-reckoning localization

Intuitively, one could infer about the own current position based on previous knowledge and a col-

lection of estimates or pose measurements. Defining η as the current position and ν the absolute

velocity in the same frame, the actual position could be directly obtained through the well known

relation:
d
dt

η = ν . (2.30)
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Moreover, define the acceleration in the absolute frame a, then the following relation is established:

d
dt2 η =

d
dt

ν = a. (2.31)

However, it may be difficult to assess all the variables composing the acceleration, velocity or

position vectors due to the sensing limitations. Furthermore, in the case where accelerations and

velocities are accessible they may be corrupted by unpredictable noise and biases which make

the integration of (2.30) or the double integration of (2.31) unreliable over extended periods of

time. By considering the equations above, there exists a trade-off between resolution, precision,

accuracy of inertial measurements and long term accuracy of the position estimate.

Linear accelerations are usually obtained by means of accelerometers. These devices are gen-

erally grouped into a single device that possesses three independent accelerometers along three

orthogonal axes. They are usually inexpensive and are frequently found in robots together with

other equipments in all-in-one solutions. However, the presence of biases and noise constrains

their wide integration in robotic platform.

Rate gyroscopes measure angular velocities of the body they are attached to. As for accelerom-

eters, commercial solutions generally combine the three angular rates into a single device. Com-

plementary to rate gyroscopes, compasses measure heading through magnetic fields and are com-

monly used in mobile robotics. Tilt sensors measure the inclination in orthogonal axes of the

body.

The technological solutions described above can be found in inertial measurement unit (IMU)

(see for example Xsens (2011); Hol et al. (2010)) which combine the measurements of each subde-

vice in order to get more precise information on angles, angular velocities and linear accelerations.

IMUs generally result in better solutions than having each single device separately: the proper fu-

sion of different measurements commonly yields more reliable estimates. In other words, instead

of interpreting the raw data provided by each sensor, they can be combined (fused) for better

performances.

Besides inertial and angular measurements, the determination of the position based on the

traveled distance through the use of appropriate sensors is particularly desired for mobile robotics

applications. Such a process is referred to as odometry3. While, in land robots, odometry can

be directly assessed from a simple odometer such as a hall sensor coupled to the wheel shaft (as-

suming there is no slip), in marine robotics, and aerial robotics as well, the problem results more

complex since there is no solid mechanical coupling between the robot’s body and the environ-

ment. Therefore, alternative sensing solutions have been developed and implemented in marine

robots. The velocity with respect to the water can be obtained by a simple flow meter using a

paddle wheel (Airmar Technology, 2011b), for example. The main issue concerning this type of

equipment is poor performance at slow speeds. As a consequence, wheel-less sensors have been

developed to overcome this limitation and ultrasonic speed sensors (Airmar Technology, 2011a)

3the term odometry is more related with land robotics in the literature
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constitute valid alternatives, since they are able to measure speeds as low as 0.05m/s. The op-

eration of this class of sensors explores the Doppler effect, which allows for the determination

of the speed based on the analysis of emitted and reflected signals. Their principles of operation

relies on an emitted wave, with a well established frequency, and posterior reception of the same

signal, after having been reflected on a given surface or particle. The frequency shift then permits

determining the relative speed.

Doppler velocity loggers (DVLs) use the same principle as that of ultrasonic speed sensors.

DVLs typically operate at low frequencies (300 to 1200 kHz) (Instruments, 2011; Linkquest, 2011)

and are engineered for bottom-lock or surface-lock applications, although relative water velocity

can also be measured. In bottom-lock operations, the emitted acoustic pulses are reflected directly

on the bottom while in surface-lock mode they are reflected on the surface. Bottom-lock mode

makes it possible to obtain absolute velocity measurements. Nonetheless, their range of operation

is limited: the maximum altitude ranges from 30 to 500 meters. In opposition to ultrasonic speed

sensors, DVLs provide the discriminated components of linear velocity along the three orthogonal

axes. The measurement precision of these equipments is generally below the impressive 1% of the

actual velocity (Instruments, 2011).

2.5.2 Absolute and relative localization

The use of sensors such as the ones referred above provide inertial and velocity measurements. As

already stated, the presence of unpredictable biases on their outputs makes the resulting estimate

error unbounded for large scale or long term operations. As a result, precise localization can not

be guaranteed through dead-reckoning of inertial and velocity measurements. Inertial navigation

systems (INSs) are of limited utility in the low-speed, low-acceleration regime typical for oceano-

graphic robotic vehicles (Whitcomb et al., 1999). Therefore, complementary equipments are often

used to assess the position.

Artificial vision has been used in robotics for relative localization of robots. However, most of

the applications remain within structured environments where familiar shapes can be recognized.

One interesting exception is the work by Pfingsthorn et al. (2010) where pictures from the bottom

are taken and cooperatively shared by several vehicles for simultaneous localization and mapping

(SLAM). Vision based localization methods present some issues related with the low visibility

underwater, low natural brightness for deep scenarios and absence of features on the observed

surface.

Sonar based technologies can also be included in this context since they produce an array of

information obtained through the reflection of acoustic waves. Relative localization is possible by

matching maps of features over the trajectory (see also (Pfingsthorn et al., 2011) for a cooperative

approach example).

At the surface, general positioning system (GPS) are probably the most suited technologies

for localization and positioning of a large range of autonomous marine robots due to their ac-

curacy and coverage. Nevertheless, GPS may have some limitations in occluded zones close to

marine structures or because of hills close to rivers margins that occlude signals from satellites,
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for example. GPS devices use the concept of trilaterion to determine their position. Satellites

are constantly emitting coded messages via electromagnetic waves, providing time-stamps and

other relevant information. Based on the time that the message is sent and on the propagation

speed of electromagnetic waves, a GPS device is able to determine its horizontal positions and

altitude by using the information from four satellites to determine the three-dimensional position

and the current time. Nonetheless, GPS is unavailable underwater because of the strong attenu-

ation of electromagnetic waves and reflections on the surface. The study in Al-Shamma’a et al.

(2004) showed that the attenuation for antennas located 1 meter away from each other is close to

80dB for a signal frequency of 66MHz propagating in the water. For the typical 1.4GHz carrier

frequency of GPS signals, the attenuation is larger.

In order to overcome these constraints in relative and absolute localization, some solutions

were engineered by taking advantage of the sound propagation characteristics in the water. The

solutions are built upon the time of flight (travel time) of acoustic waves. Generally, acoustic

transducers, thereafter referred to as beacons, are deployed on the area of interest and are able to

emit acoustic pulses. The localization process is similar to GPS. While assuming that the velocity

of propagation of sound is known along the path followed by the wave, a robot is able to compute

the travelled distance of the acoustic pulse and assess its current position. A minimum of three

beacons is required for unambiguous localization (assuming, of course, that there is no ambiguity

on the subspaces delimited by the plane composed by the position of the three beacons). However,

the number of beacons can be reduced by using a depth (pressure) sensor. The problem lies on

the ambiguity that this configuration creates with respect to the side where the vehicle is. Depth

sensors are usually inexpensive and provide accurate information at relatively high rates.

For the purpose of underwater localization through acoustic ranging, two solutions are com-

monly employed: long baseline (LBL) and ultra-short baseline (USBL). The first one operates by

means of trilateration, measuring ranges to each beacon. The idea is finding the point of intersec-

tion of spheres centered at the beacons with radii equal to the respective range. The beacons can

be deployed on the surface (Cruz et al., 2001), on the seafloor (Kussat et al., 2005) or a mixture

of both can also be utilized. The USBL solution generally requires a single beacon only while the

robots carry an array of, at least two, transducers closely located. The distance is assessed in the

same way as in LBL but, in opposition to that solution, relative position is not determined through

the intersection of spheres. Instead, the angle relative to the beacon is obtained by determining

the phase shift of the received carrier on the array of transducers. Other approaches explore the

use of a single beacon (Ferreira et al., 2010b; Casey et al., 2007; Baccou and Jouvencel, 2002)

where the range and an estimate of the velocity (possibly measurements) are used to estimate the

relative position of the beacon. This type of solutions solves a particular problem of simultaneous

localization and mapping (SLAM), where the beacon is mapped while the robot try to localize

itself with respect to the beacon.

For static beacon operations, the robots commonly know the position of the beacons and are

able to determine their own relative position. In some scenarios, the localization accuracy and

precision depends on the relative positions of the vehicles with regard to the beacons. As such,
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moving the beacons enables new capabilities such as unbounded operation area and bounded error

navigation. Moving baseline operation was explored in Vaganay et al. (2004) and Folk et al.

(2010). Unless explicit communications are used, in those scenarios, the robots are unable to

determine their absolute position on-line, with bounded error, based only on LBL (or USBL)

information.

Acoustic based solutions, such as the ones described above, use two types of ranging methods.

One is the two-way travel time (TWTT) method (see Cruz et al. (2001) for example), based on

the query-response scheduling: a robot queries the beacon which is listening to interrogations

(pings). The beacon responds immediately (or after an established time) while the robot await

for the response. By computing the time-of-flight of both emitted and received pings, the robot

determines the distance to the beacon. These steps must be repeated for each beacon and for

each sampling iteration. The second method is the one-way travel time (OWTT) (see Eustice

et al. (2011) for example), for which an established emission schedule is shared in advance by

the beacons and the robots. Each beacon pings at a scheduled time while the robots passively

listen to the acoustic channel. Such an approach implies synchronized clocks with very low drifts

in order to achieve reasonably low errors for extended periods of time. The OWTT approach

has therefore several important advantages over TWTT: firstly, robots do not need to query the

beacons; secondly and consequently, there is no need to allocate time periods for each robot to

measure ranges; thirdly, in OWTT, the maximum update rate is independent of the number of

robot in the team (for TWTT, the fix rate for a team is inversely proportional to the number of

robots); fourthly, the fix (ping) rate can be naturally higher since there is no need to query the

beacons.

LBL systems for areas in the order of few hundreds of meters to some kilometers employ

relatively low frequencies between 10-12kHz (Desset et al., 2003; Whitcomb et al., 1999; Eustice

et al., 2011) and 37 kHz (Sgorbini et al., 2002; ACSA, 2011b,a). Commercially available solutions

such as (ACSA, 2011b) enable an announced localization over an area as broad as 2km by 2km

with precision in the order of 1m (one standard deviation). The set of equipments consists of four

moored buoys (beacons) on the surface. The system described in Whitcomb et al. (1999); Eustice

et al. (2011) allows for a wider range of operation (up to 10 km but no information is given on the

geometry of the baseline) for precision ranging from 1cm to 10m. It is implicit that the beacons

are precisely moored on the seafloor or on some kind of structure to achieve such a precision. The

EXACT LBL system described in (Whitcomb et al., 1999; Bingham, 2003) uses a 300kHz carrier

pulse to achieve precision in the order of few millimeters. Nevertheless, the coverage area is much

smaller than the one provided by the former equipment (square area of 100m side length).

The use of acoustics for localization is not straightforward. One of the major issues is the

presence of noise whose frequencies are close to the carrier used by the localization system. Fur-

thermore, several phenomena such as multipath, reflections and attenuation introduce less intuitive

problems that are frequently difficult to solve.

Attenuation of acoustic waves is originated by the natural loss of energy along the traveled

path which is a consequence of the geometric spreading and the absorption of energy in the form
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Figure 2.3: Attenuation of acoustic waves in seawater. Parameters: salinity = 3.54%, temperature
= 20oC, sound speed = 1500m/s, pH = 8.

of heat (Aparicio et al., 2011). For further details, an overview on underwater acoustics is given in

Domingo (2008). Assuming that the acoustic waves propagate within a cylinder in shallow water,

figure 2.3 show how the waves attenuate according to the travelled distance and their frequencies.

The multipath effect is originated by reflections and refractions. Let us simply assume that

the acoustic waves propagate as lines in space. At a given a point in space, different from the

emission one, the first ping received usually (this may not always true because it depends on the

sound speed profile) corresponds to the direct path between the reception and emission points (as

far as the reception point is not in a shadow zone). Afterwards, secondary waves are received

due to reflections on the surface and on the bottom. The multipath effect is also originated by

the refraction since the acoustic waves travel along regions where the sound speed varies. Ray

tracing is often used in order to better understand the phenomena. Figure 2.4 illustrates the effects

originated by multipath, reflections and refraction by simulating the trajectories of a set of rays

with angles comprised between -20 and 20 degrees over the vertical plane. The sound speed profile

from Kussat et al. (2005) (San Diego coast) was used for ray tracing. The rays correspond to the

idealization of path of acoustic waves assuming they do not spread and are emitted as infinitesimal

section beams. Multipath effects can be seen at the intersections of the rays.

2.6 Experimental setup

Throughout this document, different autonomous vehicles are either used as case-studies or val-

idation platforms. This set of heterogeneous vehicles includes surface and underwater vehicles.

Brief descriptions of these systems are provided below.
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Figure 2.4: Multipath originated by refraction and reflections

Common to all vehicles are the computational devices and the communication capabilities

(when they are at the surface). Sensing capabilities may vary from a vehicle to another. The types

of sensors used for the purpose of navigation and their characteristics are summarized in table 2.1.

The presented values are taken from the manufacturers datasheets, or are typical values observed

in practice for the case of LBL. However, the experience from their use suggests that these values

are frequently affected by the environmental conditions and calibration. In particular, angular

measurements are typically affected by magnetic fields existing on board, while the precision of

LBL estimates depends on the relative position of the vehicle with regard to the beacons.

2.6.1 The MARES AUV

The MARES AUV (figure 2.5(a)) is a small-sized, torpedo-shaped AUV with 1.7 meters of length

and 20 centimeters of diameter. This vehicle was developed by the OceanSys group at INESC

TEC, University of Porto. Besides the modularity feature, MARES differs from most of current

AUVs since it has no fins and is capable of hovering. Its four thrusters provide four DOFs: two

thrusters located at the stern provide surge and yaw DOFs while two through-hull thrusters enable

(a) MARES AUV (b) TriMARES AUV

Figure 2.5: Autonomous underwater vehicles
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(a) Zarco and Gama autonomous surface vehicles (ASVs)

(b) BASV (c) LASV

Figure 2.6: Autonomous surface vehicles

controlling heave and pitch. Each thruster is capable of generating up to 35N of force. Addition-

ally, the vehicle can control all the DOFs independently as long as the actuator remain unsaturated.

This feature enables the vehicle to decouple motion primitives such as the ones in the vertical and

in the horizontal planes.

On board, a computer is responsible for generating the commands for the thruster and fuse the

information from the sensors. The basic sensing equipment includes a depth sensor, an altimeter,

an IMU, a GPS for use at the surface and a transponder for long baseline (LBL) localization. Other

sensors can occasionally be carried by taking advantage of the modular characteristic.

2.6.2 The TriMARES AUV

TriMARES is a hybrid AUV (figure 2.5(b)) that can also be operated in remotely operated vehicle

(ROV) mode (Cruz et al., 2011). This vehicle was inspired on MARES and possesses three bodies

to carry larger amounts of payload. Seven thrusters, each exerting forces up to 35N, ensure five

DOFs. Four thrusters, frontward directed, at the stern provide control on surge, yaw, and possibly

pitch. As for MARES, two through-hull thrusters, downward directed, in the lower body are

responsible to create motion along heave direction and pitch. Finally, a lateral thruster between

the three bodies creates sway motion. TriMARES weights about 75 kilograms in air and its length

is 1.3 meters.
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Table 2.1: Characteristics of navigation sensors/systems

MARES TriMARES Zarco Gama BASV LASV
GPS

horiz. accuracy (m) 5.0 5.0 1.5 1.5 2.5 2.5
update rate (Hz) 1 1 10 10 4 10

Angular
accuracy (deg) 2.0 2.0 1.5 3.0 1.5 2.0
rate gyro accuracy (deg/sec) 0.3 0.3 - 0.3 - unknown
update rate (Hz) 10 10 40 10 40 10

LBL
typical precision (m) 2.0 2.0 - - - -
update rate (Hz) (typ.) 0.25 0.25 - - - -

Depth sensor
accuracy (m) 0.06 0.06 - - - -
update rate (Hz) 40 40 - - - -

2.6.3 The Zarco and Gama ASVs

Zarco and Gama (figure 2.6(a)) ASVs have been used to test control, guidance and coordination

schemes. Zarco and Gama ASVs are similar vehicles with 1.5 meters of length and weighting

slightly over 50 kilograms in their basic configuration. Their shapes and payload can be adapted

depending on the mission requirements and carried sensors. They are actuated by two thrusters

located at the stern granting control on the surge (longitudinal axis) and yaw (heading) DOFs.

Each thruster is capable of generating 50N of force. The basic set of navigation sensors include a

GPS receiver and an IMU.

2.6.4 BASV

The BASV (figure 2.6(b)) is a small-sized surface vehicle with approximately 70 centimeters of

length and weighting about 11 kilograms. Computational and sensing devices are similar to those

used by Zarco and Gama ASVs. Two horizontal thrusters exerting forces up to 28N, located

underneath, grant surge and yaw DOFs.

2.6.5 LASV

Similarly to Zarco, Gama and the BASV, the LASV (figure 2.6(c)) is actuated by two frontward

directed thrusters, located at stern, providing the same DOFs as the referred vehicles. Each thruster

is capable of generating up to 50N. This vehicle, whose weight is about 25 kilograms and whose

length is approximately 1.3 meters, has been designed in the context of the work presented in

chapter 7.



Chapter 3

Control of a hovering AUV in the
vertical pose

The nonlinear nature of both dynamics and kinematics of marine vehicles demands for robust

controllers, which are typically nonlinear. The linear control theory may not apply to certain

systems since it can not guarantee stability or, at least, can not guarantee satisfactory performances

over all the range of operation. Control of marine vehicles have been an enthusiastic subject

where several researchers have applied efforts to guarantee appropriate motion. As an exercise

and to demonstrate the capabilities of nonlinear control tools, the stabilization of a streamlined

hovering AUV in the vertical pose is addressed in this chapter. These vehicles are commonly

built so that they are stable when they are in the horizontal pose as it commonly is the most used

mode. However, the vertical pose may be beneficial under some scenarios such as the fast descent

or ascent in deep waters since this can lead to more efficient motion. This poses a challenging

problem since the AUVs are typically unstable in the vertical pose. By using the MARES AUV

as a case-study, a control law is derived to stabilize the vehicle in the vertical pose. Additionally,

motivated by the underlying challenge of guiding the vehicles horizontally when the vehicle is in

the vertical pose, a guidance law is proposed to drive the vehicle to any horizontal point.

3.1 Motivation and related works

Control of AUVs is a subject that has attracted the attention of several researchers over the last

decades. The nonlinearity and the uncertainty of the corresponding mathematical models have

originated several challenges in both control theory and design. Some examples can be found in

(Aguiar and Hespanha, 2007; Aguiar and Pascoal, 2007; Borhaug et al., 2007) or in (Antonelli

et al., 2008) for an overview. In this section, the problem of stabilizing MARES in the vertical

plane while pitching up or down (referred to as vertical pose or vertical orientation hereinafter) is

addressed. While holding the vertical pose, the motion over the horizontal plane is further explored

by determining a guidance law to enable the vehicle to reach any horizontal position. Although

MARES was used as a case-study, the method presented in this section applies to a large range of

27
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Thruster 1

Thruster 2
Thruster 3

Thruster 4

Figure 3.1: MARES thrusters configuration

hovering AUVs, that is, AUVs that are capable of controlling the vertical motion independently of

the horizontal one.

The two vertical thrusters of MARES (see figure 3.1) make it possible to control heave in-

dependently of the surge motion. Beyond depth control, the pitch and yaw angles can also be

controlled independently. Only few AUVs hold this capability. The Girona 500 (Ribas et al.,

2012), the ODIN III (Zhao and Yuh, 2005; Choi et al., 2003) and the TriMARES (Cruz et al.,

2011) are some examples of hovering AUVs. The restoring moments, which are a consequence of

non-coincident center of gravity (CG) and center of buoyancy (CB), naturally stabilize MARES

by driving the pitch and roll angles to zero, when it is properly trimmed. By actuating on the

vertical thrusters, the vehicle can be controlled so that the pitch angle is different from its natural

equilibrium point. Ultimately, the vehicle can even travel with composed motions with relatively

large pitch angle while maintaining its depth constant. Such a feature is particularly appreciated in

scenarios in which maneuverability or precise and even immobile positioning is required. Some

examples can be found in intervention (Ribas et al., 2012), archaeology (Bingham, 2003) or in-

spection of underwater structures (Cruz et al., 2011) using AUVs.

The approach presented in this chapter takes advantage of the thruster configuration to control

the vehicle in unusual modes of operation for most AUVs. Motivated by scenarios that demand

for large vertical velocities and/or navigation in confined horizontal sections, a control law is

developed to make the vehicle stabilize in the vertical pose, that is, with the nose pointing either

downwards or upwards (θ =−π/2 or θ = π/2). Stability and convergence is achieved both when

the vehicle is static or moving. In fact, the control law stabilizes the vehicle independently of

the heave motion. Nonlinear control tools are used to derive an appropriate control law (refer

to (Khalil, 2002) and (Slotine and Li, 1991) for a broad coverage on the subject) and base our

analysis on the dynamics model of MARES.

Furthermore, the approach is extended to control the vehicle in the horizontal plane when it is

pitching up or down. The periodic rotation of MARES along the x-axis is exploited to drive the

vehicle to any desired position. In fact, the actuation of the stern thrusters creates a moment along

the x-axis (often undesired in normal operation, see, for example, (Petrich and Stilwell, 2011))

that makes MARES roll. This effect is due to asymmetric stern propellers that, when actuating in
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steady state, make the roll stabilize at an angle different from zero when it is in the horizontal pose

(that is, pitch angle equal to zero). The stability is achieved because of a restoring moment induced

by a non-null distance between the center of gravity and the center of buoyancy. However, such a

moment along the x-axis no longer exists when the vehicle is in the vertical pose. Consequently,

the roll dynamics model shows that the vehicle continuously rotates when subject to constant

actuation on the stern thrusters.

By taking advantage of this behavior, it is possible to drive the vehicle to any horizontal point.

A method similar to the one derived in Jouffroy et al. (2011) will be used in this approach. Orig-

inally used in the context of efficient motion of Lagrangian profilers using tidal currents and dif-

ferent depth layers, the method is extended to the motion of MARES when it takes a vertical pose.

Roughly speaking, MARES activates its through-hull thrusters only when they are aligned with

the general direction (sector-of-sight) of the desired horizontal position.

3.2 Reduced models

Consider the problem of stabilizing an AUV with four DOFs. Assume that the surge, heave, pitch

and yaw DOFs are controlled and that sway and roll are constant and approximately null, that is,

v= 0 and φ = p= 0, respectively, using the same notation as in section 2.2, whose correspondence

of angles will be modified later on for this chapter. This assumption is made because there is no

actuation along these DOFs and possible deviations from zero are originated by cross-coupling

effects, which are considered negligible in this chapter.

Based on the model (2.1)-(2.2), the kinematics and the dynamics expressions are simplified

assuming that the drift vector is null νld = 0 and are respectively given by

η̇ = J(η)ν , (3.1)

ν̇ = A(ν)ν +h(η)+T τM. (3.2)

Recall that η ∈R6 is the pose vector, ν ∈R6 is the velocity vector, J ∈R6×6 is a matrix that maps

the linear and angular velocities expressed in the body-fixed frame into the earth-fixed, inertial

referential frame. The matrix A(ν) = M−1(−C(ν)−D(ν))∈R6×6 results from the hydrodynamic

forces applied on the body of the vehicle when it is moving at a velocity ν . The term A(ν)ν
compiles the effect of added mass, Coriolis, centriptal and viscous damping forces and moments.

The vector h(η) = M−1g(η) ∈R6 includes the effects of the restoring forces and moments, while

T maps the forces and moments exerted by the four thrusters, whose actuation forces are given in

the vector τM ∈ R4 and expressed in the body-fixed frame.

For the purpose of stabilizing MARES in the vertical pose, the order of the system is now

reduced by projecting the pose and the velocities in a lower dimension subspace. The focus is on

controlling the depth, and the pitch and yaw angles using the four controllable DOFs. Therefore,
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define the reduced order system as follows:

ηz = P356η , (3.3)

νl = P1356ν , (3.4)

where

P356 =




0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


 ,

P1356 =




1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1



.

are projection matrices that capture the depth position, pitch and yaw angles and the surge, heave,

pitch rate and yaw rate, respectively. This type of projection matrices will be further explored and

generalized in chapter 5.

Recall that sway and roll rate are considered to be null. Therefore the velocity vector can be

written as

ν =
[
u 0 w 0 q r

]T
.

Denote the Moore-Penrose inverse of a matrix as (·)† (Katayama, 2005). Then, by noting that

P1356†
= P1356T , it is easy to prove that

P1356Bν = P1356BP1356T ν ,

for any matrix B ∈ R6×6, and using (3.1)-(3.2) and (3.3)-(3.4) we can write the projected system

as follows:

η̇z = J̄(η)νl(t), (3.5)

ν̇l = Ā(ν)νl(t)+ h̄(η)+ T̄ τM, (3.6)

where J̄(η) = P356J(η)P1356†, Ā(ν) = P1356A(ν)P1356†, h̄(η) = P1356h(η) and T̄ = P1356T . It

should be stressed that this projection holds and this reduced model is valid only if the sway and

the roll are assumed to be null. Although it is not the case in reality, these can be regarded as

disturbances in this new model.

Rotation sequence

For this problem, the sequence of rotations ZY Z (also known as 323, see figure 3.2) is chosen.

This composition of rotations is formed by a sequence of rotations along the z-, the y- and again
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Chapter 2

Overview

Before addressing specific problem of marine vehicle automatic guidance and control, it is impor-

tant to expose the main tools used in this thesis. This chapter aims at providing a brief overview

on control tools closely related to the solutions adopted in the next chapters. In real applications,

sensors provide meaningful measurements on a multitude of variables that are subsequently fused

to guess the state estimate. This fusion has to be performed for two main reasons: noise affects

the measurements and the direct utilization of measurements to determine the state may lead to

very noisy state estimates, which may significantly degrade the control performances; or, the state

is not directly observable (there is no closed, direct relationship between the state and the obser-

vations) and a filter that uses (fuses) the relevant measurements has to be employed to infer the

state. In robotics, these filters are commonly utilized for both smoothing and state estimation.

For completeness and to support the forthcoming chapter, the main concepts and formulation for

two widely-used filters are presented, specifically, the EKF and the PF. In a more technological

perspective, this chapter ends with an overview on the commonly employed solutions in marine

localization and on their constraints. This serves as a motivation to the background of the this

thesis, which targets at robust and versatile behaviors of marine vehicles under real constraints

imposed by the environment.

2.1 Dynamics and kinematics models

Let us consider the motion of a mobile robot in the tridimensional space. Define {I} = {XI,YI,ZI}
as the inertial referential frame and {B} = {XB,YB,ZB} as the body fixed referential frame with

origin coincident with the center of gravity and the x and y-axes being coincident with the surge

and sway axes. Adopting the same widely used notation as in Fossen (1994), the robot’s absolute

linear position in {I} is denoted by the vector hl = [x,y,z]T 2 R3, while its angular position is

denoted by ha = [f ,q ,y]T 2 R3. The relative linear and angular velocity vectors of the robot,

expressed in the {B} frame, are given by nl = [u,v,w]T 2 R3 and na = [p,q,r]T 2 R3, respectively.

During operation, the robot is assumed to be subject to the effects of drifts that are represented

by nld = [vx,vy,vz]
T 2 R3, expressed in the {I} frame. Introducing the orthogonal rotation matrix
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Figure 3.2: Sequence of rotations from the inertial frame {I} to the body-fixed frame {B}. Se-
quence: roll→ pitch→ yaw (φ → θ → ψ)

the z-axes. The body-fixed referential frame is obtained by a sequence of three rotations of an

inertial earth-fixed frame rotation: firstly, a rotation of an angle φ about the z-axis; secondly, a

rotation of θ about the y-axis and; thirdly, a rotation of an angle ψ about the z-axis. Recall that the

trigonometric functions are denoted s ·= sin(·), c ·= cos(·) and t ·= tan(·). The J matrix results

J(η) =




sφcψcθ − sφsψ −cψsφ − cφcθsψ cφsθ 0 0 0

cφsψ + cψcθsφ cφcψ− sψcθsφ sφsθ 0 0 0

−cψsθ −cψsφ − cφcθsψ cφsθ 0 0 0

0 0 0 cψ/tθ −sψ/tθ 1

0 0 0 sψ cψ 0

0 0 0 −cψ/sθ sψ/sθ 0




.

Note that this representation is not unique. Other sequences of rotations can also be applied

(Waldron and Schmiedeler, 2008). However, this one is considered the most appropriate in the

context of this work, as it likely is the most intuitive sequence of rotation and consequently allows

for a simple definition of the reference angles. This representation is used throughout the following

developments in this chapter only.

3.3 Pose stabilization

The problem of stabilizing MARES at a general pose reference η∗z (t) is now addressed. At the end

of this section, it will become clear that, when the vehicle is in a vertical pose, a velocity reference

can be used to guide the vehicle horizontally.
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3.3.1 Control law

Let η∗z : R→ R3 be a smooth desired pose vector of the vehicle and define the error vector as

η̃z(t) = ηz(t)−η∗z (t). (3.7)

Similarly, let us define ν∗l : R→R4 to be a desired velocity reference. This vector is constrained to

lie in a manifold that depends on the orientation of the vehicle as it will be seen later on. For now,

assume that it does not influence the stability of the system and define the velocity error vector as

follows:

ν̃l(t) = νl(t)−ν∗l (t). (3.8)

By noting that ηz(t) = η̃z(t)+η∗z (t), νl(t) = ν̃l(t)+ν∗l (t) from (3.7) and (3.8), respectively,

the system (3.5)-(3.6) can be rewritten as

˙̃ηz(t) = χ1(η , t)+ J̄(η)ν̃l(t), (3.9)

˙̃νl(t) = χ2(ν ,η , t)+ T̄ τM, (3.10)

where

χ1(η , t) =−η∗z (t)+ J̄(η)ν∗l (t),

χ2(ν ,η , t) = Ā(ν)ν̃l(t)+ Ā(ν)ν∗l (t)− ν̇∗l (t)+ h̄(η).

Based on the backstepping method (see section 2.3.3 or Khalil (2002)), consider the virtual

control law α : R6×R→ R3, defined as

α(η , t) = J̄†(η)
(
−χ1(η , t)−Kη η̃z(t)

)
, (3.11)

where Kη ∈ R3×3 is a positive definite gain matrix. This control method is natural choice for the

strict-feedback system (3.9)-(3.10) because it formally derives a control solution while it analyt-

ically ensures the stability of the controlled system. Let us include this virtual control input, by

adding and subtracting it in (3.9) as follows:

˙̃ηz(t) =χ1(η , t)+ J̄(η)(ν̃l(t)+α(η , t)−α(η , t))

=−Kη η̃z(t)+ J̄(η)(ν̃l(t)−α(η , t)) .

The objective becomes now to drive ˙̃ηz(t) to zero. In this sense, ν̃l(t) has to be indirectly

controlled so that η̃z(t)J̄(η)z2 < 0, being z2 = ν̃l(t)−α(η , t) a new error variable. Again, rewrite
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the system (3.9)-(3.10) as

˙̃ηz(t) =−Kη η̃z(t)+ J̄(η)z2, (3.12)

ż2 = ˙̃νl(t)− α̇(η , t)

= χ2(ν ,η , t)− α̇(η , t)+ T̄ τM, (3.13)

and choose the control law

τM = T̄−1(χ2(ν ,η , t)+ α̇(η , t)− J̄(η)T η̃z(t)− Kνz2
)
, (3.14)

where Kν ∈ R4×4 is a positive definite gain matrix. The choice of this control law makes the

system (3.12)-(3.13) result into

˙̃ηz(t) =−Kη η̃z(t)+ J̄(η)z2,

ż2 =−J̄(η)T η̃z(t)−Kνz2.

The subsequent proof of stability is based on the analysis of a Lyapunov function. For this

purpose, define the Lyapunov function candidate

V =
1
2

η̃z(t)T η̃z(t)+
1
2

zT
2 z2, (3.15)

whose time derivative results

V̇ = η̃z(t)T ˙̃ηz(t)+ zT
2 ż2

= η̃z(t)T Kη η̃z(t)+ η̃z(t)T J̄(η)z2− zT
2 J̄(η)T η̃z(t)− zT

2 Kνz2

=−η̃z(t)T Kη η̃z(t)− zT
2 Kνz2

< 0, ∀ η̃z(t) 6= 0,z2 6= 0.

(3.16)

The negative definiteness and the form of the time derivative of the Lyapunov function ensures

that the system is uniformly exponentially stable (Khalil, 2002).

The dynamics was projected to a four-dimension space in (3.6) with the intention of handling

the free DOF, heave, when the vehicle is in the vertical pose. The desired velocity ν∗l (t) was

assumed not to disturb the stability of the pose. Indeed, this velocity reference can not collide with

the control objective for the pose, otherwise the exponential tracking of the pose reference is not

guaranteed. The following development gives a necessary condition to ensure the pose tracking

exponential stability.

3.3.2 Constraint on the desired velocity

The influence of the DOFs in the pose of the vehicle is illustrated hereafter by expanding their

relationship. The necessary condition will then be derived to ensure appropriate performances of

the pose tracking control.
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First, notice that

P356 =

[
P3 01×3

02×3 P56

]
and P356†

= P356T
=

[
P3T 03×2

03×1 P56T

]
,

P1356 =

[
P13 02×3

02×3 P56

]
and P1356†

= P1356T
=

[
P13T 03×2

03×2 P56T

]
,

where

P3 =
[
0 0 1

]
, P13 =

[
1 0 0

0 0 1

]
, P56 =

[
0 1 0

0 0 1

]
.

Moreover, from section 2.2, it was seen that the matrix J(η) can be written in the block

diagonal form:

J(η) =

[
Jl(η) 03×3

03×3 Ja(η)

]
. (3.17)

Defining ηz = [ηz1 ηz2]
T = J̄(η)νl , with νl = P1356ν and ηz1 = z,ηz2 = [θ ψ]T , yields

[
η̇z1

η̇z2

]
= P356J(η)P1356†νl

=

[
P3 01×2

02×1 P56

][
J1(η) 03×3

03×3 J2(η)

][
P13T 03×2

03×2 P56T

][
νl1

νl2

]

=

[
P3J1(η)P13T 01×2

02×2 P56J2(η)P56T

][
νl1

νl2

]
(3.18)

=



−cψsθ cθ 0 0

0 0 cψ 0

0 0 sψ/sθ 0







u

w

q

r



,

where νl1 = [u w]T and νl2 = [q r]T are the vectors of linear and angular velocities, respectively.

It is now possible to see that for the vehicle pitching up or down (θ = ±π/2), the heave

velocity, w, has no influence on the vertical pose and can therefore be handled independently of

the remaining DOFs. This simple example serve as a basis for the following developments in this

section.

As it is desired that ν∗l (t) has no influence in the vertical pose stabilization, the following

expression must hold:

J̄(η)ν∗l (t) = 0, ∀ η(t). (3.19)

Since J̄(η) is the transformation matrix projected in the new “vertical pose subspace”, this

expression means that the reference velocity does not impact on this subspace.
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In the next section, special focus is given to setting the linear velocity reference in order

to control the horizontal motion. Obviously, the angular velocity references must remain un-

changed in order not to disturb the orientation stability. Define ν∗l1(t) = [u∗(t)w∗(t)]T and ν∗l2(t) =
[q∗(t) r∗(t)]T (ν∗l (t) = [ν∗l1(t)ν∗l2(t)]

T ) and let us focus on the linear velocity dynamics.

By combining (3.18) and (3.19), the linear velocity sub-vector of the equation above becomes

P3J1(η)P13T ν∗l1(t)
T =

[
−cψsθ cθ

][u∗(t)

w∗(t)

]
= 0. (3.20)

In order to satisfy this equality, it must be verified that

u∗(t) =
w∗(t)
tθcψ

, (3.21)

to ensure the stability of the control law in (3.14).

3.4 Horizontal guidance

So far in this section, it has been assumed that T̄ has full rank. From a practical point of view,

this means that the considered DOFs (surge, heave, pitch and yaw) are controllable. Now, let

us extend the study to the roll dynamics and on how this can be used to guide MARES in the

horizontal plane.

3.4.1 Roll dynamics

The rotation of propellers induce a torque when generating the desired lift (Petrich and Stilwell,

2011). This is a natural consequence coming from the fact that the blades are inclined with regard

to the plane that is perpendicular to the thruster axis of rotation. A practical way to cancel such

a moment is to use symmetric inclinations of blades, for symmetrically located thrusters with

respect to the CG. In this case, for the same force, the propellers rotate in opposite directions,

thus cancelling each other torques. However, here it is assumed that the inclinations of the stern

thrusters are the same, thus inducing a moment on the x-axis.

In previous works (see, for example Ferreira et al. (2010, 2012)), this effect was neglected as

its influence is residual when compared to the moment created by non-coincident vertical position

of the CB and the CG. Nevertheless, this restoring moment no longer exists when the vehicle is

pitching up or down (±π/2) and the moment induced by the stern thrusters does influence the roll

dynamics and can not be neglected. Actually, its presence is used here to drive the vehicle to a

horizontal position.

Mathematically, the roll dynamics can be written as a scalar differential equation (see appendix

C), where the effect of the moment originated by the stern thrusters is added:

ṗ = fp(ν)−dp(p)p−gp(η)+( fτ(τs))
T τs, (3.22)
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where fp : R6→R is a function containing the added mass, Coriolis, centripetal and cross-related

viscous damping effects. The scalar function dp : R→ R represents the direct viscous damping

effect, while gp : R6→ R is the restoring moment in roll. It is assumed that there exists a positive

definite function fτ : R2→R2 that relates the moment generated by the thruster with the actual lift

force of the stern thrusters that compose the entries of the vector τs ∈ R2. Note that the function

gp(η) is positive definite for all non-null p and verifies dp(p) = 0 if and only if p = 0. It is

assumed that fτ(τs) = 0 if and only if τs = 0. These facts are used in the forthcoming analysis.

At equilibrium (see section 3.3) with θ = ±π/2, it is possible to prove that fp(ν) ≈ 0 and

gp(η) = 0 for the case of MARES. Hence the roll dynamics results

ṗ≈−dp(p)p+( fτ(τs))
T τs, (3.23)

which, for a constant τs, gives dp(p)p ≈ ( fτ(τs))
T τs in steady state. This means that the roll

angular velocity is different from zero in steady state, when θ =±π/2.

This result is particularly interesting since a constant actuation on the stern thrusters implies

that the vehicle will keep rotating along the x-axis. Note that, under a given condition, it is not

necessary the vehicle to be moving to have a constant actuation on the stern thrusters. Indeed, a

positive (or negative) buoyancy would make the vehicle actuate on the stern thrusters to maintain

the depth constant.

3.4.2 Guidance

The problem of guiding the vehicle to a given desired static position in the horizontal plane is

now addressed. For the purpose, define the horizontal position of MARES ηh(t) = [x y]T and

η∗h (t) = [x∗ y∗]T to be a constant horizontal position reference. The error vector is defined as

η̃h =

[
x̃(t)

ỹ(t)

]
= ηh(t)−η∗h (t). (3.24)

The guidance objective is to drive the error vector to zero.

For convenience, let us make a change of coordinates to the polar coordinate system and write

the equivalent equation in (3.24) as

ρ(t) =||η̃h||
γ(t) =∠(η̃h) = atan2(ỹ(t), x̃(t)),

(3.25)

where ∠(η̃h) is the angle of the vector η̃h with respect to the x-axis, given in the reference frame.

The function atan2(·, ·), whose counter-domain is the interval ]−π,π], stands for the variant of

the arctangent function atan(·). The guidance objective now becomes driving the distance from

the reference ρ(t) to zero.

With the vehicle in the vertical pose, the orientation of the body-fixed z-axis expressed in the

horizontal plane of the inertial reference frame is given by φ(t). In order to find suitable guidance
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Figure 3.3: The function fρ(φ̃(t))

law, differentiate the system (3.25) with respect to time:

ρ̇(t) =
˙̃ηh(t)T η̃h

ρ(t)

γ̇(t) =
d
dt

atan2(ỹ(t), x̃(t)),

which, after algebraic manipulation, results

ρ̇(t) =w(t)cos(φ̃(t))

γ̇(t) =
1

ρ(t)
(
w(t)sin(φ̃(t))

)
,

(3.26)

where φ̃(t) = γ(t)−φ(t) and recall that w is the heave velocity, which can be handled “indepen-

dently” of the remaining DOFs when the vehicle pose verifies θ = ±π/2. A suitable guidance

law has to be found to drive the vehicle towards its reference point by using w(t) as the input. Im-

plicitly, the derivation of the control law in section 3.3, suggests that the heave velocity reference

w∗(t) must be differentiable. Hence, the following guidance law is proposed:

w∗(t) =−sat(ρ(t),β ) · fρ(φ̃(t)), (3.27)

where β > 0 and sat(·, ·) being the saturation function defined as

sat(ρ(t),β ) =





ρ(t), if |ρ(t)| ≤ β

β ρ(t)
||ρ(t)|| , otherwise

.

The continuous function fρ(φ̃(t)) (illustrated in figure 3.3), reminiscent of the sector-of-sight, is

given by

fρ(φ̃(t)) =





cos(2φ̃(t))
cos(φ̃(t)) , if cos(2φ̃(t))> 0

0, otherwise
. (3.28)

Hence, when w(t) = w∗(t), the time derivative of the distance to the desired position is given



38 Control of a hovering AUV in the vertical pose

by

ρ̇(t) =




−sat(ρ(t),β )cos

(
2φ̃(t)

)
, if cos

(
2φ̃(t)

)
> 0

0, otherwise
. (3.29)

Note that ρ̇(t) is negative semi-definite and negative definite under the condition cos
(
2φ̃(t))>

0. Since, it was assumed that φ(t) is periodical, one has only need to ensure that the difference

φ̃(t) = γ(t)− φ(t) does not verify cos
(
2φ̃(t)) < 0 for all time. By contradiction, suppose that

this condition is verified. From (3.27), w(t) = 0 (see (3.28)) and hence, from (3.26) it is possible

to conclude that γ̇(t) = 0. Therefore, it is straightforward to see that the difference φ̃(t) changes

over time if the inequality cos
(
2φ̃(t)

)
< 0 holds, since φ(t) is periodical. Thus, it is possible to

conclude that the position error vector η̃h converges to zero.

Remark 3.1. The choice of the function fρ(φ̃(t)) is not restricted to the one presented here. In fact,

the function must only be differentiable and verify two conditions: 1) fρ(φ̃(t)) = 0 if φ̃(t) =±π/2

and; 2) fρ(φ̃(t))cos(φ̃(t))≥ 0 for all φ̃(t) 6=±π/2 and verify fρ(φ̃(t))cos(φ̃(t))> 0 in an non-

empty interval Ω⊂ [−π,π]\{±π/2}

Remark 3.2. In the guidance law (3.27), the saturation function has been introduced for practical

reasons as any real actuator have a limited force, which consequently limits the heave velocity.

The constant β plays the role of an upper bound on the absolute value of the heave velocity w.

3.5 Results

To illustrate and validate the approach to stabilize MARES in the vertical pose and guide it to

an horizontal position, hereinafter the results of simulations and experiments are presented. The

first ones show the simulation of a six DOFs model of MARES (see appendix C) stabilized in

the vertical pose and horizontally guided to a reference point. Afterwards, experimental results

collected from tests in a tank validate the control law derived earlier.

3.5.1 Simulation

In order to assess the performances and the behavior of the system using the derived controllers, a

simulation of the vehicle was ran prior to real experiments. For this purpose, the gain matrices were

set such that Kη = diag([1,1,1]), Kν = diag([1,10,1,1]), where diag(·) denotes a diagonal matrix

whose diagonal entries are the ordered entries of its argument. Figure 3.4 shows the evolution of

the pitch (θ ) and yaw (ψ) angles for a desired pose defined by the vector η∗z (t) = [4 π/2 0]T . The

depth is shown in figure 3.5. The initial conditions were set to η(0) = [0 0 3 0 0 0]T and ν(0) = 0.

Figures 3.4-3.5 show that the control law in (3.14) stabilizes MARES in the vertical pose in

less than ten seconds. Note that the pitch angle starts decreasing to negative values and posteriorly

starts increasing to the assigned reference. This is the result of a relatively large gain for the

depth. The control law makes the heave velocity be large during the first instants thus influencing

the pitch dynamics. Although not included, simulation results using smaller values for the gain
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Figure 3.4: Simulation results: pitch and yaw angles
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Figure 3.5: Simulation results: depth

corresponding to the depth error show that the initial deviation of θ becomes smaller during the

initial instants. The same can be verified with larger gains for pitch.

Figure 3.6 shows the trajectory of the vehicle for the application of the guidance law derived

in the section 3.4.2. The desired horizontal position was set to η∗h (t) = [10 10]T . The initial

conditions remained the same as the ones above. The simulation shows successful tracking of the

target.

3.5.2 Experiments

In order to test the approach, the control algorithm was implemented in the MARES AUV and

tests have been carried out in a tank. The current control software interprets and sequentially

executes mission scripts where maneuvers and parameters (desired depth, angles, duration, etc.)

are defined. The controller has been implemented in the computer aboard MARES. Although

MARES may include a large set of sensors, for the purpose of this implementation only depth and

IMU sensors have been used to measure relevant data to control MARES in the vertical pose. From

the IMU, angles and angular rates have been read and directly used to feedback the controller. In

practice, the expected angle errors are below few degrees (typically less than 4 degrees). Depth

measurements are fairly precise with errors in the order of few millimeters.

The gain matrices used in the control law (3.14) were set to Kη = diag([2 0.7 1]) and Kν =

diag([0.01 0.01 1 1]). In order to make the mission more challenging than in the simulation,

a time varying reference for both pitch and depth was provided to the controller. The mission
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Figure 3.6: Simulation results: horizontal position evolution

script included a sequence of three maneuvers that are completely defined by the desired pose and

the time they should be executed: 1) η∗z = [z∗ θ ∗ ψ∗] = [1 π/2 0] during the first 30 seconds;

2) η∗z = [2.5 π/2 0] for the subsequent 60 seconds and; 3) η∗z = [2.5 − π/2 0] for the final 60

seconds. In order to ensure that there is no abrupt variations in the pose references, their values

were smoothed by bounding their change rate.

The results of the mission are shown in figures 3.8-3.10. Figure 3.8 shows the pitch and the

yaw angles, figure 3.9 presents the evolution of the roll angle and figure 3.10 shows the depth over

time. Despite the natural disturbances, in general, the control law ensures stability of MARES

with satisfactory performances.

It can be noticed that the pitch angle suffers from a relatively large oscillation before stabi-

lizing around θ ∗ = π/2. This is due to the restoring moment that made MARES rapidly rotate

around the body-fixed x-axis when pitch was greater than π/2. The fast evolution of the roll angle

can be verified in figure 3.9 for the corresponding interval. The discontinuity at time t ≈ 100s on

θ and ψ is caused by the singularity at θ = 0 (see section 3.2). The small deviation of θ (typically

less than three degrees) is mainly induced by mismatches on the mathematical model of MARES

used in the control law. Later, in chapter 5, an analysis on the effects of the model mismatches

in the control performances will be given. On the contrary, the oscillation in ψ was likely caused

by a small offset in the corresponding measurements also inducing roll oscillation. Notice that the

pitch rotation from θ = π/2 to θ = −π/2 impacts on the depth for the corresponding interval.

The cause for this comes from the hydrodynamic coupling of pitch and heave, from the uncer-

tainties in the hydrodynamic model and on the thrusters model as well as non-instantaneous thrust

command execution (in opposition to what it is assumed), which are particularly noticeable during

transient. Nevertheless, the depth stabilizes afterwards. It is expectable that slower pitch variations

contribute less for depth deviations. Similarly, a larger depth-related gain would make the depth

control more accurate.



3.6 Conclusions 41

Figure 3.7: MARES in vertical pose

As expected, a positive trend on φ (roll angle) is visible when the vehicle stabilizes at θ =

±π/2. Recall from section 3.4.1, that the actuation on the stern thrusters makess the vehicle rotate

about the x-axis. Indeed, the stabilization of the depth implies non-null actuation since the slightly

positive buoyancy of MARES creates a force that leads it to the surface. The oscillation of the roll

angle is caused by the moment about the x-axis created by a non-null yaw.

3.6 Conclusions

A control example application has been considered to stabilize MARES in the vertical pose. Based

on the nonlinear control theory, and more specifically on backstepping, a control law that ensures

exponential stability for the vertical pose has been derived. In order to explore the capabilities

of MARES, a guidance law that enables the vehicle to reach any horizontal reference by using a

sector-of-sight-like controller has been designed. Both guidance and control law convergence to

the desired pose were verified. The approach shows to be effective and both simulations and exper-

iments have validated the approach, originating very encouraging results. Although the derivation

was based on this specific vehicle, this approach can be easily extended to other hovering AUVs.
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Figure 3.8: Experimental results: pitch and yaw angles
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Figure 3.9: Experimental results: roll angle
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Chapter 4

Homing using range-only
measurements

Coordination of robots is a broad area that ranges from simple tasks such as keeping within a

given relative range to more complex coordination tasks such as robotic soccer. It is important to

clarify what coordination is. According to (Oxford Dictionaries), coordination stands for

“the organization of the different elements of a complex body or activity so as to

enable them to work together effectively”.

In this chapter, a basic coordination scheme is presented to home a robot, that is guiding a

robot to a reference point. This reference point can be either static or dynamic, thus enabling

coordinated motion of two robots in which the reference robots interacts with the homing robot

via sensing. Only range measurements are used to drive the homing robot towards the reference

point. Two approaches are presented: the first one relies on estimation to infer the position of the

homing robot with regard to the reference; the second approach employs a sensor-based controller

to generate a heading rate reference. In both methods, the guidance problem is tackled at the

kinematic level by assuming that the velocities can be controlled directly.

The next sections are organized as follows: after a brief introduction on the homing subject,

a reduced dynamic and kinematic models for the horizontal plane are given in section 4.2. Then,

based on the estimation tools background given in section 2.4, section 4.3 derives a position es-

timator and a guidance law that utilizes the estimated position to set the vehicle heading, while

the section 4.4 presents a guidance law to drive the vehicle to the vicinity of the beacon based on

range measurements provided by a sensor.

4.1 Motivation and related works

Along with the advances in sensing, several techniques for navigation have been developed for

AUVs. The navigation using only DVL, IMU and a compass constitutes a suitable solution even

though the error grows with time due to the inherent drifts of the first two sensors and due to

43
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possible angular errors for the last one. The use of effective equipment in large scale, or long

time, operations makes it possible to achieve drift errors below 10 meters per hour (Eustice et al.,

2007). Similarly, feature based navigation using acoustic imaging from sidescan sonars or multi-

beam echosounder has attracted the attention of several research groups (see Barkby et al. (2011)

for a SLAM application, for instance) thus leading AUVs toward the concept of standalone plat-

form. The use of acoustic beacons is compatible with those techniques but may be unavailable for

some scenarios such as large scale operation, deep waters (Hegrenaes et al., 2009) or under-ice

(Ferguson, 2009) navigation.

Common to most operations underwater is the recovery of AUVs. One may imagine several

scenarios where there is a low confidence on the position estimate and safe recovery close to a bea-

con is required. At the end of a mission, the vehicle may not have a sufficiently accurate position

estimate and the recovery point may be placed anywhere. Still, if ranges to the recovery reference

point are measurable, then the homing procedure is feasible by adopting a suitable method.

Homing of AUVs requires a method that robustly drives the robot to an assigned position.

This is a simple task when both home and vehicle positions are perfectly known by this latter but

becomes a challenging problem when such information is not available. The problem is even more

complex when only ranges to home are measured and disturbances affect the vehicle trajectory

or the home position. Therefore, a complete method that considers the undesired - and often

neglected - external effects is needed to robustly home an AUV.

In underwater robotics, absolute and relative localization and positioning of autonomous ve-

hicles are mainly constrained by the intrinsic strong attenuation of electromagnetic waves and by

the poor visibility conditions found in the environment. Thus, the research efforts completed by

several researchers over the last decades (see (Cruz et al., 2001; Stojanovic et al., 2002; Eustice

et al., 2011; Vaganay et al., 2004), just to cite a few) has led to a common solution that explores

the trilateration concept for bounded error navigation. The method is based on ranges, indirectly

obtained from times-of-flight (TOFs) of acoustic waves between two or more coordinated entities

(for example, an AUV and a navigation beacon). Such systems employ a minimum set containing

one (Ferreira et al., 2010a) to three acoustic beacons carefully placed in the operation area (Bing-

ham, 2003). The number of deployed beacons can be greater in cases that require more precise

navigation.

Vision-based homing has been widely implemented in ground and aerial robotics (e.g. Argyros

et al. (2005)) and its concepts have been translated to underwater robotics in some works such as

Negre et al. (2008). Although this approach is interesting for accurate positioning and docking in

particular, it constraints the vehicle to be relatively close the target (typically below a few meters)

to be able to home. An alternative homing method was proposed by Feezor et al. (2001) using

electromagnetic waves emitted and received by means of large coils placed in both the docking

station and the AUV. The overall system makes it possible to compute bearing to the dock at

distances up to 35m in sea water. Bearing was also employed by Singh et al. (2001) using an

USBL sensor carried on the vehicle. The control law derived just has to ensure that the bearing

angle is null along the trajectory to home. However, it is well known that, in USBL systems, the
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angle resolution decreases with the distance and the sensor may not be omnidirectional, thus being

possible to measure angles and ranges only when the beacon is located at a given angular position,

with regard to the USBL sensor. Recently, Batista et al. (2010) presented a method which only

takes into account raw measurements obtained from an USBL system for deriving a control law

to home the vehicle. In Bezruchko et al. (2011), an extremum-seeking algorithm was introduced

to find the maximum approach rate to the beacon. Nevertheless, the method requires initialization

otherwise the AUV may be driven to a stable equilibrium point in the opposite direction of the

beacon. A priori information on the area is used by Jantapremjit and Wilson (2007) to generate an

artificial potential field combined with a sliding mode control law to home an AUV to its docking

station.

In the context of range-only-based homing, Vaganay et al. (2000) and Baccou and Jouvencel

(2002, 2003) have proposed a method that exploits an EKF for vehicle localization using range

measurements only, where kinematic variables are taken into consideration along with the water

current velocity components and a possible speed bias. The use of EKF requires an initialization

procedure to ensure fast convergence of the estimate. To overcome this problem, Baccou and

Jouvencel (2002, 2003) have adopted a nonlinear least mean squares method that is composed of

a two step procedure which first does not consider currents and secondly improves the complete

state estimate with the remaining current components, while relying on kinematic and dynamic

models. A similar approach was presented by Casey et al. (2007). The localization problem

is also addressed by Newman and Leonard (2003) for relative navigation. A sequence of non-

collinear positions and respective ranges relative to a beacon are assumed to be known in order

to estimate the position of the latter using nonlinear least mean squares recursively. Additionally,

Jouffroy and Reger (2006) presented an algebraic solution for determining the position an AUV

that measures course, velocity over the ground and ranges to a beacon. Along with the algebraic

solution, a filtering method is employed to smooth the output. Furthermore, the work theoretically

supports some intuitive facts on observability, namely: the system is not locally observable when

the vehicle is stopped, that is, when the velocity over the ground is zero, and when the course has

the same or the opposite direction of that of the vector that joins the beacon and the vehicle.

4.2 Reduced models and cylindrical coordinates

Throughout this section, some assumptions will be made in order to simplify the development of

the methods presented. These simplifications can be performed as long as it is assumed that certain

state variables remain stable. Thus, let us consider the reduced bi-dimensional model of a vehicle

with horizontal pose vector ηh = [x yψ]T and linear and angular velocities νh = [uvr]T , expressed

in the body frame. The pitch θ and the roll φ angles have been neglected and are assumed to be

null. Additionally, it is also assumed that the heave motion, w, is null and that the depth is kept

constant. The kinematics and dynamics equations are respectively given, by simple derivation
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from (2.1) and (2.2), by

η̇h = Jh(ηh)νh +νch (4.1)

ν̇h = Ah(νh)νh +h(ηh)+T τh, (4.2)

where the matrices and vectors result from the reduced order model for the horizontal pose derived

similarly to method presented in section 3.2. This simplification results after order reduction

by suppressing the cross-related terms of the unconsidered DOFs. The simplification is made

assuming that the remaining DOFs are stable and that their influences are negligible. Since this

chapter essentially focuses on guidance, no emphasis on the reduced dynamics model will be

given. Suppose only that any sufficiently smooth velocity reference can be tracked by means of an

inner-loop controller.

Let us now focus on kinematics. Expand (4.1) in the form:




ẋ

ẏ

ψ̇


=


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cos(ψ) −sinψ 0

sin(ψ) cos(ψ) 0

0 0 1





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u

v

r


+




vx

vy

0


 , (4.3)

where it has been assumed that the external disturbances, such as currents, do not influence the

angular dynamics.

As the intention is to home the robot to an unknown position from which it is able to range,

let us consider the cylindrical coordinates and denote the range and the angle between the beacon

and the robot, respectively, as

ρ = ρ(x,y) =
√

x2 + y2,

ψp = ∠(x,y).
(4.4)

Their time derivatives are given by

ρ̇ = ucos(ψ−ψp)− vsin(ψ−ψp)+ vx cosψp + vy sinψp,

ψ̇p = 1
ρ
(
usin(ψ−ψp)− vx sinψp + vy cosψp

)
.

(4.5)

Based on this model, a homing method using estimators is presented in the next section.

4.3 Homing using an estimation based approach

In this section, the homing problem is solved by means of localization using estimators. KFs and

PFs seem to be promising approaches for this scenario. In order to verify their performances and

compare the two methods, both were developed. Their formulations are shown in the following

subsections. Initialization and guidance are addressed afterwards.
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4.3.1 Estimating the position: extended Kalman filter

The KF is an optimal estimator for linear systems subjected to white noise in measurements and

state. Its performance in the nonlinear case degrades and the filter becomes suboptimal (Gelb,

1999). However, it has been implemented in several works (see (Newman and Leonard, 2003;

Olson et al., 2004; Baccou and Jouvencel, 2002), for example) with satisfactory results even in the

presence of non-Gaussian, non-null mean noise. The first approach presented here contemplates an

EKF to estimate the horizontal position ηh = [x y]T and the water current velocities νlh = [vx vy]
T .

The range measurement at time tk is given by

h(tk) = hk = ρ (ηh(tk))+ lk, (4.6)

where lk ∈R∼N (0,Rm) is a noise variable assumed to follow a normal distribution with variance

Rm ∈ R.

Define the state vector as X =
[
ηT

h νT
lh

]T
= [x y vx vy]

T , with the corresponding estimate X̂ =

[x̂ ŷ v̂x v̂y]
T and, from (4.1), it is possible to write (Casey et al., 2007):
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[
u
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]
+w (4.7)

where w ∈ R4 ∼ N (0,Q) is the process noise vector, which is assumed to follow a Gaussian

distribution with zero mean and variance Q ∈ R4×4.

The formulation of the EKF follows from section 2.4.1. Whenever a new measurement hk is

available, the state estimate update is given by

X̂k|k = X̂k|k−1 +Kk[hk−ρ(x̂k|k−1, ŷk|k−1)]

where Kk is the so-called Kalman gain at instant tk which is obtained through the following ex-

pression:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)
−1,

where Hk is the Jacobian of ρ(·) evaluated at [x̂, ŷ]. The matrix P is the estimation error covariance,

which is updated at each new range measurement through

Pk|k = (I−KkHk)Pk|k−1.

The last equations standing for the update step. The prediction step is easily obtained from (4.7)
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as
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ŷk|k−1

v̂xk|k−1

v̂yk|k−1



=




x̂k−1|k−1

ŷk−1|k−1

v̂xk−1|k−1

v̂yk−1|k−1




+
∫ tk

tk−1







0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0







x̂k−1|k−1
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dt. (4.8)

Note that the velocities û and v̂ can be obtained either by estimation through dead-reckoning or

direct measurements, if available. In this last expression, errors may be introduced because of the

assumption that the heading, the body velocities and the drifts are constant in the interval [tk, tk+1).

Nevertheless, these errors can be made smaller if shorter intervals are considered. These errors are

considered disturbances here.

At each prediction step, the covariance matrix evolves as follow:

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk (4.9)

where F is the Jacobian of (4.7) evaluated at X̂ and Qk =
∫ tk+1

tk Qdt is the noise variance integrated

over the interval [tk, tk+1].

One of the major issues with the EKF is the initialization. To avoid divergence and guarantee

fast convergence of the estimate, the initial positions and water current velocities have to be ade-

quately initialized. This question will be addressed later in subsection 4.3.3. The next subsection

present a valid alternative to EKF which can also be used as an initialization method, as will be

seen later on.

Boutayeb et al. (1997) has proven that, under appropriate choice of process noise and observa-

tion error covariance matrices, the estimate of EKF does not diverge. Convergence is guaranteed if

a sequence of measurements makes the system observable. Here, the vehicle trajectory depends on

the estimate and wrong estimates may lead to a locally unobservable system and thus the estimate

may diverge.

4.3.2 Estimating the position: particle filter

While EKFs assume the presence of Gaussian noises affecting the observations and the process,

PFs do not make any assumption on the noise probability distribution (Arulampalam et al., 2002;

Gustafsson et al., 2002). In fact, the posterior probability distribution is discretized into a finite

number of particles, which are vectors that represent probable state estimates.

Although PF is a promising approach it is usually more demanding than the EKF in terms of

computational requirements. Generally, the number of particles is large in order to guarantee a
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good coverage of the belief distribution and grows substantially with the number of state estimate

variables (Gustafsson et al., 2002). Since computational resources are naturally limited, there is a

trade-off between accuracy and processing requirements. This makes the processing time available

for PF estimation narrower which leads us to consider and estimate only horizontal positions while

water currents are considered disturbances.

According to section 2.4.2, consider the set of particles Xk = {X1
k ,X

2
k , ...,X

n
k }, where X i

k =

[xi
k,y

i
k]

T ∈R2 and n is the number of particles. Associated to these particles, a set of weights Wk =

{w1
k ,w

2
k , ...,w

n
k},wi

k ∈ R, assign an importance to the corresponding particle. For initialization,

the vehicle is stopped and the range is measured several times. The mean R̄ini of consecutive

consistent measurements (consistent measurements are those that obey to a given condition on

their difference, for example) is computed and each particle is sampled according to

[
xi

0

yi
0

]
=

[
(R̄ini + ri

s)cos(ψ i
s)

(R̄ini + ri
s)sin(ψ i

s)

]
, (4.10)

where ri
s ∼U (−δr,δr) and ψ i

s ∼U (−π,π) are sampled from uniform probability distributions.

At each time step, each particle is propagated through dead-reckoning similarly to (4.8). The

propagation differs only in an added sample si
k drawn from the process noise probability density

function p f , assumed to be piecewise constant in the intervals [tk, tk+1), resulting into:

X i
k =

[
xi

k−1

yi
k−1

]
+
∫ tk

tk−1

([
cos(ψk) −sin(ψk)

sin(ψk) cos(ψk)

][
ûk−1

v̂k−1

]
+ si

k

)
dt. (4.11)

Whenever a new range measurement is available, the update is performed and the weights are

computed according to

wi
k = wi

k−1q(hk|X i
k), (4.12)

where q is an importance function that approximates the likelihood. For this particular case, q =

q
(∣∣∣∣||X i

k||−hk
∣∣∣∣). Likelihood resemblance is of special importance since it impacts on the perfor-

mances of the filter. For acoustic range measurements, it might be difficult to find an appropriate

function to play this role. Our intuition and practice suggest that a monotonically decreasing

function would be an adequate choice.

After computing the weights, normalization follows: wi
k = wi

k/∑
n
i wi

k. The state estimate is

then obtained using the weighted summation of the particles:

X̂k =
n

∑
i=1

wi
kX i

k. (4.13)

Due to their nature, after some iterations, it is common that PFs weight a set of few particles

considerably more than the remaining ones. In the single beacon localization problem, this hap-

pens when a small set of particles is recursively consistent with the range measurements. Their
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weights will increase while the remaining ones will decrease. In such a scenario, the reliability

on the estimate decreases, since the estimation relies on a small number of possible states. This

phenomenon is known in the literature as degeneracy and can be attenuated by resampling. This

method consists of spreading the particles over regions around the most weighted particles and

setting the weights uniformly as wi
k = 1/n. Resampling can be achieved by sampling from an

accumulative weight function (see Arulampalam et al. (2002), for example). Nevertheless, resam-

pling should not be performed at every iteration but only when the degeneracy is considered too

large. As introduced in 2.4.2, a common metric for degeneracy is the summation of the squared

weights (Arulampalam et al., 2002; Gustafsson et al., 2002). Thus, resampling has to be performed

whenever the following inequality holds:

1

∑
n
i wi

k
2 < Nth, (4.14)

where Nth ∈ [1,n] is a preset threshold.

Although PFs provide an estimate based on vectors spread in space, it may diverge. Diver-

gence, in this case, may be due to deprivation. Indeed, when the particles are resampled, they

likely concentrate in a region and may originate lack of representativity. Of course, this can be

overcome by increasing the number of particles and/or tuning the user-defined distribution func-

tion p f so that the particles are propagated within a broader range. Nevertheless, the first option

may be undesirable because of the computational requirements.

4.3.3 Initialization

Although PFs include a step for initialization, the same does not apply to the EKF algorithm.

Hence, in order to guarantee fast convergence of the KF to the real position, it is necessary to

provide a reasonably good guess of the initial position while reducing the values of the covariances

of the corresponding variables, as performed by Baccou and Jouvencel (2002). Unfortunately, the

speed of convergence is not the only issue: without adequate initialization, the EKF would possibly

diverge or converge to local minima. Baccou and Jouvencel (2002) implemented an iterative least

mean square estimator for the initial position. However, the estimator relies on an accurate model

for dead-reckoning or accurate knowledge on vehicle velocities. A previous implementation and

simulation of least mean square method revealed that the initialization is very sensitive to model

uncertainties. Similarly, Casey et al. (2007) defined an intuitive estimator, also based on least

mean square errors but relying on very accurate dead-reckoning.

Here, the proposed approach takes advantage of the PF properties: the PF estimates the initial

position of the vehicle which in turn is used to set the initial estimate of the EKF. The initialization

includes the following sequential steps:

1. Spreading particles on a circle: with the vehicle stopped, the PF is initialized as described

in section 4.3.2;
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2. Constant heading: the vehicle starts moving with an arbitrary orientation describing a line

during a pre-established time at constant velocity;

3. Constant heading rate: while keeping the same surge velocity, the vehicle describes a dis-

torted arc of circumference (typically a quarter or a half of a circle), by setting the yaw rate

constant and non-null;

4. Initialization of the EKF: the initial estimate of the KF is set according to the PF estimate.

Clearly, this does not ensure accurate initialization. Henceforth, if a measure of the estimate

coherency is available and if the estimates are inconsistent, the initialization step may have to be

performed again.

Divergence of the EKF can be easily detected through observation of the covariance matrix

terms or large value of the norm of the water current velocities. Therefore, in the case of diver-

gence, the KF has to be re-initialized using the procedure above.

4.3.4 Control

If the actual position of the vehicle and the currents were known over the operation, the control

law would be simple and would make the vehicle move in a straight line to the origin. However,

it is easy to verify that this linear motion makes the system unobservable (Jouffroy and Reger,

2006). Indeed, even with a very accurate initialization, the uncertainty would grow over time,

which could make the filters diverge from the actual position. A possible solution is described by

Feder et al. (1999), making it possible to compute the optimal control at each time step such that

a given criterion of observability is maximized. However, the method is computationally expen-

sive, relying on optimization algorithms. Here, as in (Baccou and Jouvencel, 2002), a curvilinear

motion is considered to approach the beacon. A heading offset with regard to the orientation of

the vector that joins the vehicle and the beacon solves the problem.

Throughout the following developments, the reference position will be considered to be coinci-

dent with the origin of the horizontal plane, that is ηd = {[xd ,yd ,θd ]
T : xd = yd = 0,θd ∈ [−π,π)},

enabling the use of the form (4.4). Therefore the control law must stabilize the origin of the vector

[x,y]T , which is equivalent to stabilizing the origin of ρ . The approach presented here is based

on backstepping (see Khalil (2002)). Although a simple control law can be almost empirically

derived, taking u and r as inputs of the system, Lyapunov theory and the backstepping technique

provide a framework to analyze and to guarantee stability.

Consider the system

ρ̇ = ucos(ψ−ψp)− vsin(ψ−ψp)+ vx cosψp + vy sinψp

ψ̇ = r
(4.15)

Relying on the estimate, let us assume that the angle between the beacon and the vehicle

position is equal to the estimated ψp = ψ̂p = ∠(x,y).
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Define the Lyapunov function candidate as V (ρ) = ρ . Its time derivative results

V̇ = ρ̇ = ucos(ψ−ψp)− vsin(ψ−ψp)+ vx cosψp + vy sinψp. (4.16)

Setting u > 0, the following implication holds: ucos(ψp−ψ)< 0⇒ ψ ∈ ]ψp +π/2,ψp +3π/2[.

Considering that the lateral velocity is small compared to the longitudinal one and that the

difference ψ−ψp is sufficiently small, yields

ρ̇ ≈ ucos(ψ−ψp)+ vx cosψp + vy sinψp. (4.17)

From this last equation, the constraint on the forward velocity is straightforward:

ucos(ψp−ψ)<−vx cos(ψp)− vy sin(ψp). (4.18)

Suppose that ψ = ξ (ψp), along with the condition (4.18), stabilizes the system (4.5) and makes

the Lyapunov function satisfy the inequality V̇ ≤ −W (ρ), where W is a positive semi-definite

function. A simple example is

ξ (ψp) = ψp +π +ψo, (4.19)

where ψo ∈ (−π/2,π/2) is an offset angle that makes the trajectory curvilinear during the ap-

proach to the origin. Defining the error variable z1 = ξ −ψ , the system (4.15) can be re-written

as

ρ̇ = ucos(ξ − z1−ψp)+ vx cos(ψp)+ vy sin(ψp)

ż1 = r− ξ̇

Note that for each z1, there exist a δ such that cos(ξ − z1 −ψp) ≤ cos(ξ −ψp) + δ ||z1||. In

fact, assuming that z1 ∈ [−π,π), it is easy to show that δ belongs to the interval [0,1/π]. Using

V2 =V +1/2z2
1 as the new augmented Lyapunov function, which is obviously positive definite, its

time derivative is given by:

V̇2 = ucos(ξ + z1−ψp)+ vx cos(ψp)+ vy sin(ψp)+ z1ż1

≤ −W (ρ)+δ ||z1||+ z1(r− ξ̇ ).

Choosing r = ξ̇−Kz1−K′sign(z1), being K′ chosen such that the term δ ||z1|| is cancelled, stability

would be ensured. Note that the control law is discontinuous which is undesirable. Making K′ = 0

makes the control law continuous but at the cost of making V̇ ′ positive for some values of ||z1||.
Nevertheless, using theorem (Khalil, 2002, th. 4.18, pp. 172), it is possible to prove that the

system converges to the vicinity of ρ = 0 with an error that can be made arbitrarily small by

manipulating the gain K, if the product δ ||z1|| remains bounded. The same result can be derived

for the neglected sway velocity v, if its norm is upper bounded.
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Remark 4.1. Thus far in this subsection, it has been considered that the position of the vehicle is

perfectly known. Although with PFs it is not trivial to assess the confidence on the estimate, the

KF provides a notion of the uncertainty through its covariance matrix P. In general, the bigger

the values of its entries, the less the confidence on the estimate is. In such scenarios it could be

useful to modify the trajectory. Here, the change of approach side is a valid choice in order to try

to reduce the estimate uncertainty. Thus, our method makes use of the offset angle introduced in

(4.19): whenever the elements of the error covariance matrix grow above a preset threshold, the

approach side is switched by simply setting ψo(tk+1) =−ψo(tk) in the control law. Note that such

a change introduces discontinuities in the control law but bounding its slope would be sufficient to

overcome the problem.

4.3.5 Results

Implementation of the approach is demonstrated by realistic simulations using a six DOF model of

the dynamics, whose accuracy was already proved through comparisons in Ferreira et al. (2010b),

and a non-gaussian noise for the time-of-arrival (TOA). For simulation, an uniform distribution

U (0, ēl), ēl > 0, is used. The measurements have been simulated to occur every two seconds.

In order to imitate the real behavior of the dynamics and the constraints in real operations,

the estimation and control software are tested in their final version as they are implemented in real

vehicle. Beyond validation of algorithms, this way enables performance evaluation and parameters

tuning, as well. While the implementation code runs in its final version, the dynamics and the

sensors are emulated accurately by a model implemented in Simulink. A communication interface

in the middle grants connection between the two modules. This approach makes code porting

totally transparent when implementing in real vehicles.

In this section, the results from both PF and EKF approaches are presented. A comparison of

the results under the same conditions is given and a more focused analysis on the performances of

the EKF is provided.

4.3.5.1 Comparison

To find the best approach, the two estimators were implemented. The results obtained from simu-

lations with different initial positions and different water currents are similar to the one addressed

here in terms of behavior. In order to make clear the algorithm followed for this simulation, let us

recall the main steps:

1. the vehicle is set in a unknown random position, with an arbitrary heading

2. initialization is performed by the particle filter while describing a line during few seconds

(30 seconds in this case) followed by an arc of circumference

3. Kalman filter is initialized with the last estimate of the particle filter after the initial trajectory

• whenever the diagonal elements of the covariance matrix P grow above a pre-set

threshold, the approach side is switched
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(a) PF estimate

(b) EKF estimate

Figure 4.1: Comparison between the particle filter and the extended Kalman filter estimates
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4. the homing process ends when the vehicle is close to the beacon (20 meters in this simula-

tion)

The homing trajectory shown in figure 4.1 starts at point [x y]T = [−150,−180]T with an ar-

bitrary heading. The water current variables were set to [vx vy]
T = [0.3 − 0.1]T . The controller

uses the estimates of the EKF to generate the trajectory, while moving at a constant forward speed

of 1m/s. In figure 4.1(a), the result of the PF estimation are shown. The estimate starts at ap-

proximately [0 0]T and iteratively approximates the real position. However, it can be seen that the

particle filter diverges after some steps. The cause of this divergence is the lack of coverage of

the particles: after re-sampling several times, the particles occupy a small area and their propaga-

tion is not enough to prevent divergence. After divergence, the particles are basically driven by

dead-reckoning. Propagation can be made larger with an adequate choice of the distribution p f

from which the of “propagation noise” is sampled. But this approach has critical consequences,

especially for filters with small number of particles, since they may be propagated too far from the

real position. This issue could be overcome by choosing a more appropriate propagation noise dis-

tribution or by augmenting the number of particles and including the estimate of the currents in the

state vector. However, our experience tells us that, for a number of particles between n = 100 and

n = 1000, the performance remains similar. Therefore, it is expected that a much larger number

is required. The inclusion of the currents velocity components would likely improve the estimate

but a even larger number of particles would be needed.

On the other hand, figure 4.1(b) shows that the EKF converges to the vehicle true position,

even with a relatively poor initialization. Some terms of the covariance matrix are above the pre-

set threshold which makes the controller switch the approach side several times. Most simulations

showed that the EKF approach provides the best results and the overall estimation is performs

properly when it is initialized with the particle filter.

4.3.5.2 Initialization

The evolution of the PF algorithm is shown in figure 4.2. After having collected a set of consistent

ranges, the particle filter is initialized by spreading the particles around a circumference with

radius equal to the average of the collected range measurements (t = 0s). The density of particles

suggests the possible the lack of representativity at beginning: smaller number of particles would

likely lead to lack of coverage to approximate the posterior in certain regions. Alternatively, the

same would be verified if the number of particles is kept and the initial distance is augmented,

which would result in a smaller density of particles over the circle.

The algorithm rapidly evolves and converge to the final estimate of the position. One can see

that the particles are confined to a very small region at t = 120s (deprivation). Space coverage

becomes small and could lead to divergence after some “less consistent” measurements. It would

be just a matter of time before PF estimate eventually diverge (Thrun et al., 2005). Two types

of solutions would be possible to prevent this issue: introduction of randomly sampled particles
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Figure 4.2: Evolution of the 1000 particles for an initialization with the vehicle starting at (x,y) =
(−150,−170). The vehicle velocity is u = 1m/s and the currents are (vx,vy) = (−0.2,0.1).

in the set (Thrun et al., 2005), or; re-initialization after divergence by following the steps of the

initialization procedure.

4.3.5.3 EKF approach

In what concerns convergence, the results shown above indicate that the EKF performs better than

the particle filter. The use of the covariance matrix to infer about the confidence on the estimates

provides to the system robustness and ability to take decisions. Re-initialization is specially ap-

preciated in this context.

In the following simulation, the vehicle is set at [x y]T = [150 150]T with current velocity

[vx vy]
T = [0.2 − 0.1]T . Figure 4.3 shows the position estimate along with that of the current

component velocities. As can be seen, the estimation of the current is slow and erroneous for

almost all time. Although erroneous, this shows that the correct estimation of this vector does not

seem to be critical since the position estimate converges to the real position.
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Figure 4.3: Position and current velocity estimations

In the present approach, the errors in the dead-reckoning model are reflected on the estimation

of the current velocity. Imagine that the vehicle is moving in a straight line and the estimated for-

ward velocity is inaccurate. The difference between the dead-reckoned and real forward velocities

will be directly reflected on the estimate.

The results of another homing mission with different surge velocity (u = 2m/s) in the presence

of voluntarily inserted model uncertainty and current [vx vy]
T = [0.4 0]T are shown in figure 4.4.

The surge damping coefficient was set to be 30% less than its actual value. This fact, together with

unmodeled current, naturally affect the initialization. In this case, the figure 4.4(b) shows that the

initialization is made with an error of 43m. However, one can remark that the estimation of the

EKF is capable of recovering from this error. The dashed line indicates the moment at which the

approach side is switched for the first time (∼ 45s) and it can be seen that the observability is

improved in such a way that the error decreases quickly. These corrections appear in figure 4.4(a)
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Figure 4.4: Homing at 2m/s

as larger corrections (“discontinuities”) after the first curve.

These results reveal that this approach is robust even in the presence of model uncertainties

and possible inaccurate initializations.

In order to compare the effect of different parameters for direction switching, that is, approach

side changes, the result of simulations with different values are presented next. The two tuning

parameters are the minimum switching period and the maximum covariance. The former avoids

the heading reference to switch at very high rates (chattering) while the second is a threshold used

to change the approach side as a tentative to reduce the uncertainty of the position estimate. These

parameters are denoted tthresh and σthresh, respectively.

The trace of the 2-by-2 submatrix of P, Pp (the submatrix that is directly related with the [x y]

position covariance) is used as a measure of the uncertainty:

trace(Pp) = σ2
xx +σ2

yy. (4.20)

To better understand the performance of the EKF as a function of the two parameters afore-

mentioned, several simulations were ran, varying σthresh and tthresh. The resulting evolution of the

measures of uncertainty is shown in figure 4.5, which must be analyzed along with the result in

figure 4.6. It should stressed that the observability degrades with the distance of the vehicle with

respect to the beacon (see Bingham (2003) for an analysis on relative positioning in LBL localiza-

tion systems). It can be seen from figure 4.6 that the initialization procedure feeds the EKF with
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Figure 4.5: Evolution of the covariance as a function of the minimum switching period and of
the switching covariance. The results were obtained from several simulations performed with the
same initial conditions.

approximately the same initial position for all cases.

Two extreme cases can be observed from the plots:

• When σthresh is too small, that is, when σxx > σthresh or σyy > σthresh is verified for all time,

the trajectory is driven by the minimum switching period, independently of the evolution of

the covariance. The algorithm switches the approach side after every interval period tthresh.

The behavior corresponding to this situation can be seen in the simulations with σthresh = 30;

• When σthresh is too large, the approach side never switches and the algorithm becomes static,

as for the case in which σthresh = 500. Still, for the example presented, the performance is

relatively good due to the fact that the vehicle approaches the origin and the observability

becomes better. Nevertheless, for larger distances and longest trajectories, the EKF uncer-

tainty would grow much more and the estimation would possibly diverge.

For the analysis of the influence of tthresh, suppose that the estimate is coincident with the

actual position but the uncertainty is large and σxx > σthresh or σyy > σthresh. If tthresh is too small,

the vehicle would describe a zig-zag trajectory about the line that joins the beacon and the initial

position of the vehicle. For tthresh→ 0, the trajectory would be coincident with the line. As stated

earlier, the straight line trajectory to the origin lacks observability about the normal direction of

the trajectory (in the 2-D plane), and consequently, the uncertainty about that axis would never

stop growing. Alternatively, if tthresh is too large the effect would be the same as for large σthresh.

Under these simulation conditions, values of tthresh within the range [30,60] and of σthresh ∈
[70,200] provides satisfactory results. Nevertheless, it is expectable that the performances change
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Figure 4.6: Ground truth (blue solid line) and estimated trajectories (red dots) as functions of the
minimum switching period and of the switching covariance. Surge velocity reference is u = 1m/s
and the current velocity is (vx,vy) = (−0.2,0.1)

according to the update rate, the measurement errors and the vehicle velocity. Hence, for different

scenarios with different parameters, the same performances can not be granted. Therefore, the

thresholds should be tuned according to the environment, sampling and velocity conditions.

4.4 Homing using a sensor-based approach

The previous method provided a complete approach for estimating the relative position of a robot

with respect to a beacon as well as a control law that enables homing the robot to that reference.

The approach relies on the position estimate to guide the robot.

The main goal of this section is to present an alternative way to home an underwater vehicle

without resorting to localization algorithms. The main advantage behind this approach is the

possibility of defining a totally predictable and deterministic behavior during the trajectory of

the vehicle, while avoiding to rely on estimators which may diverge under unpredicted situations.

Indeed, solving the localization problem would make it possible to decouple the navigation process
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into control and position estimation but would be more demanding, more uncertain and may lead

to wrong control decisions as the estimate is used to determine the desired heading.

In this section, a complete method to drive an AUV to a beacon based on ranges only is

proposed. It is desired to keep the approach minimalistic not only in terms of computational

complexity but also in terms of sensor/equipment requirements. The approach is constructed so

that no state estimation is needed to robustly drive the AUV to a small neighborhood of the home

(beacon) position. At the expense of imposing some constraints, the vehicle will be endowed with

the ability to track a given gradient, while making the behavior completely predictable. It should

be noted that precise localization methods surveyed earlier can complement the present work,

in the vicinity of home for accurate positioning (e.g. docking). By applying Lyapunov nonlinear

theory, a velocity control law is derived to conduct the vehicle toward the beacon without requiring

initialization.

4.4.1 Control method

To begin with, some assumptions have to be made at this stage (some of them were already intro-

duced in section 4.3.4)

1. An inner velocity loop allows for the robot to move at a constant forward speed u, indepen-

dently of its angular velocity r (u and r can be manipulated separately)

2. When moving, the robot does not suffer from sideslip (v = 0), independently of the forward

and angular velocities

3. The norm of the generalized horizontal drift vector νc = [vx,vy]
T , which includes the sum of

the effects of the current, wind and waves is upper bounded, that is, ||[vx,vy]
T ||= ||νc|| ≤ ν̄c,

where ν̄c is a known nonnegative constant

4. The forward velocity is strictly greater than the current velocity u > ν̄c ≥ ||νc||

Recall that the objective of the control law to be derived is to reduce the distance ρ to zero.

Hence consider the system (4.15) and from assumption 2, let us re-write the system, for complete-

ness,

ρ̇ = ucos(ψ−ψp)+ vx cosψp + vy sinψp

ψ̇ = r
. (4.21)

Clearly, beyond u, which is assumed to be constant, none of the variables is directly con-

trollable. Keeping in mind that u > ||νc||, assume that it is possible to set ρ̇ = −β (ρ), where

β (ρ) : [0,∞)→ [0,cβ ] is a class K function verifying limρ→∞ β (ρ) = cβ > 0, for a given con-

stant 0 < cβ < ∞. Thus, the time derivative of the range would result negative in ρ̇ < 0.

Intuitively, the idea behind the introduction of β is simply that one aims at defining an approach

rate to the origin. Its upper bound must obviously take into account the surge velocity u and the

drift vector νc in order to make the approach to the origin possible, as it will be explained next.
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reference are measurable then the homing procedure is re-
alizable by adopting a suitable method. We address this
problem by considering that we are able only to measure
ranges to the beacon.

The main goal of this work is to present a complemen-
tary method to home an underwater vehicle without re-
sorting to localization algorithms. The main advantage
behind this approach is the possibility of defining a totally
predictable and deterministic behavior during the trajec-
tory of the vehicle, while avoiding to rely on estimators
which may diverge under unpredicted situations. Indeed,
solving the localization problem would make it possible to
decouple the navigation process into control and position
estimation but would be more demanding and uncertain.
This latter approach has been implemented by several au-
thors. In [10] and [11, 12], the authors have proposed a
method that exploits an extended Kalman filter (EKF) for
vehicle localization, where kinematics variables are taken
into consideration along with the water current velocity
components and a possible speed bias. The use of EKF
requires an initialization procedure to avoid divergence of
the estimate. In order to solve this problem, the authors
have adopted a nonlinear least squares methods that is
composed by a two step procedure which first does not con-
sider currents and secondly improves the complete state
estimate with the remaining variables, while relying in a
kinematics/dynamics model. A similar approach was pre-
sented in [13]. The localization problem is also approached
in [14] for relative navigation. A sequence of noncolinear
positions and respective ranges relative to a beacon are
assumed to be known in order to estimate the position of
the latter using nonlinear least-squares recursively. A dif-
ferent approach which employs a particle filter (PF) for
initialization and an EKF for navigation was proposed in
[5], exploiting the advantages of both estimators. While
homing, the vehicle is autonomously able to modify its tra-
jectory in order to improve its position estimate. A priori
information on the area is used in [15] to generate an arti-
ficial potential field combined with a sliding mode control
law to home an AUV to its docking station. The homing
task can ultimately be considered as a pursuit game (see
[16], for example).

Vision-based homing has been widely implemented in
ground or aerial robotics (e.g. [17]) and its concepts have
been translated to underwater robotics in some works such
as [18]. Although this approach is interesting for accurate
positioning and docking in particular, it constraints the
vehicle to be relatively close the target (usually below 10
meters) to be able to home. An alternative homing method
was proposed in [19] using electromagnetic waves emitted
and received by means of large coils placed in both the
dock station and the AUV. The overall system makes it
possible to compute bearing to the dock at distances up
to 35 meters in sea water. Bearing was also employed in
[20] using an ultra short baseline (USBL) carried on the
vehicle. The control law ensures that the bearing angle
is null along the trajectory to home. However, it is well

known that, in USBL systems, the angle resolution de-
creases with the distance. Recently, [21] have presented a
method which only takes into account raw data obtained
from an USBL system for deriving a control law to home
the vehicle. In [22], an extremum search algorithm is intro-
duced to find the maximum approach rate to the beacon.
Nevertheless, the method requires initialization otherwise
driving the AUV to a stable equilibrium point in the op-
posite direction of the beacon.

In the present paper, we propose a complete method to
drive an AUV to a beacon based on ranges only. We aim
at keeping the approach minimalistic not only in terms
of computational complexity but also in terms of sen-
sor/equipment requirements. The approach is constructed
such that no state estimation is needed to robustly drive
the AUV to a small neighborhood of the home (beacon)
position. At the expense of imposing some constraints
the vehicle will be endowed with the ability to track a
given gradient, while making the behavior completely pre-
dictable. It should be noted that precise localization meth-
ods reviewed above can complement the present work, in
the vicinity of the home station, for accurate positioning
(e.g. docking). By applying Lyapunov nonlinear theory
[23], we derive a velocity control law using Lyapunov di-
rect method and backstepping for conducting the vehicle
toward the beacon without requiring initialization, in sec-
tion 3. Motivated by real, practical constraints, we deter-
mine an upper bound on the distance that the vehicle is
guaranteed to reach in section 4. In section 5, we conclude
presenting the results obtained from real experiments per-
formed in the Douro river during the summer 2011, and
demonstrating the robustness of the exposed method. Sec-
tion 6 compares qualitatively the presented approach with
an estimation-based method used to guide an AUV to a
beacon.

2. Problem statement

We consider the motion of a mobile robot in the tridi-
mensional space. Define {I} as the inertial referential
frame and {B} as the body fixed referential frame with
origin coincident with the center of gravity and the x and
y-axes being coincident with the surge and sway axes. The
robot’s absolute linear position in {I} is denoted by the
vector ⌘l = [x, y, z]T 2 R3, while its angular position is
denoted by ⌘a = [�, ✓,  ]T 2 R3. The relative linear
and angular velocity vectors of the robot, expressed in
the {B} frame, are given by ⌫l = [u, v, w]T 2 R3 and
⌫a = [p, q, r]T 2 R3, respectively. During the operation,
the robot is assumed to be subject to the e↵ects of drifts
that are represented by ⌫c = [vx, vy, vz]

T 2 R3, expressed
in the {I} frame. This vector is defined as a general drift
vector that includes the e↵ects of several disturbances such
as current, waves and wind. Introducing the orthonormal
rotation matrix J(⌘a) from {B} to {I} parametrized by
⌘a, the velocity vectors in both referential frames {I} and
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ferent approach which employs a particle filter (PF) for
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jectory in order to improve its position estimate. A priori
information on the area is used in [15] to generate an arti-
ficial potential field combined with a sliding mode control
law to home an AUV to its docking station. The homing
task can ultimately be considered as a pursuit game (see
[16], for example).

Vision-based homing has been widely implemented in
ground or aerial robotics (e.g. [17]) and its concepts have
been translated to underwater robotics in some works such
as [18]. Although this approach is interesting for accurate
positioning and docking in particular, it constraints the
vehicle to be relatively close the target (usually below 10
meters) to be able to home. An alternative homing method
was proposed in [19] using electromagnetic waves emitted
and received by means of large coils placed in both the
dock station and the AUV. The overall system makes it
possible to compute bearing to the dock at distances up
to 35 meters in sea water. Bearing was also employed in
[20] using an ultra short baseline (USBL) carried on the
vehicle. The control law ensures that the bearing angle
is null along the trajectory to home. However, it is well

known that, in USBL systems, the angle resolution de-
creases with the distance. Recently, [21] have presented a
method which only takes into account raw data obtained
from an USBL system for deriving a control law to home
the vehicle. In [22], an extremum search algorithm is intro-
duced to find the maximum approach rate to the beacon.
Nevertheless, the method requires initialization otherwise
driving the AUV to a stable equilibrium point in the op-
posite direction of the beacon.

In the present paper, we propose a complete method to
drive an AUV to a beacon based on ranges only. We aim
at keeping the approach minimalistic not only in terms
of computational complexity but also in terms of sen-
sor/equipment requirements. The approach is constructed
such that no state estimation is needed to robustly drive
the AUV to a small neighborhood of the home (beacon)
position. At the expense of imposing some constraints
the vehicle will be endowed with the ability to track a
given gradient, while making the behavior completely pre-
dictable. It should be noted that precise localization meth-
ods reviewed above can complement the present work, in
the vicinity of the home station, for accurate positioning
(e.g. docking). By applying Lyapunov nonlinear theory
[23], we derive a velocity control law using Lyapunov di-
rect method and backstepping for conducting the vehicle
toward the beacon without requiring initialization, in sec-
tion 3. Motivated by real, practical constraints, we deter-
mine an upper bound on the distance that the vehicle is
guaranteed to reach in section 4. In section 5, we conclude
presenting the results obtained from real experiments per-
formed in the Douro river during the summer 2011, and
demonstrating the robustness of the exposed method. Sec-
tion 6 compares qualitatively the presented approach with
an estimation-based method used to guide an AUV to a
beacon.

2. Problem statement

We consider the motion of a mobile robot in the tridi-
mensional space. Define {I} as the inertial referential
frame and {B} as the body fixed referential frame with
origin coincident with the center of gravity and the x and
y-axes being coincident with the surge and sway axes. The
robot’s absolute linear position in {I} is denoted by the
vector ⌘l = [x, y, z]T 2 R3, while its angular position is
denoted by ⌘a = [�, ✓,  ]T 2 R3. The relative linear
and angular velocity vectors of the robot, expressed in
the {B} frame, are given by ⌫l = [u, v, w]T 2 R3 and
⌫a = [p, q, r]T 2 R3, respectively. During the operation,
the robot is assumed to be subject to the e↵ects of drifts
that are represented by ⌫c = [vx, vy, vz]

T 2 R3, expressed
in the {I} frame. This vector is defined as a general drift
vector that includes the e↵ects of several disturbances such
as current, waves and wind. Introducing the orthonormal
rotation matrix J(⌘a) from {B} to {I} parametrized by
⌘a, the velocity vectors in both referential frames {I} and
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{B} are related through the following expression (see [24]):

⌘̇l = J(⌘a)⌫l + ⌫c (1)

For trivial reasons, in robotics, it is a common practice
to decouple vertical and horizontal motions to ensure in-
dependent manipulation of the respective state variables.
For example, while moving, an underwater vehicle often
has to keep preset distances from the bottom and/or from
the surface, independently of the horizontal motion. Thus,
several authors consider simplified dynamics and kinemat-
ics models assuming that their influences are small enough.
Previous works have already proven the validity and the
satisfactory performance of this approach in underwater
vehicles [24] and in aerial vehicles. In ground robots, sev-
eral works do not even consider the vertical motion since
it is constrained to lie in a two dimensional subspace.

Assuming that the robot is stable in the vertical plane
(z and ✓) and roll angle (�) is stable and equals zero, we
decouple the kinematics model based on (1) as follow:
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Following the same argument, we assume that the cross
dependences between vertical and horizontal motion are
small and can be neglected, originating the following sec-
ond order equation for the reduced model dynamics [24]:

Mr⌫̇r = �Cr(⌫)⌫r � Dr(⌫)⌫r � gr(⌘a) + ⌧r, (3)

where ⌘r = [xy ]T and ⌫r = [uv r]T are the concatenation
vectors of the absolute pose and of the relative linear and
angular velocities, respectively, Mr, Cr(·), Dr(·) 2 R3⇥3

are respectively the combined added mass and inertia,
Coriolis and centriptal and viscous damping matrices,
gr(·) 2 R3 is the vector of restoring forces and moments,
and ⌧r 2 Rn is the control input. Mr is a positive definite
matrix, i.e. xT Mrx > 0 8x 2 R3

Although the representation given in (2) is very com-
monly used for position coordinates in the plane, through-
out this paper we will make use of the polar coordinates
in order to make it more suitable in this context:

⇢ = || [x y]T ||,
 p = \([x, y]),

(4)

where || · || denotes the euclidean norm and \(·) the angle
relative to the x-axis direction.

Their dynamics are governed by the following equations:

⇢̇ = u cos( �  p) + vx cos p + vy sin p,

 ̇p = 1
⇢

�
u sin( �  p) � vx sin p + vy cos p

�
.

(5)

We consider that the vehicle is moving in the horizontal
subspace with unknown position, governed by the kine-
matics and dynamics equations given in (2) and (3), re-
spectively. Assuming that ⇢(t) : [0,1) ! [0,1) is the
only measured output along the robot trajectory, we aim

at deriving an output feedback control law ⌧ar = �(⇢, ⌫r)
to make the distance ⇢ converge asymptotically to zero.
Throughout this paper, we will make use of the terms
”reference” or ”beacon” to refer to home position (in the
horizontal plane).

Remark: the fact that only ⇢ is available makes the
problem more complex. Note that if all the state variables
(position) were known, the solution would imply that the
vehicle points always towards the origin, making the con-
vergence time optimal.

3. Control method

In this section, we derive a control law that solves the
stated problem. In order to make the derivation more in-
tuitive, without loss of generality, we will first derive a
controller for velocity which makes the error between the
actual velocity and a given reference exponentially stable.
Then we derive a control law that generates those refer-
ences in order to make the robot position converge to the
origin of the horizontal plane. This allows for abstraction
of the robot dynamics, considerably simplifying the anal-
ysis and the extrapolation of our approach to robots with
already implemented velocity controllers.

3.1. Velocity controller

Let us assume that the robot is controllable in surge (u
direction) and yaw (r angular direction). Such assumption
comes from the fact that most robots have actuator con-
figurations that enable controllability on these two DOF,
e.g. aerial vehicles, di↵erential robots, underwater vehi-
cles. Our focus here will be on the reference tracking. Let
us define ⌫⇤(t) = [u⇤(t), r⇤(t)]T : [0,1) ! R2 the suf-
ficiently smooth desired velocity, which is assumed to be
continuous and di↵erentiable. The tracking error is defined
as

e⌫ = S⌫⌫r � ⌫⇤, S⌫ =


1 0 0
0 0 1

�
. (6)

We define the Lyapunov function candidate as

V⌫(e⌫) =
1

2
eT
⌫ e⌫ , (7)

which is positive definite and V⌫(0) = 0. Using (3) and (2),
and under the observation that Mr > 0, and consequently
invertible, its time derivative results:

V̇⌫ = eT
⌫ ė⌫

= eT
⌫

⇣
S⌫M

�1
r (�Cr(⌫r)⌫r � Dr(⌫r)⌫r

�g(⌘r) + ⌧r) � ⌫̇⇤
⌘
.

(8)

Then, choosing the control variable as

⌧r =
�
Cr(⌫r)⌫r + Dr(⌫r)⌫r + g(⌘r)+

MrS
T
⌫ (⌫̇⇤ � k⌫e⌫)

�
,

(9)
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Table A.1: Added mass coe�cients
Coe�cient Value Units
Xu̇ �2.64 · 100 kg
Xq̇ �3.07 · 10�3 kg·m/rad
Yv̇, �4.81 · 101 kg
Yṙ, Nv̇ 1.20 · 100 kg·m/rad, kg·m
Yṗ 3.07 · 10�3 kg·m/rad

Table A.2: Viscous damping coe�cients

Coe�cient Value Units
Xu|u| �1.02 · 101 kg/m
Yv|v| �1.34 · 102 kg/m
Nr|r| �1.80 · 101 kg·m2/rad2

Yr|r| �1.44 · 100 kg·m/rad
Nv|v| �2.17 · 100 kg

mainly result in modifications of the length, weight and
buoyancy, the model remains similar, that is, in terms of
structure of matrices, with changes on the values of the pa-
rameters only. The values of the parameters shown here-
after are based on theoretical and semi-empirical formulas.
The reader is referred to [30, 31, 24, 32] for further details.

It is assumed that the origin of the body-fixed frame
coincides with the center of gravity of the vehicles for all
the forthcoming derivations. The reduced-order combined
inertia and added mass matrix Mr is given in A.1. The
derivation of the matrix of centripetal and Coriolis terms

Cr(·), resulting from the sum of the terms from rigid-body
from inertia matrix and from added mass, is straightfor-
ward from [24] and is given in A.2.

Regarding the viscous damping matrix, we assume that
linear components of damping are neglegible for the veloc-
ity under consideration. Similarly, the terms higher than
second order are also considered to be small enough to
be neglected. Therefore, the resulting nonlinear viscous
damping matrix is expressed in (A.3).

The vector of restoring forces and moments is given in
[24], and is easily reduced to A.4, where W and B denote
the weight and the buoyancy forces, respectively.

The values of the parameters of the Coriolis and centrip-
tal matrix and of the damping matrix are listed in the ta-
bles A.1 and A.2, respectively. The remaining coe�cients
of the added mass matrix and of the restoring forces and
moment vector are given in table A.3
⇢̄
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Yv|v| �1.34 · 102 kg/m
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Nv|v| �2.17 · 100 kg
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where k⌫ is a positive constant, and using the fact that
S⌫S

T
⌫ = I2⇥2, the Lyapunov function candidate time

derivative results in:

V̇⌫ = �k⌫e
T
⌫ e⌫ < 0, 8e⌫ 6= 0. (10)

Hence, the following inequalities hold for all e⌫ 2 R2:

1. k1||e⌫ ||2  V⌫  k2||e⌫ ||2, with constants k2 � k1 > 0

2. V̇⌫  �k3||e⌫ ||2, with constant k3 > 0

with k1 = k2 = 1
2 and k3 = k⌫ . Through the application

of theorem [23, th. 4.10 pp. 154], the equilibrium point
e⌫ = 0 is uniformly globally exponentially stable.

3.2. Gradient tracking

Based on the result obtained above, we now focus our
attention on the approach to the reference point. Through-
out the following developments, we will consider the ref-
erence to be coincident with the origin of the horizontal
plane, i.e. ⌘⇤ = {[x⇤, y⇤, z⇤]T : x⇤ = y⇤ = 0, z⇤ 2 R}, en-
abling the use of the representation (4), while ignoring the
z coordinate which is assumed to be stable and controlled
independently.

3.2.1. Assumptions and method

Some assumptions have to be made at this stage:

1. The control law derived in (9) allows for the robot to
move at a constant forward speed u, independently
of its angular velocity r (u and r can be manipulated
separately)

2. When moving, independently of the forward and an-
gular velocities, the robot does not su↵er from sideslip
(v = 0)

3. The norm of the generalized drift vector ⌫c, which
includes the sum of the e↵ects of the current, wind
and waves is upper bounded, that is, ||[vx vy]T || =
||⌫c||  ⌫̄c, where ⌫̄c is a known nonnegative constant

4. The actuation through ⌧r in (9) is not limited and can
take any value in R3

5. The forward velocity is strictly greater than the cur-
rent velocity u > ⌫̄c � ||⌫c||

Recall that the objective of the control law to be derived
is to reduce the distance ⇢ to zero. Hence consider the
system (11) and from assumption 2, let us re-write the
system, for completeness,

⇢̇ = u cos( �  p) + vx cos p + vy sin p

 ̇ = r
. (11)

Clearly, beyond u, which is assumed to be constant,
none of the variables is directly controllable. In order to
make the origin stable, one has to verify V̇1 < 0 8⇢ 6= 0,
which is not trivial. Keeping in mind that u > ||⌫c||,
assume that it is possible to set ⇢̇ = ��(⇢), where
�(⇢) : [0,1) ! [0, c� ] is a class K function verifying
lim⇢!1 �(⇢) = c� > 0, for a given constant 0 < c� < 1.

Figure 1: Homing method

Thus, the time derivative of the range would result nega-
tive in ⇢̇ < 0.

Intuitively, the idea behind the introduction of � is sim-
ply that one aims at defining an approach rate to the ori-
gin. Its upper bound must obviously take into account the
surge velocity u and the drift vector ⌫c in order to make
the approach to the origin possible, as it will be explained
later on.

3.2.2. Controller

Define the new error variable as e⇢̇ = ⇢̇+ � and let the
Lyapunov function be

V = V (⇢̇) =
1

2
e2
⇢̇. (12)

Note that the objective becomes tracking an approach gra-
dient defined by �. Using (11), after algebraic manipula-
tion, its time derivative results into

V̇ = e⇢̇

⇣
� u ̇ sin( �  p) + ⇢ ̇p

2
+ �̇

⌘
. (13)

The control variable r =  ̇ appears now explicitly and,
from assumption 1, suppose that it can be directly con-
trolled although some considerations have to be taken into
account, such as the smoothness properties, as it will be
exposed later on.

The fact that only ⇢ is observable limits our approach.
Indeed, if  p would be known, the problem could be re-
duced to imposing the optimal time solution arg min ⇢̇ =
 p + ⇡. However, the approach follows a di↵erent way
being motivated by robotics applications in which such
variable is hard to observe or has to be estimated along
with the current velocity vector ⌫c.

Intending to minimize the use of models at this stage,
the second option is therefore discarded. Moreover, as it
can be seen from (13),  must not be equal to  p+⇡ to keep

the system controllable (otherwise u ̇ sin( � p) = 0). By
appropriately choosing the new control variable �, it can
be ensured that  remains away from  p + ⇡.

In order to assess the angle dynamics at equilibrium,
consider that the gradient is being tracked and consider
the range dynamics in (11) and set it equal to ��, as
follows:

⇢̇ = u cos( �  p) + vx cos p + vy sin p = ��. (14)
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abling the use of the representation (4), while ignoring the
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Recall that the objective of the control law to be derived
is to reduce the distance ⇢ to zero. Hence consider the
system (11) and from assumption 2, let us re-write the
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Clearly, beyond u, which is assumed to be constant,
none of the variables is directly controllable. In order to
make the origin stable, one has to verify V̇1 < 0 8⇢ 6= 0,
which is not trivial. Keeping in mind that u > ||⌫c||,
assume that it is possible to set ⇢̇ = ��(⇢), where
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Thus, the time derivative of the range would result nega-
tive in ⇢̇ < 0.

Intuitively, the idea behind the introduction of � is sim-
ply that one aims at defining an approach rate to the ori-
gin. Its upper bound must obviously take into account the
surge velocity u and the drift vector ⌫c in order to make
the approach to the origin possible, as it will be explained
later on.

3.2.2. Controller

Define the new error variable as e⇢̇ = ⇢̇+ � and let the
Lyapunov function be

V = V (⇢̇) =
1

2
e2
⇢̇. (12)

Note that the objective becomes tracking an approach gra-
dient defined by �. Using (11), after algebraic manipula-
tion, its time derivative results into

V̇ = e⇢̇
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2
+ �̇

⌘
. (13)

The control variable r =  ̇ appears now explicitly and,
from assumption 1, suppose that it can be directly con-
trolled although some considerations have to be taken into
account, such as the smoothness properties, as it will be
exposed later on.

The fact that only ⇢ is observable limits our approach.
Indeed, if  p would be known, the problem could be re-
duced to imposing the optimal time solution arg min ⇢̇ =
 p + ⇡. However, the approach follows a di↵erent way
being motivated by robotics applications in which such
variable is hard to observe or has to be estimated along
with the current velocity vector ⌫c.

Intending to minimize the use of models at this stage,
the second option is therefore discarded. Moreover, as it
can be seen from (13),  must not be equal to  p+⇡ to keep

the system controllable (otherwise u ̇ sin( � p) = 0). By
appropriately choosing the new control variable �, it can
be ensured that  remains away from  p + ⇡.

In order to assess the angle dynamics at equilibrium,
consider that the gradient is being tracked and consider
the range dynamics in (11) and set it equal to ��, as
follows:

⇢̇ = u cos( �  p) + vx cos p + vy sin p = ��. (14)

4Figure 4.7: Homing method

4.4.1.1 Controller

The next developments use the Lyapunov direct method to derive a controller to home the vehicle

to a reference. This method has been chosen since the solution directly results from the stability

analysis, naturally granting convergence properties that other methods may fail to warrant.

Define the new error variable as eρ̇ = ρ̇ +β and let the Lyapunov function be

V =V (ρ̇) =
1
2

e2
ρ̇ . (4.22)

Note that the objective becomes tracking an approach gradient defined by β . Using (4.21), after

algebraic manipulation, its time derivative results into

V̇ = eρ̇

(
−uψ̇ sin(ψ−ψp)+ρψ̇p

2 + β̇
)
. (4.23)

The control variable r = ψ̇ appears now explicitly and, from assumption 1, suppose that it can

be directly controlled although some considerations have to be taken into account, such as the

smoothness properties, as it will be exposed later on.

The fact that only ρ is observable limits our approach. Indeed, if ψp would be known, the

problem could be reduced to imposing the optimal time solution argminψ ρ̇ = ψp + π . How-

ever, the approach follows a different way being motivated by robotics applications in which such

variable is hard to observe or has to be estimated along with the current velocity vector νc.

Intending to minimize the use of models at this stage, the second option is therefore discarded.

Moreover, ψ must be different from ψp +π to keep the the term uψ̇ sin(ψ−ψp) away from zero

to ensure that the virtual control input ψ̇ appears in (4.23). By appropriately choosing the new

control variable β , it can be ensured that ψ remains away from ψp +π .

In order to assess the angle dynamics at equilibrium, consider that the gradient is being tracked



4.4 Homing using a sensor-based approach 63

and consider the range dynamics in (4.21) and set it equal to −β :

ρ̇ = ucos(ψ−ψp)+ vx cosψp + vy sinψp =−β . (4.24)

Taking 0 < β < u− ||νc|| ≤ u− kνc , or equivalently cβ = u− ||νc||, at equilibrium (eρ̇ = 0), it

follows

cos(ψ−ψp)>
1
u

(
−u+ kνc− vx cosψp− vy sinψp

)
≥−1

These inequalities result from assumptions 3 and 4. Since kνc ≥ ||νc|| > vx cosψp − vy sinψp,

|cos(ψ−ψp)| 6= 1⇒ ψ 6= ψp +nπ,n ∈ {0,1}. In fact, the choice of β will directly influence the

distance of ψ relatively to ψp+π , at equilibrium: the less the value of β , the bigger the difference

between ψ and ψp +π .

One of the main benefits of the introduction of β is the possibility to keep the angle ψ away

from ψp−π , at equilibrium, without knowing ψp explicitly, constituting therefore a major advan-

tage in this approach. Let δ be the difference angle between ψ and ψp−π . Then

δ = ψ−ψp +π
= ±arccos

(1
u(−β − vx cosψp− vy sinψp)

)
±π.

(4.25)

From the kinematics point of view, the fact that δ is different from zero means that the robot

describes a curvilinear trajectory to the origin. By setting the upper bound of β , cβ = u−||νc||−
ξ ,0 < ξ < u−||νc||, at equilibrium, the minimum difference angle δmin < minνc(|δ |) results

δmin = π + arccos
−u+ξ

u
. (4.26)

The definition of the upper bound of β leaves room to choose an approach side, that is, the

equation (4.25) has two solutions ψ = ψp± arccos −u+ξ
u ± π , making possible to approach the

homing point either by the right or the left hand sides (see figure 4.7). By constricting the robot

heading angle ψ to lie exclusively in one set verifying ψ−ψp > 0 or ψ−ψp < 0, the ambiguity

on the sign of sin(ψ−ψp) in (4.23) is lifted up. Henceforth, assume ψ−ψp > 0, and equivalently

δ < 0 and restrict our analysis and developments to that condition. Nevertheless, the results that

follow can be very easily extended to the complementary case.

Clearly, from (4.24) and (4.25) the following implications hold:

ψ−ψp +π > δ ⇒ eρ̇ = ρ̇ +β > 0,

ψ−ψp +π < δ ⇒ eρ̇ = ρ̇ +β < 0,

ψ−ψp +π = δ ⇒ eρ̇ = ρ̇ +β = 0.

(4.27)

The control law follows:

ψ̇ = r = keρ̇ +
1

uρ sinδmin

(
(u+ kνc)

2 +
dβ
dρ

(eρ̇)

)
h(eρ̇), (4.28)
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where

h(eρ̇) =

{
1, if eρ̇ > 0,

0, otherwise.
(4.29)

The verification of asymptotic stability of the system under the control law (4.28) will be

splitted into two parts: for eρ̇ > 0 and eρ̇ ≤ 0.

1. eρ̇ > 0: firstly, one has to notice that eρ̇ > 0⇒ sin(ψ −ψp) > sinδmin, from (4.27) and

(4.26). Since
∣∣usin(ψ−ψp)− vx sinψp + vy cosψp

∣∣≤ (u+ kνc), it comes:

V̇ = eρ̇ ėρ̇

= eρ̇

(
−uψ̇ sin(ψ−ψp)+

1
ρ
(
usin(ψ−ψp)− vx sinψp + vy cosψp

)2
+ dβ

dρ (eρ̇ −β )
)

(4.30)

where the definition of β has been used to state β̇ = dβ
dρ

∂ρ
∂ t = dβ

dρ
(
eρ̇ −β

)
. Then, replacing

(4.28) in the last expression yields

V̇ ≤−kue2
ρ̇ sin(ψ−ψp)− eρ̇

dβ
dρ

β (4.31)

Since sin(ψ−ψp)> 0, and, by definition dβ
dρ ≥ 0, β ≥ 0, it results

V̇ ≤−kue2
ρ̇ sin(ψ−ψp)∀ρ > 0, eρ̇ > 0.

2. eρ̇ ≤ 0: as it has been seen for the complementary case, notice that β̇ ≤ 0 along the trajectory.

Still, β remains a virtual control input and can be handled to meet certain constraints. Thus,

β can be designed such that its time derivative satisfy the following inequality:

β̇ =
dβ
dρ

ρ̇ ≥− 1
ρ
(
usin(ψ−ψp)− vx sinψp + vy cosψp

)2

≥− 1
ρ
(
u+ ||νc||

)2

which, by verifying that ρ̇ ≤−β for eρ̇ ≤ 0, as seen in (4.27), implies

dβ
dρ
≤ 1

ρβ
(u+ ||νc||)2 ≤ 1

ρβ
(u+ kνc)

2. (4.32)

The last result means that β has to vary slowly when ρ is large. This implies 1
ρ
(
usin(ψ −

ψp)−vx sinψp +vy cosψp
)2
+ β̇ ≥ 0. Then, from (4.23) straightforward algebra shows that

V̇ =− kue2
ρ̇ sin(ψ−ψp)+ eρ̇

(
1
ρ
(
usin(ψ−ψp)− vx sinψp + vy cosψp

)2
+ β̇

)

≤− kue2
ρ̇ sin(ψ−ψp).
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Hence, under the assumptions above, the origin is locally asymptotically stable for all ψ ∈
(ψp−π,ψp).

Note that β plays the role of a virtual control input in this guidance law. It is designed so that it

is possible for the vehicle to track the approach rate defined by the value that β takes. In practice,

β defines a feasible approach rate for any given relative position of the vehicle with regard to the

beacon. This function also enables accommodating the summation of drifts if a rough notion of

its upper bound is known.

4.4.1.2 Constraint on yaw rate control

Up to now, it has been considered that the yaw rate r can be controlled directly. However, such

assumption does not hold in real applications and an “inner loop” controller has to be included in

order to obtain the desired velocity rd . It is a common requirement for the reference to be suffi-

ciently smooth (continuous and differentiable) which is not verified by the control law in (4.28),

since h(·) is discontinuous. Therefore, the control law (4.28) has to be relaxed but influences on

the convergence properties must be minimized. The argument is as follows.

Let replace h by

h′(eρ̇) =





0, if eρ̇ < 0

αeρ̇ , if αeρ̇ < 1

1, if αeρ̇ ≥ 1

,α ∈ (0,∞). (4.33)

The feedback control law in (4.28) results now continuous and differentiable. Recall that this

function was introduced for eρ̇ > 0 and its effect is verified only in such situation. Using h′ instead

of h, from (4.30) allows to write

V̇ ≤−kue2
ρ̇ sin(ψ−ψp)+

1
ρ

eρ̇(1−αeρ̇).

Although it is impossible to state that the time derivative of the Lyapunov function is negative

definite, it is possible to guarantee that it tends to a positively invariant set, from theorem (Khalil,

2002, th. 4.18, pp.172). Its bound is directly related to α , diminishing as the value of α increases.

4.4.2 Stability analysis

The arguments above stand for a particular choice of approach rate β which must lie in a well

known interval. Furthermore, the control law was derived based on the assumption that the vehicle

heading lies in two specific quadrants: ψ ∈ (ψp−π,ψp). However, this assumption can be relaxed

and the stability of the control law can be proven for all the quadrants. The stability for all ψ ∈
[−π,π) makes the overall system more robust and further increases the simplicity of the approach

since no initialization procedure is required, in opposition to (Ferreira et al., 2010b; Baccou and

Jouvencel, 2003; Bezruchko et al., 2011).
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Hence, under the assumptions above, the origin is lo-
cally asymptotically stable for all  2 ( p � ⇡,  p).

Note that � plays the role of a virtual control input in
this guidance law. It is designed so that it is possible for
the vehicle to track the approach rate defined by the value
that � takes. In practice, � defines a feasible approach rate
for any given relative position of the vehicle with regard to
the beacon. This function also enables accommodating the
summation of drifts if a rough notion of its upper bound
is known.

3.3. Constraint on yaw rate control

Up to now, it has been considered that the yaw rate r
can be controlled directly. However, such assumption does
not hold in real applications and an “inner loop” controller
has to be included in order to obtain the desired velocity
r⇤. It is a common requirement for the reference to be suf-
ficiently smooth (continuous and di↵erentiable) which is
not verified by the control law in (18), since h(·) is discon-
tinuous. Therefore, the control law (18) has to be relaxed
but influences on the convergence properties must be min-
imized. The argument is as follows.

Let replace h by

h0(e⇢̇) =

8
<
:

0, if e⇢̇ < 0
↵e⇢̇, if ↵e⇢̇ < 1
1, if ↵e⇢̇ � 1

, ↵ 2 (0,1). (22)

The feedback control law in (18) results now continuous
and di↵erentiable. Recall that this function was intro-
duced for e⇢̇ > 0 and its e↵ect is verified only in such
situation. Using h0 instead of h, from (19) allows to write

V̇  �kue2
⇢̇ sin( �  p) +

1

⇢
e⇢̇(1 � ↵e⇢̇).

Although it is impossible to state that the time deriva-
tive of the Lyapunov function is negative definite, it is
possible to guarantee that it tends to a positively invari-
ant set, from theorem [23, th. 4.18, pp.172]. Its bound
is directly related to ↵, diminishing as the value of ↵ in-
creases.

3.4. Global stability analysis

The arguments above stand for a particular choice of
approach rate � which must lie in a well known interval.
Furthermore, the control law was derived based on the as-
sumption that the vehicle heading lies in two specific quad-
rants:  2 ( p � ⇡,  p). However, this assumption can be
relaxed and the stability of the control law can be proven
for all the quadrants. The stability for all  2 [�⇡, ⇡)
makes the overall system more robust and further increases
the simplicity of the approach since no initialization pro-
cedure is required, in opposition to [25, 12, 22].

In (15), it has been seen that the system with the
control law given in (18) has two equilibrium points:
 =  p � ⇡ ± |�|. Nevertheless, one of them is unsta-
ble ( =  p �⇡+ |�|) for the derivations above. There are

three possible scenarios, which have now to be analyzed.
When the vehicle moves with  2 [ p�⇡,  p�⇡+|�|), one

can verify e⇢̇ < 0 and therefore  ̇ < 0, eventually reaching
 =  p � ⇡ � |�|. Equivalently, for  2 [0,  p � ⇡ + |�|),
e⇢̇ > 0 and consequently  ̇ > 0 until stabilizing at
 =  p � ⇡ � |�|. Furthermore, if  =  p � ⇡ + |�|, from

(5)) it can be concluded that  ̇p 6= 0, which will eventually
make the heading diverge from the unstable equilibrium
point. From LaSalle’s theorem [23] it is then possible to
state that the system is stable since it can not stay forever
in an invariant set other than the one previously derived.

4. Homing with practical constraints on input

This section is devoted to finding upper bounds on
the invariant set that the vehicle is able to reach for the
method presented in the previous section, considering the
practical actuation constraints.

4.1. Upper bound on range

Up to now, it has been considered that the yaw rate r
admits any value. However, this assumption does not hold
for real vehicles since the viscous damping forces opposes
the rotation of the vehicle and infinite angular velocity
would imply infinite actuation, which is unrealistic. Still,
one can verify in (18) that larger angular velocities - and
consequently larger actuations - are only required close
to the origin (note the e↵ect of 1/⇢ in the expression).
Although the limited actuation r 2 [�r̄, r̄], r̄ > 0 prevents
the approach to the origin with arbitrary small error, it is
possible to derive an upper bound on the invariant set.

Note that, in steady state situation, the trajectory
around the origin is periodical. Moreover, under such con-
dition, the angular velocity reaches its maximum absolute
value r = r̄.

Due to limited actuation, the vehicle trajectory, around
the beacon, is an invariant set which adopts one of the
following behaviors:

• Circular trajectory (⇢̇ = 0) when there is no current
(vx, vy = 0)

• The range to the beacon decreases (⇢̇ < 0) and in-
creases (⇢̇ > 0) alternate and periodically in the pres-
ence of constant currents

In both cases, it is obvious that the vehicle reaches the
most distant point of the invariant set with ⇢̇ = 0.

Let cm be a positive constant. For any cm 2 (0, c�),
assume that the gain k in (18) is chosen so that

r̄ = k cm.

Denoting the inverse of the function �(·) as ��1(·), this
choice will ensure that the yaw rate will be saturated at
distances ⇢ � ��1(cm), when the vehicle is moving away
from the beacon.
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8
<
:
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, ↵ 2 (0,1). (22)
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1

⇢
e⇢̇(1 � ↵e⇢̇).
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make the heading diverge from the unstable equilibrium
point. From LaSalle’s theorem [23] it is then possible to
state that the system is stable since it can not stay forever
in an invariant set other than the one previously derived.

4. Homing with practical constraints on input

This section is devoted to finding upper bounds on
the invariant set that the vehicle is able to reach for the
method presented in the previous section, considering the
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4.1. Upper bound on range

Up to now, it has been considered that the yaw rate r
admits any value. However, this assumption does not hold
for real vehicles since the viscous damping forces opposes
the rotation of the vehicle and infinite angular velocity
would imply infinite actuation, which is unrealistic. Still,
one can verify in (18) that larger angular velocities - and
consequently larger actuations - are only required close
to the origin (note the e↵ect of 1/⇢ in the expression).
Although the limited actuation r 2 [�r̄, r̄], r̄ > 0 prevents
the approach to the origin with arbitrary small error, it is
possible to derive an upper bound on the invariant set.

Note that, in steady state situation, the trajectory
around the origin is periodical. Moreover, under such con-
dition, the angular velocity reaches its maximum absolute
value r = r̄.

Due to limited actuation, the vehicle trajectory, around
the beacon, is an invariant set which adopts one of the
following behaviors:

• Circular trajectory (⇢̇ = 0) when there is no current
(vx, vy = 0)

• The range to the beacon decreases (⇢̇ < 0) and in-
creases (⇢̇ > 0) alternate and periodically in the pres-
ence of constant currents

In both cases, it is obvious that the vehicle reaches the
most distant point of the invariant set with ⇢̇ = 0.

Let cm be a positive constant. For any cm 2 (0, c�),
assume that the gain k in (18) is chosen so that

r̄ = k cm.

Denoting the inverse of the function �(·) as ��1(·), this
choice will ensure that the yaw rate will be saturated at
distances ⇢ � ��1(cm), when the vehicle is moving away
from the beacon.
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Case 1

Case 2
Case 3

Figure 4.8: Illustration of the intervals of angles for stability analysis

In (4.25), it has been seen that the system with the control law given in (4.28) has two equi-

librium points: ψ = ψp−π ±|δ |. Nevertheless, one of them is unstable (ψ = ψp−π + |δ |) for

the derivations above. There are three possible scenarios, which have now to be analyzed based

on the control law (4.28). Consider the illustration given in figure 4.8.

• Case 1: When the vehicle moves with ψ ∈ [ψp−π,ψp−π + |δ |), one can verify eρ̇ < 0 and

therefore ψ̇ < 0, eventually reaching ψ = ψp−π−|δ |.

• Case 2: Equivalently, for ψ ∈ [0,ψp−π + |δ |), eρ̇ > 0 and consequently ψ̇ > 0 until stabi-

lizing at ψ = ψp−π−|δ |.

• Case 3: Furthermore, if ψ = ψp− π + |δ |, from (4.5) it can be concluded that ψ̇p 6= 0,

which will eventually make the heading diverge from the unstable equilibrium point. It is

then possible to state that the system is stable since it can not stay forever in an invariant set

other than the one previously derived.

These three conclusions enable concluding that the system is stable in the interval [−π,π).

4.4.3 Homing with practical constraints on input

This section is devoted to finding upper bounds on the invariant set that the vehicle is able to reach

for the method presented previously, considering the practical actuation constraints.

4.4.3.1 Upper bound on range

So far, it has been considered that the yaw rate r admits any value. However, this assumption does

not hold for real vehicles since the viscous damping forces opposes the rotation of the vehicle and

infinite angular velocity would imply infinite actuation, which is unrealistic. Still, one can verify in

(4.28) that larger angular velocities - and consequently larger actuations - are only required close

to the origin (note the effect of 1/ρ in the expression). Although the limited actuation r ∈ [−r̄, r̄],

where r̄ > 0 is the maximum absolute value of the actuation, prevents the approach to the origin

with arbitrary small error, it is possible to derive an upper bound on the invariant set.
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Figure 2: Upper bound of the invariant set

the current ( (t0) = atan2(vy, vx)). The equation for the
range can be written as

⇢ =

Z t0+⌧

t0

⇢̇ dt + ⇢(t0), (23)

where ⌧ is given so that, for t 2 [t0, t0 + ⌧ ], the range is
increasing (⇢̇ � 0) and ⇢̇(t0 + ⌧) = 0, or, in other words,
at time t0 + ⌧ , the vehicle reaches the most distant point
of the invariant trajectory. In order to find the maximum
range, let us first compute the maximum time interval ⌧ :
It is possible to show that, for the interval [t0, t0 + ⌧ ], the
following assumption hold: the vehicle reaches the most
distant point of the invariant set with |r(t0 + ⌧)| = r̄ since
e⇢̇(t) = ⇢̇(t) + �(t) > cm for t 2 [t0, t0 + ⌧ ].

Moreover, by taking into account that  (t0) =
atan2(vy, vx), one can verify that ⇢̇  0 if  (t) =  (t0) +
⇡, t 2 [t0, t0 + ⌧ ]. In other words, this means that
the distance starts decreasing before the heading verify
 (t) =  (t0) + ⇡. The geometrical interpretation of this
fact is that the range starts decreasing before the vehicle’s
heading is in the opposite direction of the current vector.
Hence, the maximum time interval is given by

⌧ <
⇡

r̄
. (24)

It is now possible to derive an upper bound on the maxi-
mum range of the invariant trajectory. From (5) and (23),
one verifies

lim
t!1

⇢(t) 
Z t0+⌧

t0

u + ||⌫c|| dt + ��1(cm)

=
(u + ||⌫c||)⇡

r̄
+ ��1(cm).

Notice that the limit is independent of the approach
rate �. While approaching the beacon, the vehicle is no
longer able to maintain a constant gradient due to limited

actuation. Indeed, the mean value of ⇢̇ converges to zero
as t ! 1, i.e. limt!1

R t

0
⇢̇ = 0.

4.2. E↵ect of disturbances on upper bound

Not only the currents, but external, unpredicted dis-
turbances can act on the body of the vehicle. These dis-
turbances may result from unconsidered e↵ects such as
sideslip and/or from unpredicted motion of the beacon. In
their presence, an upper bound can be determined. Still,
particular attention must be given to disturbance magni-
tude in order to meet the constraints established in the
previous section.

Suppose that d = sup
P

di is the constant that inte-
grates the sum of the unconsidered/unknown e↵ects di

on the vehicle absolute velocity. Aiming at maintain-
ing the control law (18) valid, � has to be redefined as
� < u � ||⌫c|| � d. Hence, following the same argument as
previously yields concluding that the upper bound of the
invariant trajectory is given by:

lim
t!1

⇢(t)  (u + ||⌫c|| + d)⇡

r̄
+ ��1(cm). (25)

This result is specially interesting because it defines a
circumference around the beacon where the vehicle is guar-
anteed to lie after having entered into it. From the practi-
cal point of view, such characteristic leaves room to explore
scenarios in which the AUV homes to a moving beacon.
Moreover, unconsidered e↵ects or model uncertainties can
be integrated in the constant d to find an ultimate bound
of convergence around the beacon.

5. Experiments

5.1. Experimental setup

In-water trials were carried out during the summer of
2011 with the MARES AUV in the Douro river. At that
time, MARES measured 1.7 meters long (approximately
20 centimeters above its precedent length). Along with the
homing mission, several operations were planned for envi-
ronmental sampling. Besides the sensors commonly used
for environmental sampling, MARES carried an acoustic
transducer to measure ranges to an acoustic beacon placed
on a surface buoy. Range measurement is based on the
time of flight (TOF) of acoustic pings of a two-way travel
time (TWTT) system. The vehicle interrogates the bea-
con periodically at times t0k with approximately 4 seconds
of interval. After a constant idle time TI , used to generate
the response, after having received the interrogation, the
beacon replies back to the vehicle. The vehicle receives
the response at time trk and the range is simply computed
according to the TOF, as

⇢k =
trk � t0k � TI

cs
, (26)

where cs is the sound speed in the water.
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Table A.1: Added mass coe�cients
Coe�cient Value Units
Xu̇ �2.64 · 100 kg
Xq̇ �3.07 · 10�3 kg·m/rad
Yv̇, �4.81 · 101 kg
Yṙ, Nv̇ 1.20 · 100 kg·m/rad, kg·m
Yṗ 3.07 · 10�3 kg·m/rad

Table A.2: Viscous damping coe�cients

Coe�cient Value Units
Xu|u| �1.02 · 101 kg/m
Yv|v| �1.34 · 102 kg/m
Nr|r| �1.80 · 101 kg·m2/rad2

Yr|r| �1.44 · 100 kg·m/rad
Nv|v| �2.17 · 100 kg

Appendix A. MARES model

The current reduced model of MARES is given in this
section. Note the vehicle’s shape can change and di↵er-
ent mathematical models may result from di↵erent module
configurations [28, 29]. Hence, here, the most recent math-
ematical model for the most recent configuration of the
vehicle is presented. Since common configuration changes
mainly result in modifications of the length, weight and
buoyancy, the model remains similar, that is, in terms of
structure of matrices, with changes on the values of the pa-
rameters only. The values of the parameters shown here-
after are based on theoretical and semi-empirical formulas.
The reader is referred to [30, 31, 24, 32] for further details.

It is assumed that the origin of the body-fixed frame
coincides with the center of gravity of the vehicles for all
the forthcoming derivations. The reduced-order combined
inertia and added mass matrix Mr is given in A.1. The
derivation of the matrix of centripetal and Coriolis terms
Cr(·), resulting from the sum of the terms from rigid-body
from inertia matrix and from added mass, is straightfor-
ward from [24] and is given in A.2.

Regarding the viscous damping matrix, we assume that
linear components of damping are neglegible for the veloc-
ity under consideration. Similarly, the terms higher than
second order are also considered to be small enough to
be neglected. Therefore, the resulting nonlinear viscous
damping matrix is expressed in (A.3).

The vector of restoring forces and moments is given in
[24], and is easily reduced to A.4, where W and B denote
the weight and the buoyancy forces, respectively.

The values of the parameters of the Coriolis and centrip-
tal matrix and of the damping matrix are listed in the ta-
bles A.1 and A.2, respectively. The remaining coe�cients
of the added mass matrix and of the restoring forces and
moment vector are given in table A.3
⇢̄

Table A.3: Parameters
Parameter Value Units
m 3.61 · 101 kg
W 3.54 · 102 N
B 3.56 · 102 N
xB , yB 0 m
zB �3.63 · 10�3 m
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where k⌫ is a positive constant, and using the fact that
S⌫S

T
⌫ = I2⇥2, the Lyapunov function candidate time

derivative results in:

V̇⌫ = �k⌫e
T
⌫ e⌫ < 0, 8e⌫ 6= 0. (10)

Hence, the following inequalities hold for all e⌫ 2 R2:

1. k1||e⌫ ||2  V⌫  k2||e⌫ ||2, with constants k2 � k1 > 0

2. V̇⌫  �k3||e⌫ ||2, with constant k3 > 0

with k1 = k2 = 1
2 and k3 = k⌫ . Through the application

of theorem [23, th. 4.10 pp. 154], the equilibrium point
e⌫ = 0 is uniformly globally exponentially stable.

3.2. Gradient tracking

Based on the result obtained above, we now focus our
attention on the approach to the reference point. Through-
out the following developments, we will consider the ref-
erence to be coincident with the origin of the horizontal
plane, i.e. ⌘⇤ = {[x⇤, y⇤, z⇤]T : x⇤ = y⇤ = 0, z⇤ 2 R}, en-
abling the use of the representation (4), while ignoring the
z coordinate which is assumed to be stable and controlled
independently.

3.2.1. Assumptions and method

Some assumptions have to be made at this stage:

1. The control law derived in (9) allows for the robot to
move at a constant forward speed u, independently
of its angular velocity r (u and r can be manipulated
separately)

2. When moving, independently of the forward and an-
gular velocities, the robot does not su↵er from sideslip
(v = 0)

3. The norm of the generalized drift vector ⌫c, which
includes the sum of the e↵ects of the current, wind
and waves is upper bounded, that is, ||[vx vy]T || =
||⌫c||  ⌫̄c, where ⌫̄c is a known nonnegative constant

4. The actuation through ⌧r in (9) is not limited and can
take any value in R3

5. The forward velocity is strictly greater than the cur-
rent velocity u > ⌫̄c � ||⌫c||

Recall that the objective of the control law to be derived
is to reduce the distance ⇢ to zero. Hence consider the
system (11) and from assumption 2, let us re-write the
system, for completeness,

⇢̇ = u cos( �  p) + vx cos p + vy sin p

 ̇ = r
. (11)

Clearly, beyond u, which is assumed to be constant,
none of the variables is directly controllable. In order to
make the origin stable, one has to verify V̇1 < 0 8⇢ 6= 0,
which is not trivial. Keeping in mind that u > ||⌫c||,
assume that it is possible to set ⇢̇ = ��(⇢), where
�(⇢) : [0,1) ! [0, c� ] is a class K function verifying
lim⇢!1 �(⇢) = c� > 0, for a given constant 0 < c� < 1.

Figure 1: Homing method

Thus, the time derivative of the range would result nega-
tive in ⇢̇ < 0.

Intuitively, the idea behind the introduction of � is sim-
ply that one aims at defining an approach rate to the ori-
gin. Its upper bound must obviously take into account the
surge velocity u and the drift vector ⌫c in order to make
the approach to the origin possible, as it will be explained
later on.

3.2.2. Controller

Define the new error variable as e⇢̇ = ⇢̇+ � and let the
Lyapunov function be

V = V (⇢̇) =
1

2
e2
⇢̇. (12)

Note that the objective becomes tracking an approach gra-
dient defined by �. Using (11), after algebraic manipula-
tion, its time derivative results into

V̇ = e⇢̇

⇣
� u ̇ sin( �  p) + ⇢ ̇p

2
+ �̇

⌘
. (13)

The control variable r =  ̇ appears now explicitly and,
from assumption 1, suppose that it can be directly con-
trolled although some considerations have to be taken into
account, such as the smoothness properties, as it will be
exposed later on.

The fact that only ⇢ is observable limits our approach.
Indeed, if  p would be known, the problem could be re-
duced to imposing the optimal time solution arg min ⇢̇ =
 p + ⇡. However, the approach follows a di↵erent way
being motivated by robotics applications in which such
variable is hard to observe or has to be estimated along
with the current velocity vector ⌫c.

Intending to minimize the use of models at this stage,
the second option is therefore discarded. Moreover, as it
can be seen from (13),  must not be equal to  p+⇡ to keep

the system controllable (otherwise u ̇ sin( � p) = 0). By
appropriately choosing the new control variable �, it can
be ensured that  remains away from  p + ⇡.

In order to assess the angle dynamics at equilibrium,
consider that the gradient is being tracked and consider
the range dynamics in (11) and set it equal to ��, as
follows:

⇢̇ = u cos( �  p) + vx cos p + vy sin p = ��. (14)
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reference are measurable then the homing procedure is re-
alizable by adopting a suitable method. We address this
problem by considering that we are able only to measure
ranges to the beacon.

The main goal of this work is to present a complemen-
tary method to home an underwater vehicle without re-
sorting to localization algorithms. The main advantage
behind this approach is the possibility of defining a totally
predictable and deterministic behavior during the trajec-
tory of the vehicle, while avoiding to rely on estimators
which may diverge under unpredicted situations. Indeed,
solving the localization problem would make it possible to
decouple the navigation process into control and position
estimation but would be more demanding and uncertain.
This latter approach has been implemented by several au-
thors. In [10] and [11, 12], the authors have proposed a
method that exploits an extended Kalman filter (EKF) for
vehicle localization, where kinematics variables are taken
into consideration along with the water current velocity
components and a possible speed bias. The use of EKF
requires an initialization procedure to avoid divergence of
the estimate. In order to solve this problem, the authors
have adopted a nonlinear least squares methods that is
composed by a two step procedure which first does not con-
sider currents and secondly improves the complete state
estimate with the remaining variables, while relying in a
kinematics/dynamics model. A similar approach was pre-
sented in [13]. The localization problem is also approached
in [14] for relative navigation. A sequence of noncolinear
positions and respective ranges relative to a beacon are
assumed to be known in order to estimate the position of
the latter using nonlinear least-squares recursively. A dif-
ferent approach which employs a particle filter (PF) for
initialization and an EKF for navigation was proposed in
[5], exploiting the advantages of both estimators. While
homing, the vehicle is autonomously able to modify its tra-
jectory in order to improve its position estimate. A priori
information on the area is used in [15] to generate an arti-
ficial potential field combined with a sliding mode control
law to home an AUV to its docking station. The homing
task can ultimately be considered as a pursuit game (see
[16], for example).

Vision-based homing has been widely implemented in
ground or aerial robotics (e.g. [17]) and its concepts have
been translated to underwater robotics in some works such
as [18]. Although this approach is interesting for accurate
positioning and docking in particular, it constraints the
vehicle to be relatively close the target (usually below 10
meters) to be able to home. An alternative homing method
was proposed in [19] using electromagnetic waves emitted
and received by means of large coils placed in both the
dock station and the AUV. The overall system makes it
possible to compute bearing to the dock at distances up
to 35 meters in sea water. Bearing was also employed in
[20] using an ultra short baseline (USBL) carried on the
vehicle. The control law ensures that the bearing angle
is null along the trajectory to home. However, it is well

known that, in USBL systems, the angle resolution de-
creases with the distance. Recently, [21] have presented a
method which only takes into account raw data obtained
from an USBL system for deriving a control law to home
the vehicle. In [22], an extremum search algorithm is intro-
duced to find the maximum approach rate to the beacon.
Nevertheless, the method requires initialization otherwise
driving the AUV to a stable equilibrium point in the op-
posite direction of the beacon.

In the present paper, we propose a complete method to
drive an AUV to a beacon based on ranges only. We aim
at keeping the approach minimalistic not only in terms
of computational complexity but also in terms of sen-
sor/equipment requirements. The approach is constructed
such that no state estimation is needed to robustly drive
the AUV to a small neighborhood of the home (beacon)
position. At the expense of imposing some constraints
the vehicle will be endowed with the ability to track a
given gradient, while making the behavior completely pre-
dictable. It should be noted that precise localization meth-
ods reviewed above can complement the present work, in
the vicinity of the home station, for accurate positioning
(e.g. docking). By applying Lyapunov nonlinear theory
[23], we derive a velocity control law using Lyapunov di-
rect method and backstepping for conducting the vehicle
toward the beacon without requiring initialization, in sec-
tion 3. Motivated by real, practical constraints, we deter-
mine an upper bound on the distance that the vehicle is
guaranteed to reach in section 4. In section 5, we conclude
presenting the results obtained from real experiments per-
formed in the Douro river during the summer 2011, and
demonstrating the robustness of the exposed method. Sec-
tion 6 compares qualitatively the presented approach with
an estimation-based method used to guide an AUV to a
beacon.

2. Problem statement

We consider the motion of a mobile robot in the tridi-
mensional space. Define {I} as the inertial referential
frame and {B} as the body fixed referential frame with
origin coincident with the center of gravity and the x and
y-axes being coincident with the surge and sway axes. The
robot’s absolute linear position in {I} is denoted by the
vector ⌘l = [x, y, z]T 2 R3, while its angular position is
denoted by ⌘a = [�, ✓,  ]T 2 R3. The relative linear
and angular velocity vectors of the robot, expressed in
the {B} frame, are given by ⌫l = [u, v, w]T 2 R3 and
⌫a = [p, q, r]T 2 R3, respectively. During the operation,
the robot is assumed to be subject to the e↵ects of drifts
that are represented by ⌫c = [vx, vy, vz]

T 2 R3, expressed
in the {I} frame. This vector is defined as a general drift
vector that includes the e↵ects of several disturbances such
as current, waves and wind. Introducing the orthonormal
rotation matrix J(⌘a) from {B} to {I} parametrized by
⌘a, the velocity vectors in both referential frames {I} and
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reference are measurable then the homing procedure is re-
alizable by adopting a suitable method. We address this
problem by considering that we are able only to measure
ranges to the beacon.

The main goal of this work is to present a complemen-
tary method to home an underwater vehicle without re-
sorting to localization algorithms. The main advantage
behind this approach is the possibility of defining a totally
predictable and deterministic behavior during the trajec-
tory of the vehicle, while avoiding to rely on estimators
which may diverge under unpredicted situations. Indeed,
solving the localization problem would make it possible to
decouple the navigation process into control and position
estimation but would be more demanding and uncertain.
This latter approach has been implemented by several au-
thors. In [10] and [11, 12], the authors have proposed a
method that exploits an extended Kalman filter (EKF) for
vehicle localization, where kinematics variables are taken
into consideration along with the water current velocity
components and a possible speed bias. The use of EKF
requires an initialization procedure to avoid divergence of
the estimate. In order to solve this problem, the authors
have adopted a nonlinear least squares methods that is
composed by a two step procedure which first does not con-
sider currents and secondly improves the complete state
estimate with the remaining variables, while relying in a
kinematics/dynamics model. A similar approach was pre-
sented in [13]. The localization problem is also approached
in [14] for relative navigation. A sequence of noncolinear
positions and respective ranges relative to a beacon are
assumed to be known in order to estimate the position of
the latter using nonlinear least-squares recursively. A dif-
ferent approach which employs a particle filter (PF) for
initialization and an EKF for navigation was proposed in
[5], exploiting the advantages of both estimators. While
homing, the vehicle is autonomously able to modify its tra-
jectory in order to improve its position estimate. A priori
information on the area is used in [15] to generate an arti-
ficial potential field combined with a sliding mode control
law to home an AUV to its docking station. The homing
task can ultimately be considered as a pursuit game (see
[16], for example).

Vision-based homing has been widely implemented in
ground or aerial robotics (e.g. [17]) and its concepts have
been translated to underwater robotics in some works such
as [18]. Although this approach is interesting for accurate
positioning and docking in particular, it constraints the
vehicle to be relatively close the target (usually below 10
meters) to be able to home. An alternative homing method
was proposed in [19] using electromagnetic waves emitted
and received by means of large coils placed in both the
dock station and the AUV. The overall system makes it
possible to compute bearing to the dock at distances up
to 35 meters in sea water. Bearing was also employed in
[20] using an ultra short baseline (USBL) carried on the
vehicle. The control law ensures that the bearing angle
is null along the trajectory to home. However, it is well

known that, in USBL systems, the angle resolution de-
creases with the distance. Recently, [21] have presented a
method which only takes into account raw data obtained
from an USBL system for deriving a control law to home
the vehicle. In [22], an extremum search algorithm is intro-
duced to find the maximum approach rate to the beacon.
Nevertheless, the method requires initialization otherwise
driving the AUV to a stable equilibrium point in the op-
posite direction of the beacon.

In the present paper, we propose a complete method to
drive an AUV to a beacon based on ranges only. We aim
at keeping the approach minimalistic not only in terms
of computational complexity but also in terms of sen-
sor/equipment requirements. The approach is constructed
such that no state estimation is needed to robustly drive
the AUV to a small neighborhood of the home (beacon)
position. At the expense of imposing some constraints
the vehicle will be endowed with the ability to track a
given gradient, while making the behavior completely pre-
dictable. It should be noted that precise localization meth-
ods reviewed above can complement the present work, in
the vicinity of the home station, for accurate positioning
(e.g. docking). By applying Lyapunov nonlinear theory
[23], we derive a velocity control law using Lyapunov di-
rect method and backstepping for conducting the vehicle
toward the beacon without requiring initialization, in sec-
tion 3. Motivated by real, practical constraints, we deter-
mine an upper bound on the distance that the vehicle is
guaranteed to reach in section 4. In section 5, we conclude
presenting the results obtained from real experiments per-
formed in the Douro river during the summer 2011, and
demonstrating the robustness of the exposed method. Sec-
tion 6 compares qualitatively the presented approach with
an estimation-based method used to guide an AUV to a
beacon.

2. Problem statement

We consider the motion of a mobile robot in the tridi-
mensional space. Define {I} as the inertial referential
frame and {B} as the body fixed referential frame with
origin coincident with the center of gravity and the x and
y-axes being coincident with the surge and sway axes. The
robot’s absolute linear position in {I} is denoted by the
vector ⌘l = [x, y, z]T 2 R3, while its angular position is
denoted by ⌘a = [�, ✓,  ]T 2 R3. The relative linear
and angular velocity vectors of the robot, expressed in
the {B} frame, are given by ⌫l = [u, v, w]T 2 R3 and
⌫a = [p, q, r]T 2 R3, respectively. During the operation,
the robot is assumed to be subject to the e↵ects of drifts
that are represented by ⌫c = [vx, vy, vz]

T 2 R3, expressed
in the {I} frame. This vector is defined as a general drift
vector that includes the e↵ects of several disturbances such
as current, waves and wind. Introducing the orthonormal
rotation matrix J(⌘a) from {B} to {I} parametrized by
⌘a, the velocity vectors in both referential frames {I} and

2

Figure 4.9: Upper bound of the invariant set

Note that, in steady state situation, the trajectory around the origin is periodical. Moreover,

under such a condition, the angular velocity reaches its maximum absolute value r = r̄.

Due to limited actuation, the vehicle trajectory, around the beacon, is an invariant set which

adopts one of the following behaviors:

• Circular trajectory (ρ̇ = 0) when there is no current (vx,vy = 0)

• The range to the beacon decreases (ρ̇ < 0) and increases (ρ̇ > 0) alternate and periodically

in the presence of constant currents

In both cases, it is obvious that the vehicle reaches the most distant point of the invariant set

with ρ̇ = 0.

Let cm be a positive constant. For any cm ∈ (0,cβ ), assume that the gain k in (4.28) is chosen

so that

r̄ = k cm.

Denoting the inverse of the function β (·) as β−1(·), this choice will ensure that the yaw rate will

be saturated at distances ρ ≥ β−1(cm), when the vehicle is moving away from the beacon.

Hence, suppose that, at time t0, the vehicle reaches the distance ρ(t0) = β−1(cm) and consider

the worst possible case: the vehicle has the same direction of the current (ψ(t0) = ∠(vx,vy)). The

equation for the range can be written as

ρ(t) =
∫ t0+t

t0
ρ̇(ζ )dζ +ρ(t0). (4.34)

Define τ to be given so that, for t ∈ [t0, t0+τ], the range is increasing (ρ̇ ≥ 0) and ρ̇(t0+τ) = 0, or,

in other words, at time t0 + τ , the vehicle reaches the most distant point of the invariant trajectory.
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In order to find the maximum range, let us first compute the maximum time interval τ: it is possible

to show that, for the interval [t0, t0 + τ], the following assumption holds: the vehicle reaches the

most distant point of the invariant set with |r(t0 + τ)| = r̄ since eρ̇(t) = ρ̇(t) + β (t) > cm for

t ∈ [t0, t0 + τ].
Moreover, by taking into account that ψ(t0) = ∠(vx,vy), one can verify that ρ̇ ≤ 0 if ψ(t) =

ψ(t0)+π, t ∈ [t0, t0 + τ]. In other words, this means that the distance starts decreasing before the

heading verify ψ(t) = ψ(t0)+π . The geometrical interpretation of this fact is that the range starts

decreasing before the vehicle heading is in the opposite direction of the current vector. Hence, the

maximum time interval is given by

τ <
π
r̄
. (4.35)

It is now possible to derive an upper bound on the maximum range of the invariant trajectory.

From (4.5) and (4.34), one verifies

lim
t→∞

ρ(t) ≤
∫ t0+τ

t0
u+ ||νc||dt +β−1(cm)

=
(u+ ||νc||)π

r̄
+β−1(cm).

Notice that the limit is independent of the approach rate β . While approaching the beacon,

the vehicle is no longer able to maintain a constant gradient due to bounded actuation. Indeed, the

mean value of ρ̇ converges to zero as t→ ∞, that is limt→∞

∫ t
0 ρ̇ = 0.

4.4.3.2 Effect of disturbances on upper bound

Not only the currents, but external, unpredicted disturbances can act on the vehicle body. These

disturbances may result from unconsidered effects such as sideslip and/or from unpredicted motion

of the beacon. In their presence, an upper bound can be determined. Still, particular attention must

be given to disturbance magnitude in order to meet the constraints established in the previous

section.

Suppose that d = sup∑di is a constant that comprises the sum of the unconsidered/unknown

effects di on the vehicle absolute velocity. Aiming at maintaining the control law (4.28) valid, β
has to be redefined so that β < u− ||νc|| − d for all ρ . Hence, following the same argument as

previously yields concluding that the upper bound of the invariant trajectory is given by:

lim
t→∞

ρ(t) ≤ (u+ ||νc||+d)π
r̄

+β−1(cm). (4.36)

This result is specially interesting because it defines a circumference around the beacon where

the vehicle is guaranteed to lie after having entered into it. From the practical point of view, such

characteristic leaves room to explore scenarios in which the AUV homes to a moving beacon.

Moreover, unconsidered effects or model uncertainties can be integrated in the constant d to find

an ultimate bound of convergence around the beacon.
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4.4.4 Results

In-water trials were carried out during the summer of 2011 with the MARES AUV in the Douro

river. At that time, MARES measured 1.7 meters long. Along with the homing mission, several

operations were planned for environmental sampling. Besides the sensors commonly used for

environmental sampling, MARES carried an acoustic transducer to measure ranges to an acoustic

beacon placed on a surface buoy. Range measurements are based on the TOF of acoustic pings of

a TWTT system. The vehicle interrogates the beacon periodically with approximately 4 seconds

of interval, which is a relatively low rate for the homing maneuver. Nevertheless, the results below

show that the method can be applied to systems with such characteristics.

For the present results, MARES was arbitrarily placed in the open area at a typical distance

of a few hundreds of meters, constrained only by the operational constraints (river width, line-

of-sight). Figure 4.10 shows the results obtained for the homing maneuver when the vehicle was

placed at an initial distance of approximately 200m. During the trajectory, the AUV was subjected

to several disturbances due to the proximity of the surface which are mainly induced by wind and

currents. Moreover, surge velocity was well below the expected value due to unconsidered pro-

tuberances as MARES was carrying a conductivity temperature depth (CTD) sensor at starboard,

thus leading to considerable disturbances in both the surge and the yaw rate dynamics. Addition-

ally, other unconsidered effects due to shape changes for integration of sensors induced significant

inaccuracies on the model. Still, the behavior remained robust enough to drive MARES to the

beacon. Note that β can be adjusted as a function of the confidence on the actual surge velocity.

Indeed, if the vehicle was set to move at a constant velocity and its actual velocity is below the

expected one, the control remains valid, as long as the assumptions made in section 4.4.1 hold,

and the vehicle can be driven to home by reducing the approach rate β (or more formally, its upper

bound cβ ).

One can verify that MARES rapidly converges to negative range rates (approaching the bea-

con) after pointing away from the beacon, during the initial instants. An interesting behavior

happens at time t = 6150s: the AUV heading passes through the unstable equilibrium point

ψ = θ − π + δ and is no longer able to track the gradient, likely due to disturbances, stronger

currents at the surface and chattering induced by discrete time measurements. Indeed, the range

rate is obtained by the rather rough estimate ρ̇ ≈ (ρk−ρk−1)/(tk− tk−1). Nevertheless, under this

situation, it keeps turning in the clockwise direction until reaching the stable angle, as expected.

Subsequently, the range rate is maintained negative with chattering due to measurement dis-

cretization which makes the control law apply too prolonged corrections to the heading in some

situations. The vehicle finishes reaching the neighborhood of the beacon and maintaining a dis-

tance below 20m.

In order to improve the performances of the overall system response, a rough estimation of the

range rate has been implemented, given by:

ˆ̇ρ = ρ̇k +αkψ, (4.37)
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Figure 4.10: Results obtained for homing with surge velocity 1.0 meter per second (estimated)
and desired approach rate β = 0.6 (log20110729142857)

where

αk =

{
l = ρk−ρk−1

ψ(tk)−ψ(tk−1)
, if ψk 6= ψk−1

∧
l ≥ 0,

αk−1 , otherwise.

The results of the homing maneuver including this last improvement are shown in figure 4.11.

Note that the range rate becomes smoother during the approach and the maneuver ends with the

vehicle in the vicinity of the beacon (below 10m). From (4.36), the maximum theoretical upper

bound of the invariant set results limt→∞ ρ(t)≤ 21 meters for actual (estimated) surge velocity u of

about 1.5 meters per seconds, current velocity ||νc||= 0.25 meters per second and disturbances d

of about 0.2 meters per seconds, which includes unconsidered sway velocity and errors originated

by discrete time measurements. The maximum yaw rate considered was the one observed in figure

4.10 (r̄ ≈ 0.25 radians per second). The result is consistent with the logged data.

In both results, one can verify the absence of range measurements during some intervals or



4.4 Homing using a sensor-based approach 71

0

50

100

ra
n
g
e

ρ
 (

m
)

−2.0

−1.0

0

1.0

ra
n
g
e

 r
a
te

∂
ρ
/∂

t 
(m

/s
)

 

 

pi

0

−pi

y
a
w

ψ
 (

ra
d

)

−0.2

0

0.2

0.4

y
a

w
 r

a
te

r 
(r

a
d

/s
)

 

 

5100 5150 5200 5250 5300

0

1.0d
e

p
th

z
 (

m
)

time (s)

range rate

smoothed

yaw rate

reference

Figure 4.11: Results obtained for homing with surge velocity 1.5 meter per second (estimated)
and desired approach rate β = 0.7 (log20110803142434)

even the presence of noisy measurements (outliers) originated by multipath reflections on the

bottom, when MARES is close to the beacon (see figure 4.11). Still, the results show that the

approach is capable of accommodating these sporadic erroneous measurements. Furthermore, it

is expectable that the present approach is capable of handling hardly predictable offsets on the

measurements coming from different properties of sound wave propagation. As an illustration,

the difference in temperature and in density between two volumes of water (environments with

different acoustic characteristics) would imply different speeds of propagation and, consequently,

different range measurements for the same distance to the beacon. Since the range rate possesses

the dominant role in the proposed control law, the effect of such property would be effective only

on the transition from one to another environment. Furthermore, effects such as multipath and

occlusions would make the vehicle behave in the same manner.



72 Homing using range-only measurements

4.5 Conclusions

This chapter presented two different approaches to home a vehicle to a possibly varying position

reference using ranges only. Firstly, the problem of localization was addressed by developing two

estimators of different nature. The PFs are promising estimators that do not make assumptions on

the noise.On the other hand, the EKF makes some assumptions on the kind of noise and need for

initialization but it is generally less exigent in terms of computational requirements. A method

using both filters was proposed: the PF estimates the initial position which is used afterwards by

the EKF as the first estimate. Guidance questions could not be decoupled from estimation since

observability is directly related with the trajectory. A guidance law was derived and posteriorly

modified so that the trajectory changes according to the confidence on the estimate. For this part,

the performances of the solutions were analyzed by means of realistic simulations. While the

performances of the EKF approach demonstrated robustness and accuracy, the approach that only

uses the particle filter frequently results in divergence of the estimate.

Then, a novel homing method for AUVs that are capable of measuring ranges to a given refer-

ence with unknown position was proposed. Driving the vehicle to home does not require solving

the localization problem. Instead, coarse knowledge about disturbances is enough to enable an

AUV to home. Having kept the approach simple and minimalistic, a specific control law has been

derived and it has been demonstrated in both theory and practice that the homing method makes

the vehicle converge to a reference even in the presence of significant disturbances and dynam-

ics model inaccuracies. Moreover, the nature of the method makes it possible to derive upper

bounds on the minimum distance that the vehicle is capable of reaching the beacon under different

environmental conditions.

Although a specific type of vehicle was focused in this chapter, the derived control law is not

limited to AUVs only and can also be applied to vehicles with controlled surge velocity and yaw

rate. Further to the important role of the present method for missions of autonomous vehicles, the

approach becomes particularly interesting for scenarios in which fault recovery or degraded mode

navigation is required to home a vehicle with range-only measurements.

Besides the rather simple maneuver of homing, the method can also be extended to coordina-

tion problems (reference tracking) where an AUV or surface vessel is moving toward a moving

reference and maintain a well known distance. Nonetheless, the maximum speed of the moving

reference must be considered for the derivation of the control law.



Chapter 5

Local control for marine vehicles

Up to now, control and guidance have been proposed to endow autonomous marine vehicles to

position themselves in uncommon modes of operation in chapter 3 or robustly approach a reference

based on range measurements in chapter 4. These methods are ad-hoc solutions developed for

specific purposes, which, in the latter case, assumed that the velocity could be controlled directly

expecting that a lower level controller would solve the velocity tracking problem. In opposition

to the previous chapters but also to complement the previous chapter, it is now intended to build a

multilayer control architecture where different levels control different quantities, ultimately aiming

at coordinating heterogeneous marine vehicles. The approach is similar to the inner-outer loop

method presented in Fossen (1994). This chapter presents a solution for velocity control and

target tracking for a broad class of marine vehicles.

Robotic systems are nonlinear. Therefore, high performance of robots requires nonlinear con-

trol techniques, otherwise leading to poorer, or even unstable, behaviors. Nonlinear control meth-

ods (see Khalil (2002)) include linearization, gain-scheduled, sliding mode control and backstep-

ping (without being extensive). Linearization techniques take advantage of the vast results on

linear control theory and are well suited for systems that operate at a nominal point of operation.

Gain-scheduled control is a natural extension of the linearization technique by linearizing the sys-

tems at several points of operation and by interpolating the control laws. Sliding mode control and

backstepping methods commonly result on nonlinear feedback control laws that typically employ

a model of the dynamics. In the present work, the control laws for both underwater and surface

robots were derived based on dynamics models.

Dynamics and kinematics control constitute the basic layer of our approach. It is important to

keep the interaction with this layer simple and well defined while guaranteeing that the resulting

behaviors can be versatile enough.

Besides velocity control and target tracking, special attention is given to modelling and mea-

surement errors and on how they impact on reference tracking. Upper bounds on velocity error

and on target tracking error are given.

73
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5.1 Velocity control

Similarly to coordination problems, individual coherent and precise motion is desired in many

robotic applications. The approach presented in this work requires bounded individual tracking

errors. This section derives the low-level control laws that ensure such a bounded error.

5.1.1 Bounded velocity under bounded actuation

In many of the control problems, reduced models of vehicles are used to derive control laws and

to infer about their stability but very few attention is given to the remaining degrees of freedom

(DOFs). If their corresponding velocities become large, the system may become uncontrollable

and unstable. Therefore, in the first part of this section, upper bounds are derived on the velocity

of a marine (either underwater or surface) vehicle with limited actuation in order to support the

derivation of the control laws.

Intuitively, one expects the velocity of marine vehicles to be limited under bounded actuation

because of damping forces and moments. However, effects such as Coriolis and centriptal forces

are less intuitive as they generally create several coupling forces and moments. The objective here

is to verify bounded velocities and to determine such bounds.

To assess the dynamics under limited actuation, the first step is to define the set of the ac-

tuation vector and of the limited restoring forces and moments. Define the actuation vector to

be component-wise bounded set, i.e., τ ∈ Ωτ = {τ ∈ Rnt : |[τ]i| ≤ τMi, i = 1, ...,nt}. Simi-

larly, the vector of restoring forces and moments is considered to be bounded component-wise

g(η) ∈Ωg = {g(η) ∈ R6 : |[g(η)]i| ≤ gMi, i = 1, ...,6, ∀ η(t)}. In the forthcoming analysis, we

consider the matrix |T | ∈ R6×nt given by

[|T |]i j = |[T ]i j|, (5.1)

that is, |T | is the matrix whose entries are the absolute values of the entries of T in (3.2).

The Lyapunov theory is used here to infer about the stability of the system. This widely used

tool provides meaningful results on the behavior of dynamic systems and, therefore, constitutes a

solid background for the upcoming developments. In addition to the analysis feature, the Lyapunov

theory has naturally been applied in control law designs. Some examples are sliding mode control,

the Lyapunov direct method and backsteping Khalil (2002).

Hence, the positive definite, radially unbounded Lyapunov function is defined as

Vb(ν(t)) =
1
2

ν(t)T Mν(t). (5.2)

In order to assess the stability of the system, it is sufficient to determine its time-derivative:

V̇b(ν(t)) = ν(t)T Mν̇

= ν(t)T (A(ν(t))ν(t)−h(η)+Sτ).
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Note that A(ν(t))=−C(ν(t))−D(ν(t)) and ν(t)TC(ν(t))ν(t)= 0 since C(ν(t)) is skew-symmetric.

Moreover, for relatively large velocity, the quadratic terms of the damping forces and moment

dominate in the presence of nonlinear skin friction and vortex shedding Fossen (1994). Nonethe-

less, it must be stressed that such simplification does not invalidate the following developments,

as the remaining linear and nonlinear effects would contribute with more damping. Therefore,

in many problems Fossen (1994); Ferreira et al. (2012, 2010), the viscous damping matrix takes

the following representation D(ν(t)) = D1diag(|ν(t)|), where D1 ∈ R6×6 and diag(·) denotes the

diagonal matrix composed of the entries of its argument. Furthermore, define the positive definite

matrix whose diagonal entries are positive and off-diagonal entries are non-positive that is:

Dc ∈ R6×6 : Dc > 0, [Dc]ii > 0, [Dc]i j ≤ 0, i 6= j,∀ i, j = 1...6.

Additionally, assume that

Dc < D1. (5.3)

The idea behind defining this matrix is to reinforce the velocity bounds. In fact, as will be seen in

the sequel, the upper bound the cross-coupling terms will subtract damping from the upper bound

on the time derivative of the Lyapunov function (see (5.5)) and thus enabling the direct derivation

of the velocity bounds for each DOF.

Hence, the time-derivative of the Lyapunov function results

V̇b(ν(t)) = ν(t)T (−D1diag(|ν(t)|)ν(t)−g(η)+T τ). (5.4)

One can verify that the Lyapunov function time-derivative does not depend on the Coriolis and

centriptal effects thus simplifying the determination of the bounds on the velocity vector. Using the

facts that Dc is positive definite, the inequality in (5.3) and the equality ν(t)T ν(t) = |ν(t)|T |ν(t)|,
the following upper bound is found for the Lyapunov function time derivative (5.4)

V̇b(ν(t))≤ |ν(t)|T (−Dcdiag(|ν(t)|)|ν(t)|+gM + |T |τM), (5.5)

where [gM]i = gMi and [τM]i = τMi are the vector whose entries are the upper bounds on the ab-

solute values of the restoring forces and moments and actuation forces, respectively. Hence, the

following implication holds:

[diag(ν(t))ν(t)]i > [(Dc)
−1(gM + |T |τM)]i, ∀ i = 1, ...,6, ⇒ V̇b(ν(t))< 0,

or, equivalently,

V̇b(ν(t))< 0 (5.6)

if

|[ν(t)]i| ≥ [νM(t)]i
([
|(Dc)

−1(gM + |T |τM)|
]

i

)1/2
, ∀ i = 1, ...,6, (5.7)

According to this result, and recalling that the Lyapunov function Vb(ν(t)) is positive definite and
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a radially unbounded function of the norm ||ν(t)||, this implies that no solution can stay in the

set {ν(t) ∈R6 : |[ν(t)]i| ≥
([
|(Dc)

−1(gM + |T |τM)|
]

i

)1/2
, ∀ i = 1, ...,6} for all time. The velocity

vector eventually converges to an invariant set contained in a hyperrectangle that contains the

origin and is defined by the entries of the vector
(
[(Dc)

−1(gM + |T |τM)]i
)1/2 no matter what the

actuation forces or the initial conditions are. The latter result is especially interesting and important

since it individually bounds the velocities over each DOF. Both support common simplifications

used in several problems, such as order reduction, by stating that the neglected DOFs are well

behaved. Although this bound may seem conservative since the term

(−Dcdiag(|ν(t)|)|ν(t)|+gM + |T |τM)

in (5.5) is required to have positive entries, this yields component-wise bounds instead of more

“classical” results that impose a bound to the norm of the vector. Nevertheless, these results can

also be easily derived as follows, for completeness.

A similar though more conservative result can be extracted from these expressions using the

concept of ultimate boundedness Khalil (2002). Take the maximum velocity component as

vM = max
i

(
[(Dc)

−1(gM + |T |τM)]i
)1/2

(5.8)

and define the smallest and largest eigenvalues of a generic matrix B as λmin(B) and λmax(B),

respectively. Then, from (5.2), one can easily show that

1
2

λmin(M)||ν(t)||2 ≤Vb(ν(t))≤
1
2

λmax(M)||ν(t)||2 (5.9)

Since |[ν(t)]i| ≥ vM implies ||ν(t)|| ≥
√

6vM, the time derivative of the Lyapunov function

Vb(ν(t)) upper bounded

V̇b(ν(t))≤−W (ν(t))= |ν(t)|T (−Dcdiag(|ν(t)|)|ν(t)|+gM+|T |τM)≤ 0, ∀ ||ν(t)|| ≥
√

6vM > 0.

Hence, the direct application of the theorem (Khalil, 2002, 4.18 pp.172) states that the velocity

satisfies, for a time T > 0:

||ν(t)|| ≤
√

6λmin(M)

λmax(M)
vM, ∀t > T (5.10)

that is, the velocity is globally ultimately bounded by
√

6λmin(M)
λmax(M) vM and reaches this bound in

finite time. This result is more conservative than the one defined in (5.7) as the sphere defined by√
6λmin(M)
λmax(M) vM contains all the corners of the hipercube implied in (5.7), since λmin(M)

λmax(M) ≥ 1. However,

this is connected to an important theory on perturbed systems and with widely used results on

system analysis (see Khalil (2002)). A similar result can also be obtained in the context of input-

to-state stability (ISS) with regard to the vector gM + |T |τM.
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It is important to highlight that the results presented still provide an upper bound on the ve-

locity vector even neglecting the lower and higher order terms of damping. Since such terms are

dissipative, they would contribute to a larger D(ν(t)) and consequently decrease the bounds, as

suggested by the inverse of the matrix in (5.7).

5.1.2 Inner velocity loop

In the decoupled control architecture presented here, different loops are considered where different

quantities are stabilized at desired, possibly time-varying, set points. The goal now is to stabilizing

the velocity vector at a desired velocity ν∗(t) : R→Rn, where n≤ 6. This vector, with a possibly

lower dimension than the dynamics model (2.2), comes from the interest of controlling only part

of the DOFs. In nonholonomic robots, the dimension of this vector is often equal to the number of

DOFs, that is, the number of velocities that can be controlled directly. Sometimes, the dimension

can be smaller than the degrees of DOFs, by neglecting some of them and using the fact that they

are well-behaved or assuming that they are controlled independently (see, for example, Ferreira

et al. (2010b)). The Lyapunov direct method will be used to derive the velocity control law.

Based on (2.2), consider the reduced order velocity vector ν̄(t) : R→ Rn, whose dynamics is

given by
˙̄ν(t) = PM̄† (Ā(ν(t))ν(t)− ḡ(η(t))+ T̄ τ

)
(5.11)

where the reduced order matrices and vectors are given by

ν̄(t) = Pν(t),

M̄ = PM,

Ā(ν(t)) = PA(ν(t)),

ḡ(η(t)) = Pg(η),

T̄ = PT,

with P ∈ Rn×6 being a generic projection matrix, whose rows have norms equal to one and are

mutually orthogonal. This matrix maps the overall system in a smaller dimension subspace con-

sidering only the relevant DOFs, by selecting the corresponding rows and columns.

Example 5.1. Suppose that the intention is to control the surge, heave and yaw velocities, that is,

the linear velocities along the x-, z-axes and the angular velocity along the z-axis. Suppose that

these are the only velocities considered. The choice for the projection matrix would then be

P =




1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1


 .

The first row captures the surge dynamics, the second captures the heave and the third captures

the yaw one.
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Note that the rows of the projection matrix P are orthogonal vectors. Moreover, the matrix

PM̄† is square and has full rank in this case, which means that it is invertible.

It is important to note that all the states of the reduced model are controlled if T̄ has full row

rank. This condition is assumed to be verified from now on.

Let us now focus on the derivation of a control to track a velocity reference. In order to find

a suitable control law, the velocity error vector is defined as the difference between the actual and

the desired velocities:

ν̃(t) = ν̄(t)−ν∗(t).

Using (5.11), the time derivative of the error vector results

˙̃ν(t) = PM̄† (χ(ν(t),η(t))+ T̄ τ)− ν̇∗(t), (5.12)

where χ(ν(t),η(t)) = Ā(ν(t))ν(t)− ḡ(η(t)). Noting that PM̄† is invertible, this expression sug-

gests the control law for the control input

τ = (T̄ )†
((

PM̄†)−1 ν̇∗(t)−χ(ν(t),η(t))−Kν ν̃(t)
)
, (5.13)

where Kν ∈Rn is a positive definite matrix. This makes the error dynamics globally exponentially

stable:
˙̃ν(t) =−PM̄†Kν ν̃(t).

Exponential stability is often desired as it provides superior tracking performances even in the

presence of modelling errors when compared to asymptotically stable systems (Chung and Slotine,

2009).

Thus far, it has been assumed that the model is perfectly known which may be unrealistic in

real applications. Actually, in robotics in general, and especially in marine robotics, exact models

are very hard to obtain and, therefore, errors are naturally introduced. However, one may have a

rough notion or a reasonable estimated upper bound on the introduced error, which in turn can be

used in the controller design process to ensure stability and to meet the desired performances.

5.1.3 Error boundedness

In order to determine the necessary conditions to ensure convergence to the vicinity of the desired

velocity and to assess the impact of the errors on the dynamics model, an analysis is provided

considering a model error. To make the notation consistent with the previous developments, the

notation ¯(·) is used for the reduced order matrices and vectors, and denote the model terms as (·)m

and the errors terms as (·)e.

The analysis starts from (5.12), where it is assumed that the dynamics can be decomposed in

two components: modelled and error components. More specifically, it is assumed that

χ(ν(t),η(t)) = χm(ν(t),η(t))+χe(ν(t),η(t)), (5.14)
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where χm(ν(t),η(t)) and χe(ν(t),η(t)) stand for the modelled and error components, with

χm(ν(t),η(t)) = Ām(ν(t))ν(t)− ḡm(η(t))

χe(ν(t),η(t)) = Āe(ν(t))ν(t)− ḡe(η(t)).

As for A(ν(t)) and Ā(ν(t)), the matrices above are defined as the sum of Coriolis and centriptal

and damping components, respectively:

Ām(ν(t)) = P(Cm(ν(t))+Dm(ν(t)))

Āe(ν(t)) = P(Ce(ν(t))+De(ν(t))),

where the inertia matrix is given by M = Mm + Me and the matrices Cm(ν(t)), Dm(ν(t)) and

Ce(ν(t)), De(ν(t)) are the modelled and error Coriolis and damping matrices, respectively. As

it is important for the forthcoming analysis, we highlight that, since Cm(ν(t)) and C(ν(t)) are

skew-symmetric matrices and the subtraction (sum) of skew-symmetric matrices result in a skew-

symmetric matrix, Ce(ν(t)) is also skew-symmetric.

Note that errors on ν̇∗(t) nor on T̄ (or, equivalently, T ) have not been considered. This is rea-

sonable for ν̇∗(t) since it is intrinsically given by the desired velocity reference, which is perfectly

known. It is also fair to consider T with no error as it mostly depends on the relative positions

of the actuators and of the center of gravity, which may be accurately determined using simple

practical methods (see Ferreira et al. (2012), for example). Nonetheless, additional but generally

small effects originated from torques induced by rotating propellers may be difficult to quantify.

Moreover, the determination of exact forces exerted by the thrusters are also intricate, since they

depend on the angular velocity of the thruster, on the propeller shape and on the relative velocity of

the fluid passing by the propeller, which is obviously complex to measure. It is assumed here that

these errors can be incorporated in the product T τ by considering actuation errors only: suppose

that the actuation vector is given by the sum of the modelled actuation τm plus an error τe, that is,

τ = τm + τe.

Provided that exact models are very difficult to obtain, instead of (5.13), a natural choice for

the control law is

τm = (T̄ )†
((

PM̄†
m
)−1 ν̇∗(t)−χm(ν(t),η(t))−Kν ν̃(t)

)
. (5.15)

Using (5.12) with (5.14) and (5.15) makes the error dynamics

˙̃ν(t) =PM̄† (χe(ν(t),η(t))−Kν ν̃(t)+ T̄ τe)+
(

PM̄† (PM̄†
m
)−1− I

)
ν̇∗(t) (5.16)

The Lyapunov theory background is used here to assess the stability of this closed-loop dy-

namics. Therefore, the radially unbounded, positive definite, Lyapunov function is defined as

Vν =
1
2

ν̃(t)T (PM̄†)−1 ν̃(t),
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whose time derivative is given by

V̇ν = ν̃(t)T (PM̄†)−1 ˙̃ν(t).

Replacing (5.16) in the last expression yields

V̇ν =ν̃(t)T
[
χe(ν(t),η(t))−Kν ν̃(t)+ T̄ τe +

((
PM̄†

m
)−1−

(
PM̄†)−1

)
ν̇∗(t)

]
. (5.17)

The intention is to prove that the error converges to a neighbourhood of the origin. An ultimate

bound can be derived based on estimates of the errors introduced in the model. Some practical

and realistic assumptions have to made.

Assumption 5.1.1. The time derivative of the desired velocity ν∗(t) is bounded so that |ν̇∗(t)| ≤
δν̇∗ ∈ Rn.

Assumption 5.1.2. The error introduced in the modelled restoring forces and moments vector is

bounded as ge(η(t))≤ geM ∈ Rn, ∀η(t).

The idea now is to find bounds on the vectors χe(ν(t),η(t)) and Me in order to come up

with an ultimate bound on ν̃(t). Note that the time derivative of the Lyapunov function is upper

bounded as

V̇ν ≤|ν̃(t)|T
[
|χe(ν(t),η(t))|−Kν |ν̃(t)|+ |T̄ ||τe|+

∣∣∣
((

PM̄†
m
)−1−

(
PM̄†)−1

)
ν̇∗(t)

∣∣∣
]
. (5.18)

Recall that χe(ν(t),η(t)) = P(Ce(ν(t)) +De(ν(t)))ν(t)− ḡe(η(t)). Then, it is possible to

write

|ν̃(t)|T |χe(ν(t),η(t))| ≤|ν̃(t)|T
(
|PCe(ν(t))ν(t)|+ |PDe(ν(t)))ν(t)|+ |ḡe(η(t))|

)
. (5.19)

The following task is finding upper bounds on each term individually. From assumption 5.1.2

it is clear that

|ν̃(t)|T |ge(η(t))| ≤ |ν̃(t)|T PgeM. (5.20)

Using the fact that, for the maximum possible velocity ν(t) = νM(t), the quadratic damping

is dominant, or more generally, that it is possible to find a DeM with non-negative entries, that is

DeM = |DeM|, so that De(ν(t))≤ DeM ·diag(|ν(t)|), it yields

|ν̃(t)|T |PDe(ν(t)))ν(t)| ≤ |ν̃(t)|PDeMdiag(|νM(t)|)|ν(t)|
≤ |ν̃(t)|PDeMdiag(|νM(t)|)νM(t) (5.21)

for all |ν(t)| ≤ |νM(t)|. In practice, De(ν(t)) is the matrix of maximum estimated error, whose

entries are non-negative. Although it is difficult to find accurate estimates of the errors, upper

bounds can be estimated either in theory using a rough notion of neglected effects, or in practice

by observing the navigation data, for example.
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Finding an upper bound on |ν̃(t)|T |PCe(ν(t))ν(t)| is slightly more difficult since it implies

looking at the form of Ce(ν(t)). It is important to recall that Ce(ν(t)) is a skew-symmetric matrix,

and that its entries are the dot product of two vectors (see Fossen (1994)), admitting the following

representation:

Ce(ν(t)) =




0 0 0 h14 h15 h16

0 0 0 h24 h25 h26

0 0 0 h34 h35 h36

−h14 −h24 −h34 0 h45 h46

−h15 −h25 −h35 −h45 0 h56

−h16 −h26 −h36 −h46 −h56 0




with

hi j = hi j(ν(t)) = cT
i jν(t) (5.22)

where ci j ∈ R6, i = 1, ...,5, j = 4, ...,6. Using the Cauchy-Schwarz inequality, ci jν(t) ≤ ||ci j|| ·
||νM(t)||, for all |ν(t)| ≤ |νM(t)|. This yields

|ν̃(t)|T |PCe(ν(t))ν(t)| ≤ |ν̃(t)|T PF({ci j})||νM(t)|||ν(t)|
≤ |ν̃(t)|T PF({ci j})||νM(t)||νM(t) (5.23)

where

F({ci j}) =




0 0 0 ||c14|| ||c15|| ||c16||
0 0 0 ||c24|| ||c25|| ||c26||
0 0 0 ||c34|| ||c35|| ||c36||
||c14|| ||c24|| ||c34|| 0 ||c45|| ||c46||
||c15|| ||c25|| ||c35|| ||c45|| 0 ||c56||
||c16|| ||c26|| ||c36|| ||c46|| ||c56|| 0




.

This result is in agreement with results presented in Mulero-Martinez (2007).

For the remaining term, it is important to highlight that

|ν̃(t)|T
∣∣∣
((

PM̄†
m
)−1−

(
PM̄†)−1

)
ν̇∗(t)

∣∣∣≤ |ν̃(t)|T
∣∣∣
(
PM̄†

m
)−1−

(
PM̄†)−1

∣∣∣ |ν̇∗(t)| , (5.24)

and denote MeM ≥Me, the positive semi-definite matrix with non-negative entries. Hence, using

assumption 5.1.1, it follows that

|ν̃(t)|T
∣∣∣
(
PM̄†

m
)−1−

(
PM̄†)−1

∣∣∣ |ν̇∗(t)| ≤ |ν̃(t)|T
∣∣∣
(
PM̄†

m
)−1−

(
P(PMm +PMeM)†)−1

∣∣∣ |δν̇∗ | .
(5.25)
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Finally, defining, for simplicity

ξ1 = |T̄ ||τe|
ξ2 = PgeM

ξ3 = PDeMdiag(|νM(t)|)νM(t)

ξ4 = PF({ci j})||νM(t)||νM(t)

ξ5 =
∣∣∣
(
PM̄†

m
)−1−

(
P(PMm +PMeM)†)−1

∣∣∣ |δν̇∗ | ,

(5.26)

and using (5.18)-(5.25), it is possible to write the following implication

|[ν̃(t)]i|> [ν̃M]i = [(Kν)
−1 (ξ1 +ξ2 +ξ3 +ξ4 +ξ5)]i⇒ V̇ν ≤ 0

Therefore, for any initial condition verifying ν̃(t) ≤ ν̃M, the velocity error vector will remain in

the invariant set bounded by the entries of the vector ν̃M for all future times. Otherwise, the error

vector will eventually converge to this invariant set.

As expected, the upper bound on the velocity error is a function of the inverse of the gain

matrix Kν . One may note that the error can be made arbitrarily small by choosing a large Kν .

Given an estimate on the error introduced in the model, this matrix can be tuned to meet a given

velocity error. Nevertheless, this choice has to be balanced in practice as it will have a direct

consequence on the response of the vehicle to velocity measurement noise, and may also lead to

saturation of actuators for larger errors. This, in turn, does not guarantee the desired exponential

stability. Moreover, this gain may be limited by the bandwidth of the actuators, whose nonlinear

dynamics was not considered here, but remains valid when the response time of the actuators is

fast enough when compared to the dynamics.

It was proven that under specific conditions, in the presence of model errors, the velocity

error vector will remain bounded. It is possible to see from the last implication that the bound of

the velocity error is directly proportional to the maximum time derivative of the desired velocity

(ν̇∗(t)). This means that the references given by any higher level algorithm have to be smooth

enough to bound the velocity tracking error.

Example 5.2. To illustrate this section, the MARES AUV is considered as a case-study. Based on

its model (see appendix C), the upper bound on the velocity vector is determined using the results

obtained in section 5.1.1. The maximum velocity vector is bounded by the entries of vM, which

take the following values:

vM =




uM

vM

wM

pM

qM

rM




=




2.5

0.13

0.62

8.4

1.1

0.52




.
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The first three entries stand for the maximum surge, sway and heave velocities (in meters per

second) while the last three stand for the roll, pitch and yaw rate maximum angular velocities (in

radians per second), respectively.

These are in agreement with those verified in practice. Nevertheless, the roll rate seems to be

exaggerated. In fact, this value results from the very small damping on the roll motion, as well as

from the fact that the upper bound on the restoring forces and moments vector gM was considered

for the worst possible case (vehicle rolled 90 degrees) thus inducing in gM a moment on roll that

is not verified in practice, unless it is forced by an external moment.

When determining hydrodynamic models for underwater vehicles, added mass and inertia

terms can be determined quite accurately as they depend on the volume, shape and water density

and mass and moment of inertia, respectively, which can all be accurately determined either us-

ing hydrodynamic theory or computational fluid dynamics (CFD). In opposition, viscous damping

coefficients are generally difficult to obtain accurately since they depend on multiple parameters

such as roughness, shape, Reynold’s number, among others (White, 2003; Hoerner, 1965; Pres-

tero, 2001). Additionally, most parameters are derived based on empirical formulas and typically

result from truncated series. The set of DOFs composed of surge, heave, pitch and yaw has been

considered. Using a matrix gain of the same order of magnitude as that used in practice and equal

to Kν = diag([100 100 100 100]), and assuming that the viscous damping coefficients and the in-

ertia and added mass terms are both affected by an error of 10%, the maximum velocity tracking

error is bounded by

ν̃M =




ũM

w̃M

q̃M

r̃M



=




0.45

0.50

0.40

0.36



,

for surge, heave, pitch rate and yaw rate, respectively. A 5% error on actuation and a bound

δν̇∗ = [1 1 1 1]T on the absolute time derivative of the desired velocity have been considered.

Note that, for this result, it was considered that the roll rate is approximately null [vM]4 ≈ 0 as it

naturally is in typical operations.

5.1.4 Combinations of DOFs and guidance

The velocity control law defined in (5.13) enables controlling the entire set of DOFs of a vehicle

through velocity references, which can be easily employed by guidance laws that feed the ve-

locity controller. In order to unify the interaction with a set of heterogeneous vehicles, it might

be interesting to define common maneuvers specially designed for the corresponding platform.

Implementing a set of common maneuvers simplifies the interaction and the commands given by

an operator or any high level algorithm to conceptually different vehicles, independently of their

individual characteristics.

Moreover, the use of an inner velocity loop, enables decoupling the various DOFs of a vehicle.

Such an approach allows for composed and decoupled elemental motion primitives. For example,



84 Local control for marine vehicles

the depth reference can be set to a given, possibly time-varying, reference independently of the

horizontal motion, which could be particularly appreciated under some scenarios such as bottom

exploration.

This approach has been transversal to all the vehicles that served as assets in the work presented

in this document. Hence, these robots can be commanded by setting

• the desired maneuver along with its parameters (for example, line-following and corre-

sponding initial and final points);

• the desired pose or velocity reference(s).

Combinations of maneuvers with pose and velocity references are permitted.

Four types of maneuvers have been identified for marine vehicles: line-following, circle-

following, waypoint and target tracking. The first two guarantee that each robot can follow any

complex path, which can be approximated by concatenation of trimming paths such as simple

lines and circles (Ghabcheloo et al., 2009). Waypoint and target-tracking allow versatile behaviors

frequently desired in marine operations. Additionally, it might also be desirable that the robot can

be operated in a "direct" manner through a fifth (free) mode that enables setting pose or velocity

references explicitly to each DOF. Apart from the target tracking guidance, which has a special

importance in the next chapters, the remaining maneuvers are not addressed in this thesis as several

methods have already been proposed by several authors (some examples can be found in (Aguiar

and Hespanha, 2007; Borhaug et al., 2007; Ghabcheloo, 2007; Ghabcheloo et al., 2009)).

As a simple exercise, consider the TriMARES AUV, which has been presented in section 2.6

and whose model parameters are given in D, in the next example.

Example 5.3. As for the remaining vehicles, an inner velocity loop as described in section 5.1 has

been developed and implemented for TriMARES.

At the kinematics level a depth controller and a pitch controller, among others for the remain-

ing DOFs, have been implemented. The heave, surge and pitch velocity references are generated

according to the guidance laws:

u∗(t) =
w sθ
cθ

(5.27)

w∗(t) =
ζz +u sθ

cθ
(5.28)

q∗(t) =−Kθ sat
(
θ −θ ∗− θ̇ ∗/Kθ , δθ

)
(5.29)

where

ζz =−Kzsat(z− z∗− ż∗/Kz +σZ/Kz, δz)

and Kθ > 0, Kz > 0 are scalar gains and δθ > 0, δz > 0 are the saturation values. The term σZ

is used for asymptotic regulation (Singh and Khalil, 2005), providing integral action, and is given
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Figure 5.1: Controlled states during a hovering maneuver of TriMARES

by

σ̇z =−γσZ +µsat
(
z− z∗, δµ

)
(5.30)

with γ > 0, µ > 0 and δµ > 0.

During the first trials, its depth reference was set to z∗ = 2 meters and posteriorly changed to

z∗ = 5 meters, by means of a mission script interpreted by the control software. The pitch angle

reference was set null θ ∗= 0. The results of the depth and of the pitch control are depicted in figure

5.1. The plotted depth, pitch and heave demonstrate the performances of this implementation. The

surge and heave velocities have been estimated on-line according to the model in D. Depth and

pitch are obtained directly from sensor measurements. It can be seen that, although the pitch angle

is not null over the entire operation, it remains close to zero. The largest deviations are caused by

the heave motion. These deviations are likely caused by parameter mismatches and measurement

offsets that make the state be in the vicinity of the reference but not coincident.
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5.2 Target tracking and station keeping

Taking into account real practical problems such as model uncertainties, a target tracking problem

built upon an inner-outer loop architecture is now addressed. In this topology the inner loop

controller, derived in the previous section, stabilizes the velocity loop and a kinematic controller

stabilizes the kinematic error. This approach provides superior degree of modularity, making it

possible to modify the controllers in both loops independently. Successful implementations of

this strategy have already been tested in different vehicles (Ferreira et al., 2010b, 2012, 2011)

(Ferreira et al., 2010). Moreover, this approach makes it possible to treat the dynamics and the

kinematics problems in a decoupled manner. In this section, a guidance law is derived for a class

of nonholonomic vehicles with three DOFs. Extensions of this guidance to other vehicles with

different DOFs are given in appendix A. The adaptation of the controllers to vehicles with less

DOFs is trivial. Special attention must be given to individual tracking performances (velocity and

position) and therefore an analysis of the errors is provided.

Further to the mobile target tracking problem, it is important to stress the relevance of the

station-keeping problem. As motivated in Pereira et al. (2008), station-keeping behaviors for au-

tonomous marine vehicles are desired in several applications, in which the vehicles act as aid

assets in field experiments. Holding the position even in the presence of disturbances originated

by wind, current and waves is of particular importance since it makes it possible, in several appli-

cations, to minimize the counteracting forces exerted by the vehicle and thus minimize the amount

of energy applied. To our best knowledge, few works have addressed the station-keeping problem

for nonholonomic marine vehicles. Fossen and Strand (2001) have derived a weather optimal po-

sitioning control for a ship with surge, sway and yaw DOFs. In their approach, a control law was

derived to control the vehicle on a circle with predefined radius and further extended to include

an integral term by using an estimate of the mean disturbance force. Riedel and Healey (1998)

use a sliding mode controller while relying on the estimate of a periodic wave disturbance and on

a DVL. Cao and Morse (2007) propose a controller for station-keeping of a holonomic vehicle

capable of ranging to at least two beacons. The method employs an estimator of the error and

switching logic hybrid system to adjust the gain matrix in the control law. Also using the hybrid

systems framework with a multi-operation, multi-controller autopilot, the work by Nguyen et al.

(2008) proposes a structure to control marine vessels in transit and in station-keeping maneuvers.

Further contributions were presented in Matos and Cruz (2008) for the control of small underac-

tuated ASVs. The control method implements a proportional-integral controller to make the ASV

hold a constant position under water current and wind disturbances. The experimental results have

provided very motivating results. Nonetheless, the discontinuous nature of the heading reference

may lead to chattering when the vehicle is close to the reference point.

The main difficulty in stabilizing non-holonomic marine vehicles on a position reference is

related with the impact of the disturbances induced by wind, currents and waves on the transver-

sal axis of the vehicle (normally coincident with the sway direction). The only way to remain

stationary on a given position is to align with the disturbance vector. In a significant part of the
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works, ad-hoc control laws are derived for this particular purpose but they generally are paramet-

ric, depending on “empirical” control expressions. As a result, their proof of stability is difficult

to obtain. In the remainder of this section, a guidance law is proposed to stabilize non-holonomic

vehicles on a desired position assuming a general disturbance vector that incorporates the effects

of the wind, currents and waves. It will become clear that the tracking error (distance to the refer-

ence position) is dictated by the actuation capabilities, namely on the dynamics of the orientation

and more specifically on the rapidity to track a given orientation.

Since the adaptation of the control law for two-dimensional can be trivially derived from the

next developments, it is not addressed here.

It is assumed that the desired position is uniquely defined by the vector

η∗l (t) =
[
x∗(t) y∗(t) z∗(t)

]T
∈ R3.

and its time-derivative is given by

η̇∗l (t) = v∗(t)




cψ∗(t)cθ ∗(t)
sψ∗(t)cθ ∗(t)
−sθ ∗(t)


 , (5.31)

where v∗(t)≥ 0 is the speed, ψ∗(t) and θ ∗(t) are the orientation angles of the desired velocity.

Marine vehicles that do not have actuation on sway nor roll are considered here. This class

represent a large part of vehicles found in literature. Examples can be found in Cruz and Matos

(2008); Cruz et al. (2007); Allen et al. (1997). These vehicles are commonly designed so that

they are stable on the uncontrolled axes, implying that the corresponding velocities are negligible.

Therefore, in the following steps, it will be assumed that v = 0 and p = 0. Assuming so is not

realistic in practice but the corresponding effect of these velocities can be considered disturbances.

It is assumed that the vehicle kinematics is affected by drifts, typically induced by currents

and wind, in practice. The drift vector takes the following representation:

νD(t) = vD(t)




cψD(t)cθD(t)

sψD(t)cθD(t)

−sθD(t)


 ∈ R3,

where vD(t)≥ 0 is the magnitude of the drift vector, θD(t) and ψD(t) are the orientation angles of

the drift.

The evolution of the actual vehicle position (kinematics) is given as a function of its velocity
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Figure 5.2: Position errors and relative angles

components, surge u(t) and heave w(t), and of the drift induced velocities:

η̇l(t) =Jl(ηa(t))νl(t)+νD(t)

=




u(t)cψ(t)cθ(t)+w(t)cψ(t)sθ(t)
u(t)sψ(t)cθ(t)+w(t)sψ(t)sθ(t)
−u(t)sθ(t)+w(t)cθ(t)


+ vD(t)




cψD(t)cθD(t)

sψD(t)cθD(t)

−sθD(t)


 ,

where νl(t) is the vector of linear velocities, that is, νl(t) = [I3×3 03×3]ν(t) = [u(t) v(t) w(t)]T ,

where it is assumed that sway is null, v(t) = 0.

The problem can be stated as the problem of stabilizing the position ηl(t) at the desired posi-

tion η∗l (t). Therefore, the error vector is introduced:

η̃(t) =
[
x̃(t) ỹ(t) z̃(t)

]T
= ηl(t)−η∗l (t),

which is aimed to be reduced to zero. It will not be possible to drive the error vector to the origin,

since the control law is undefined for such a situation. Nevertheless, it is possible to guarantee

that it reaches its vicinity with a bounded error. Furthermore, depending on the vehicle dynamics

(admissible angular acceleration), the error can be made arbitrarily small.

A more convenient representation can be obtained considering the spherical coordinates. There-

fore, the distance between the vehicle and the target is defined as

ρ(t) =
(
η̃(t)T η̃(t)

)1/2 ∈ R.

The relative angles, expressed in the inertial frame and depicted in figure 5.2, are given by the

horizontal azimuth α(t) = ∠(x̃(t), ỹ(t))and vertical elevation β (t) = ∠
(√

x̃(t)2 + ỹ(t)2,−z̃(t)
)

.

Note that α(t) is undefined for x̃(t) = ỹ(t) = 0 and β (t) is undefined for x̃(t) = ỹ(t) = z̃(t) = 0.
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The error vector takes the following representation:

η̃(t) = ρ(t)




cα(t)cβ (t)
sα(t)cβ (t)
−sβ (t)


 .

The time derivative of the distance between the target and the vehicle is thus written as

ρ̇(t) =
1

ρ(t)
η̃(t)T ˙̃η(t)

= ϑ +ϑD +ϑ ∗ (5.32)

where

ϑ = u(cψ cosα + sψsα)cθcβ +w(cψcα + sψsα)sθcβ +(usθ −wcθ)sβ

= uc(ψ−α)cθcβ +wc(ψ−α)sθcβ +(usθ −wcθ)sβ

ϑD = vD(cψDcα + sψDsα)cθDcβ + vDsθDsβ

= vD(c(ψD−α)cθcβ + sθDsβ )

ϑ ∗ = − v∗(cψ∗cα + sψ∗sα)cθ ∗cβ + v∗sθ ∗sβ

= − v∗(c(ψ∗−α)cθcβ + sθ ∗sβ ).

Note that the dependence on time was dropped for clarity. These variables can be seen as the

projections of the velocities on the axis resulting from the segment that joins the desired position

and the vehicle position. The contribution of the vehicle velocity is given by ϑ , the drift induced

velocity component is given by ϑD while the contribution of the desired reference position velocity

appears in ϑ ∗.

5.2.1 Guidance law

The definition of this framework makes it possible to determine guidance laws for the vehicle

using the velocity references to drive the vehicle towards its reference point. Taking into account a

large set of marine vehicles found in the literature, four combinations of DOFs can be considered,

in general:

1. Surge, pitch rate and yaw rate (u,q,r)

2. Surge, heave and yaw rate (u,w,r)

3. Heave, pitch rate and yaw rate (w,q,r)

4. Surge, heave, pitch rate and yaw rate (u,w,q,r)

The inner velocity control loop is used to stabilize the velocity error. To this effect, the control

law in (5.13) is used to abstract from the lower level dynamics and it is assumed that the virtual
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control inputs are now u,w, θ̇(t) = q and ψ̇(t) = r. Assuming that the tracking error is negligible, it

is possible to assume that u≈ u∗, w≈ w∗, q≈ q∗, r≈ r∗ after a finite time, since the velocity error

dynamics is made globally exponentially stable, using the control law in (5.13). These assumptions

will be relaxed and the impact of imperfect velocity tracking will be analyzed afterwards.

In the following derivations, no assumption is made on the uncontrolled velocities.

Controlled surge, pitch and yaw

Assuming that the drift velocity and the desired position evolution are known, the aim is to derive

a suitable control law that uses ϑ and its control inputs, to drive the distance between the vehicle

and the position to the vicinity of zero. The reason for not driving the vehicle to the exact desired

position, is that the α and β are undefined, and rapidly vary in the presence of disturbances when

the vehicle is in the vicinity of the desired position. A closer look at the dynamics of the angles α
and β in the section 5.2.2 shows that their time derivatives are functions of the inverse of ρ(t). In

turn, this implies the non-existence of regular feedback (Sontag, 1998). Nevertheless, it does not

preclude asymptotic controllability but some effects may arise:

• Disturbance sensitiveness: under unpredicted disturbances, the vehicle may deviate from

the desired reference point, thus inducing a large variation on α and β ;

• Measurement error sensitiveness: as for the disturbances, measurement errors on the posi-

tion may impact on the azimuth and elevation angles causing large variations;

• Infinite actuation or divergent maneuvers: depending on the guidance method, deviations

from the reference point would either cause infinite actuation (see section 5.2.2) or maneu-

vers that would make the vehicle diverge first and then converge again (see the nonholo-

nomic cart example moving on an invariant circle in Sontag (1998)).

For these reasons, the guidance objective is loosen so that the vehicles reach the vicinity of the

reference and regular feedback can be used. An analysis of the steady-state behavior will show

that the vehicle position converges to an invariant set defined by the surface of a sphere with an

arbitrary radius. In practice, this radius is lower bounded by the actuation capability.

Choose the following guidance laws for the rate of the angles:

q∗ =−Kθ (θ +β )− β̇ , (5.33)

r∗ =
(
−Kψ(ψ−α +π)+ α̇

)
c(thetat), (5.34)

where Kθ and Kψ are constant positive scalars. The convergence of the angles is therefore expo-

nential. The solution of the differential equation θ̇(t) = q∗ and ψ̇(t) = r∗/cθ are

θ = (θ0 +β0)e−Kθ t −β

ψ = (ψ0−α0 +π)e−Kψ t +α−π.
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where θ0 = θ(t0), β0 = β (t0), ψ0 = ψ(t0) and α0 = α(t0).

Hence, as time grows, the projection of the vehicle velocity verifies

lim
t→∞

ϑ =ucπc(−β )cβ +wcπs(−β )cβ +(us(−β )−wc(−β ))sβ

=−u.

Choosing

u∗ = ϑD +ϑ ∗+Kρ(ρ(t)−δ ), (5.35)

where δ > 0 is the desired distance from the reference position and Kρ > 0 is a scalar gain, yields

from (5.32)

lim
t→∞

ρ̇(t) =−u∗+ϑD +ϑ ∗

=−Kρ(ρ(t)−δ ) (5.36)

Therefore, it is possible to conclude that the vehicle position converges to a ball of radius δ around

the desired position η̇∗l (t).
As previously seen, the bounded actuation restricts the vehicle velocity. Therefore, instead of

(5.35), a control law of the type

u∗ = ϑD +ϑ ∗+Kρsat
(
ρ(t)−δ , µρ

)
(5.37)

would be more appropriate, where sat(·, ·) : R×R+ → R is the saturation function defined as

sat(λ , µ) =





λ , if |λ | ≤ µ
λ
||λ ||µ, else

.

In this case, it is convenient to choose the saturation value µρ so that the product Kρ µρ does not

exceed the maximum surge velocity, that is Kρ µρ ≤ [νM(t)]1, in order not to saturate the actuators.

However, this may not be sufficient since νM(t) provides an upper bound on the vehicle velocity

but may not be coincident with its maximum. Actually, the sum in (5.37) should not exceed the

maximum value allowed for the surge velocity.

The control laws of the remaining combinations of DOFs follow the same reasoning presented

above. Therefore, their derivation is almost limited to the presentation of the control expressions.

These are given in appendix A. Furthermore, note that the guidance law in (5.35) makes the ve-

hicle move in the opposite direction if its heading points in the opposite direction. This might be

inefficient and thus an alternative is proposed in appendix B.

5.2.2 Steady state orientation for station keeping

The final orientation of the vehicle is analyzed when performing a station keeping maneuver (v∗ =

0). It is important to stress that it is not necessary to know the magnitude or the orientation of the
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drift vector in order to verify the forthcoming results.

Recall that the azimuth angle is given by

α = ∠(x̃, ỹ) .

After simple algebra, its time derivative results into

α̇ =
ỹ ˙̃x− x̃ ˙̃y
x̃2 + ỹ2 .

Expressing this in spherical coordinates gives

α̇ =− 1
(ρ(t)cαcβ )2 +(ρ(t)sαcβ )2

[ ρ(t)sαcβ (ucψcθ +wcψsθ + vDcψDcθD)

−ρ(t)cαcβ (usψcθ +wsψsθ + vDsψDcθD) ]

By recalling that limt→∞ ψ = α−π , after some simplifications, it finally yields

lim
t→∞

α̇ =−vDcθDs(α−ψD)

ρ(t)cβ
.

For ρ(t) 6= 0 and cθD/cβ > 0, there are two equilibrium points: α = ψD and α = ψD−π . The

first is a stable equilibrium point while the second is an unstable equilibrium point. To prove that

the equilibrium point α = ψD−π is unstable, it suffices to verify that

α ∈ (ψD,ψD +π) ⇒ α̇ < 0

α ∈ (ψD−π,ψD) ⇒ α̇ > 0,

Therefore, it follows that, for any t and any α(t) 6=ψD−π , the vehicle azimuth angle will converge

to limt→∞ ψ = limt→∞ α−π = ψD−π . Intuitively, to hold a given position, the solution is to face

and compensate the drifts. This last results demonstrates mathematically such a requirement

Turning now our attention to the elevation, recall that the corresponding angle is given by

β = ∠
(√

x̃2 + ỹ2,−z̃
)
.

Computing its time derivative yields the following expression:

β̇ =
− ˙̃z
√

x̃2 + ỹ2 + x̃z̃ ˙̃x/
√

x̃2 + ỹ2 + z̃ỹ ˙̃y/
√

x̃2 + ỹ2
√

x̃2 + ỹ2 + z̃2
.
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Expressed in spherical coordinates, after straightforward simplifications, it results

β̇ =
1

ρ(t)
[− cβ (−usθ +wcθ − vDsθD)

− sβcα(ucψcθ +wcψsθ + vDcψDcθD)

− sβ sα(usψcθ +wsψsθ + vDsψDcθD) ].

Recalling that the guidance law in (5.33) makes limt→∞ θ(t) = −β , as time tends to infinity, this

differential equation simplifies into

lim
t→∞

β̇ =
1

ρ(t)
(−w− vD(cβ sinθ − sβcθ(cαcψD + sαsψD))) .

Furthermore, note that it was proven that limt→∞ α = ψD, and thus

lim
t→∞

β̇ =
1

ρ(t)
(−w− vDs(β −θD)).

It is necessary to verify that |w|< vD to stabilize β . If this occurs, the elevation angle has two equi-

librium points β = asin(−w/vD)+θD and β = asin(−w/vD)+θD +π . Again, the second is an

unstable equilibrium point and therefore it is possible to conclude that limt→∞ θ(t) = limt→∞−β =

−asin(−w/vD)−θD.

As stated before, both azimuth and elevation angle rates are functions of the inverse of the

distance ρ(t). In practice, this means that small positional disturbances or noisy measurements of

the position induce large variations on the angles α and β , when the vehicle is close to the refer-

ence position. Moreover, such angles are undefined for ρ(t) = 0 and consequently this situation

must be avoided, thus the inclusion of the constant δ in (5.35), (5.37), and in the guidance laws

proposed in appendix (A.7), (A.9), (A.10), (B.1), (B.2).

5.2.3 Target tracking under unknown drifts and velocity errors

Motivated by real implementations of the control laws, an analysis in now provided both on error

boundedness and on the final orientation in the presence of unknown and bounded drifts. Inte-

gration of sensors to measure the drift velocity and its orientation may be expensive and imply an

additional effort in their integration. Here, it is shown that suitable performances can be obtained

even in the absence of such measurements.

It is now intended to assess the tracking error under unknown drifts and velocity errors for

the control law derived in section 5.2.1. The derivations for the remaining cases presented in

appendix A can be easily extrapolated. As previously seen, the presence of model uncertainties

may induce velocity tracking errors whose absolute values are bounded by the entries of the vector

ν̃M. Therefore, it is considered that the surge, pitch rate and yaw rate are affected by errors, as
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follows:

u = u∗+ ũ

q = q∗+ q̃

r = r∗+ r̃

where |ũ| ≤ [ν̃M]1, |q̃| ≤ [ν̃M]5, |r̃| ≤ [ν̃M]6.

As a result, the angles will not be perfectly tracked. To prove this, the guidance laws (5.33)

and (5.34) are used to write:

q =−Kθ (θ +β )− β̇ + q̃,

r =
(
−Kψ(ψ−α +π)+ α̇ + r̃

)
c(thetat).

Therefore, it becomes clear that the desired angles will be tracked with errors as time tends to

infinity:

lim
t→∞

θ =−β + θ̃ (5.38)

lim
t→∞

ψ = α−π + ψ̃, (5.39)

where |θ̃ | ≤ |q̃|Kθ
and |ψ̃| ≤ |r̃|

Kψ
are the angle errors in steady state.

Before introducing the effect of the surge velocity tracking error, let us infer about the impact

of the angle errors in the approach rate ρ̇(t). Hence, using a step-by-step development, the azimuth

error ψ̃ is firstly introduced, then the altitude error θ̃ , and finally the surge velocity error in order

to derive an upper bound on the tracking error.

Using the definition of ϑ in (5.32) and the limit (5.39), it is possible to obtain

lim
t→∞

ϑ = u(−cψ̃cθcβ + sθsβ )+w(−cψ̃sθcβ − cθsβ ).

Using now (5.38) and noting that c
(
−β + θ̃

)
= cβcθ̃ + sβ sθ̃ , s

(
−β + θ̃

)
=−sβcθ̃ + cβ sθ̃ ,

the last expression is rewritten as

lim
t→∞

ϑ = u(−cψ̃(cβcθ̃ + sβ sθ̃)cβ +(−sβcθ̃ + cβ sθ̃)sβ )

+w(−cψ̃(−sβcθ̃ + cβ sθ̃)cβ − (cβcθ̃ + sβ sθ̃)sβ ) .

Moreover, the trigonometric relationships sβcβ = 1/2 s(2β ), c2β + s2β = 1, make it possible to

write

lim
t→∞

ϑ =u
(
−cθ̃ +(1− cψ̃)(c2βcθ̃ +1/2 s(2β )sθ̃)

)

+w
(
−cψ̃sθ̃ − (1− cψ̃)(s2β sθ̃ +1/2 s(2β )cθ̃)

)
.
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Finally, it is easy to prove that (c2βcθ̃ +1/2s(2β )sθ̃)= c
(
β − θ̃/2

)
and (s2β sθ̃ +1/2 s(2β )cθ̃)=

c
(
−β + θ̃/2+π/4

)
, yielding

lim
t→∞

ϑ = u
(
−cθ̃ +(1− cψ̃)c

(
β − θ̃/2

))

+w
(
−cψ̃sθ̃ − (1− cψ̃)c

(
−β + θ̃/2+π/4

))
.

Consider that there is a surge velocity tracking error, that is u = u∗+ ũ, and suppose that ϑD is

not measured. Hence, a natural choice for the surge control law would be

u∗ =





ζ (c(ψ−α)cθcβ + sθsβ )

if c(ψ−α)cθcβ + sθsβ ≤ 0

0, else

(5.40)

as in (B.1) but this time the drift component is not considered: ζ =−ϑ ∗−Kρsat
(
ρ(t)−δ , µρ

)
.

Assuming that |ψ̃|< π/2, the desired velocity becomes

lim
t→∞

u∗ = ζ
(
−cθ̃ +(1− cψ̃)c

(
β − θ̃/2

))
(5.41)

In steady state, the time derivative of the distance to the reference becomes, from (5.32),

lim
t→∞

ρ̇(t) = (u∗+ ũ)
(
−cθ̃ +(1− cψ̃)c

(
β − θ̃/2

))

+w
(
−cψ̃sθ̃ − (1− cψ̃)c

(
−β + θ̃/2+π/4

))
+ϑD +ϑ ∗.

Replacing u∗ by its expression, the final distance to the target is upper bounded as follows:

lim
t→∞

ρ̇(t)≤(−Kρ(ρ−δ )− v∗)(|cθ̃ + cψ̃|−1)2

+ |ũ|(|cθ̃ |+1− cψ̃)+ |w|(|cψ̃sθ̃ |+1− cψ̃)+ vD + v∗.

Thus, the ultimate tracking error is bounded by

lim
t→∞

ρ(t)≤ρM

=
1

Kρ(|cθ̃ + cψ̃|−1)2

(
|ũ|(|cθ̃ |+1− cψ̃)

+|w|(|cψ̃sθ̃ |+1− cψ̃)+ vD + v∗
)
− v∗

Kρ
+δ . (5.42)

Throughout this subsection, it has been considered that the error in the angle tracking was

induced by errors in the velocity loop. Nonetheless, the result given above remains valid when the

angle errors include velocity loop errors as well as biased measurement of angles.
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5.3 Experimental results

Several tests have been conducted in real environment. The objective of the missions was to

validate the developed methods. Next, the operation setup will be described and the results will be

presented, preserving the same order as the outline of this chapter.

5.3.1 Setup description

In this experiment, the Gama ASV has been used as a test asset. Besides GPS receivers, which sup-

ply position and velocity data to the controllers, the vehicles are fitted with inertial measurement

units feeding back the velocity and position controllers, running on a local PC, with the angles

and angular rates. In the absence of velocity measurements with regard to the fluid, the velocity

provided by the GPS was used as a rough approximation of the vehicle velocity with regard to

the water. This obviously introduces an error in the velocity control loop that can be of the same

magnitude of the drift. Nevertheless, the controllers are expected to be robust enough to accommo-

date this error and successfully track their references under bounded drifts below their maximum

achievable velocities. Furthermore, it is expected that the performances presented below can be

improved with the inclusion of drift and body velocity with regard to the fluid.

The reason for using these vehicles rather than underwater vehicles is related to the fact that

more accurate measurements on the position can be obtained. In fact, with the current GPS equip-

ment, it is possible to achieve about 1.5 meters of absolute, geo-referenced accuracy and measure-

ment updates at 10 hertz.

The control and guidance loops in the vehicles have been configured to run with a constant

period of one hundred milliseconds. In the following results, the position of the base station was

defined to be the origin. These are shown with no filtering as results of the raw data output from

the sensors.

5.3.2 Static target tracking and station-keeping

In order to assess the performances of the control scheme, a static reference point was set for

Gama ASV. Arbitrarily placed in the operation area, the vehicle must track the referred point and

hold the position according to the guidance laws derived earlier in this chapter.

Several tests were performed in several days with slightly different conditions, namely in terms

of wind speed and direction. Figure 5.3 depicts an example of the path travelled by Gama during

a tracking task. An arbitrary constant reference position was set, depicted by the red cross on the

plot, at a distance of about 100 meters from the vehicle initial position. The trajectory is naturally

curvilinear not only because of the line-of-sight-like control law but also due to disturbances. This

effect is emphasized by the arrows that represent vehicle heading: the vehicle heading does not

coincide with the tangent to the trajectory due to a lateral velocity induced by the current. As

described in section 5.2.2, in the vicinity of the reference, the vehicle faces the mean orientation
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Figure 5.3: Target tracking trajectory. The arrows show the heading of the vehicle plotted at
intervals of 10 seconds.

of disturbances, sliding on a circle (bidimensional case for ASVs) with a radius equal to δ = 0.5

meters.

Figure 5.4 shows the evolution of the north and east components of the position referred to

the local origin. The evolution of the error over time is shown in figure 5.5 (blue solid line for the

error referred to the CG), which demonstrates that the center of gravity of the vehicle remains with

an expected error equal to δ . It is important to emphasize that this error remains bounded between

0.5 and 0.6 meters in these results even in the presence of drifts such as wind and currents, which

have been estimated to be about 0.2 to 0.3 meters per second, according to a test in which Gama

was left to drift. A rough estimate was then computed based on the difference of positions and the

corresponding elapsed time. As the drift can not be measured because of the absence of sensors, it

is not feedforwarded in the guidance law. As such, this impacts as an unpredicted disturbance on

the system.

This target tracking guidance law is especially interesting for applications that require accurate

static positioning of on board sensors. Some examples include transponders for LBL localization

or cameras to statically record a sequence on a given area, for instance. Carefully placing the

0 50 100 150 200 250 300

−70

−60

−50

−40

−30

−20

Time (s)

N
o
rt

h
 (

m
)

 

 

Reference

Real

(a) North

0 50 100 150 200 250 300
−50

0

50

Time (s)

E
a
s
t 
(m

)

 

 

Reference

Real

(b) East

Figure 5.4: Evolution of the horizontal coordinates



98 Local control for marine vehicles

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Time (s)

T
ra

c
k
in

g
 e

rr
o

r 
(m

)

 

 

CG

Bow

Figure 5.5: Tracking error: center of gravity (CG) and bow relative distances

sensors on the vehicle body may provide even better results. For this guidance law, the bow is

the most appropriate position. Additionally, the radius of the ball that the vehicle tends to can

be adjusted according to the dimensions of the vehicle. More specifically, it was proven in the

previous section that the vehicle attitude points towards the reference position. After stabilization,

the center of gravity of the vehicle slides over a ball of radius δ because of disturbances. As the

attitude of the vehicle points to the reference, any point on the body that is inside the ball of radius

δ is trivially closer to the reference. If this point is chosen so that it is on the longitudinal axis of

the vehicle and at a positive offset δB = δ with regard to the center of gravity (see figure 5.6), then

this point is coincident with the reference position in steady state, when the vehicle slides on the

circle with radius δ .

In this case, the radius was chosen δ so that it is approximately equal to the distance between

the center of gravity and the bow. The distance between the bow central point and the reference

point is depicted in figure 5.5 (red dashed line). This distance is about five times smaller than

the vehicle tracking error. Interestingly enough, the guidance and control loops have proved to be

robust and accurate even in the presence of small waves and variable wind and currents always

found in uncontrolled environments such as the river.

Figure 5.7 shows the vehicle heading versus time. It is possible to see the effect of the distur-

bances and their variability: After stabilization at the reference point, the heading changes over

time to compensate lateral drifts mostly induced by currents and wind.

5.4 Conclusions

This chapter presented a complete framework for guiding autonomous marine vehicles subjected

to unpredictable disturbances originated by drift or model and measurement errors. For the veloc-

ity and position layers, suitable feedback control laws were derived to drive the vehicles to velocity



5.4 Conclusions 99

reference and possibly moving, position references. This rather simple control topology is often

used in practice but very few works formalize its implementation by abstracting from the lower

layers errors. Using this type of hierarchical and modular control topology introduces a main ad-

vantage: it is possible to modify the upper layers without changing the lower ones, thus allowing

several combinations of control layers rather than deriving ad-hoc control laws. Here, special at-

tention has been given to tracking errors in both velocity and position control loops, and the results

presented provide a systematic method for similar implementations considering modular control

layers.

Using nonlinear control tools, it was possible to derive dynamics and kinematics controllers,

which have provided satisfactory performances in the target tracking task performed by an ASVs.

The results from tracking of mobile targets is left to chapter 6 where virtual references are gener-

ated for several coordinated vehicles.
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Figures 5.3-5.4 show the evolution of the north and east components of the position referred

to the local origin. The evolution of the error over time is shown in figure 5.6, which demonstrates

that the center of gravity of the vehicle remains with an expected error equal to d . It is important

to emphasize that this error remains bounded in these results between 0.4 and 0.5 meters even in

the presence of drifts such as wind and currents, which have been estimated to be about 0.2 to 0.3

meters per second, according to a test in which Gama was left to drift. A rough estimate was then

computed based on the difference of positions and the corresponding elapsed time. As the drift

can not be measured because of the absence of sensors, it is not feedforwarded in the guidance

law. As such, this impacts as an unpredictable disturbance on the system.

This target tracking guidance law is especially interesting for applications that require accurate

static positioning of on board sensors. Some examples include transponders for LBL localization

or cameras to statically record a sequence on a given area, for instance. Carefully placing the

sensors on the vehicle’s body may provide even better results. For this guidance law, the bow is

the most appropriate position. Additionally, the radius of the ball that the vehicle tends to can

be adjusted according to the dimensions of the vehicle. More specifically, it was proven in the

previous section that the vehicle attitude points towards the reference point. After stabilization,

the center of gravity of the vehicle slides over a ball of radius d because of disturbances. As the

attitude of the vehicle points to the reference, any point on the body that is inside the ball of radius
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turbances and their variability on the plot: After stabilization at the reference point, the heading

changes over time to compensate lateral drifts mostly induced by currents and wind.
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This chapter presents a complete framework for guiding autonomous marine vehicles subjected to

unpredictable disturbances originated by drift or model and measurement errors. For the velocity

and position layers, suitable feedback control laws were derived to drive the vehicles to reference,

possibly moving, position references. This rather simple control topology is often used in practice

but very few works formalize its implementation by abstracting from the lower layers errors. Using

this type of hierarchical and modular control topology introduces a main advantage: it is possible

to modify the upper layers without changing the lower ones, thus allowing several combinations
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Figure 5.6: Relative position of the vehicle (CG) and relative position of bow with regard to the
position reference
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Chapter 6

Coordination of marine vehicles

Accurate positioning and coordination of marine vehicles require suitable automatic control sche-

mes as they typically suffer from a set of external disturbances that are difficult to predict and to

anticipate. Following the line presented in the previous chapter, the control problem is addressed

at three levels: velocity stabilization, position stabilization and coordination. In the velocity loop,

the controller stabilizes the vehicle velocity around a given time varying reference. The position

controller is then responsible to generate velocity references to stabilize the vehicle on a possi-

bly varying position reference, which is subsequently used by a central coordination scheme that

keeps the vehicles in formation. This chapter focuses on this last level.

Autonomous marine vehicles, both surface and underwater, have received special attention

from the scientific and military communities, motivated by the challenges and the opportunities

present in marine environments. Along with this interest, there has been a common trend in

robotics to develop distributed systems. Rather than having a single, powerful, robot, distributed

solutions contemplating cooperating robots can significantly improve the performance, robustness,

reliability and operational costs (Cao et al., 1997; Fukuda and Nakagawa, 1988; Parker, 2008).

In the following sections, the main concepts, tools and techniques used in robotic coordination

are exposed. There are different studies in this domain and the intention is not to cover the entire

literature. Instead, the idea is to expose the concepts and the research related to coordination

of marine vehicles. Then the coordination method is described and extended to accommodate

undesirable errors and communication constraints when the vehicles are moving in formation.

6.1 Related works and motivation

Inspired by the cells of living creatures, the early study by Fukuda and Nakagawa (1988) has led

to a new concept in robotics through the understanding of the capabilities of a set of cooperative

robots, as opposed to using a single one. By taking the industrial robotics as background, the main

idea was to conceive a manipulator from elementary robotic components (cells): joints, branches

and work (tool) cells. Cells are described as “fundamental components of the structure and mech-

anism” (Fukuda and Nakagawa, 1988) that perform elementary tasks and are capable of working
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independently but cooperate with the entire cell group. When they are combined, it is possible to

obtain a versatile manipulator. Other than this feature, the theoretical flexibility, robustness and

fault tolerance in redundant systems are identified as the main advantages of cooperative systems.

Researchers have answered to different needs and requirements presenting several robotic so-

lutions. As a result, thousands of different robots have been engineered. Coordination is a way of

taking advantage of the features of every robot in a team and it has been common to find hetero-

geneous teams of robots in several works. In opposition to homogeneous teams (see, for example,

Kube and Bonabeau (2000)), using heterogeneous robots usually requires different control meth-

ods, and individual characteristics and performances (Ducatelle et al., 2011) have to be carefully

handled in a cooperative team.

For an overview on architecture and hierarchical models for cooperative systems, we refer to

the work by Farinelli et al. (2004) and Cao et al. (1997). These provide a comprehensive overview

on multirobot systems and define key concepts in this domain.

At this point, it is important to differentiate between cooperation and coordination. These

very close terms are frequently used in the multirobot literature and may lead to misconception.

According to the embracing work in (Farinelli et al., 2004) on the taxonomy on this subject, it

is considered that the cooperation is the capability of several robots to work together to achieve

a common goal. Coordination is a cooperative task in which the states of the coordinated robots

(for example, actions, positions, etc.) are taken into account to obtain coherency and high perfor-

mances. The present work deals with the coordination of marine vehicles and more precisely with

formation control.

Farinelli et al. (2004) provide a comprehensive picture for classification of cooperative multi-

robot systems by identifying four hierarchical levels: cooperation level, knowledge level, coordi-

nation level and organization level, following a top-down perspective. Some of the definitions can

also be found in the previous survey by Cao et al. (1997). In order to make it clear, some con-

cepts and definitions in the context of coordinated systems are introduced. The coordination level

regards how the actions of each robot influence the remaining ones. A system is said to be coordi-

nated if the actions of the team robots are performed such that the overall operation is carried out

in a performing and coherent fashion. They are defined as strongly coordinated if they possess a

set of rules for interacting between them. Otherwise, if they do not have such a set of rules, they

are said to be weakly coordinated. At the organization level, the system is said to be centralized

when the group architecture is characterized by a single robot. In other words, an architecture is

centralized when the decisions depends on a single robot (commonly referred to as leader) which

is in charge of generating references to the other team mates (commonly referred to as followers).

Moreover a system is said to be strongly centralized when decisions are taken only by a single

element. It is said to be weakly centralized when more than one robot can take decisions over

the operation. In opposition, a decentralized architecture presents no such leader: each robot is

autonomous on its decisions. Due to practical and design constraints, a physical leader may not

exist in a centralized organization. Instead, a virtual leader can act as an element of the team that

is free of, or at least less subject to, undesired effects present in the physical ones.
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6.1.1 Coordinated control

According to the interesting survey by Murray (2007) on cooperative control of multiple vehicles,

there are three main types of approaches to formation control problems: Potential-field based

(Leonard and Fiorelli, 2001; Horner and Healey, 2004; Vail and Veloso, 2003; Egerstedt and Hu,

2001; Ogren et al., 2002), optimization-based (Defoort et al., 2009; Dunbar and Murray, 2006;

Schwager et al., 2011, 2009) and swarm behaviors (Sahin, 2005; Leonard and Fiorelli, 2001;

Kube and Bonabeau, 2000; Ducatelle et al., 2011). Additionally, consensus-based algorithms

have also been applied in the context of formation control (see, for example, (Ghabcheloo, 2007;

Ghabcheloo et al., 2009; Ren and Atkins, 2007; Fax and Murray, 2004; Sun et al., 2009; Chung

and Slotine, 2009)). Next, a brief overview on some interesting contribution in the literature is

provided.

6.1.1.1 Potential field based coordination

The use of virtual potential fields is a way of formally deriving control laws based on the environ-

ment and goals. Environment variables gathered by the robots are integrated into a formal potential

field which is afterwards used to define their motion. Artificial potential fields are typically gener-

ated according to the idea that obstacles, or more generally undesired states, generate a repelling

force while navigation goals (desired states) generate an attractive force. Robots are driven in a

way that the potential energy is minimized along their trajectories. This approach has been applied

to different types of scenarios from simple schooling schemes to highly dynamic environments

such as robotic soccer (Vail and Veloso, 2003). Leonard and Fiorelli (2001) present strongly and

weakly centralized coordination of vehicles using potential fields, exploring on multiple-vehicle

control for different topologies and their stability and focusing on the derivation of potential field

functions and the corresponding control law for fully actuated vehicles. Another application of

virtual potential fields is also presented in (Horner and Healey, 2004) to drive an unmanned aerial

vehicle (UAV) to an area in order to collect data from other vehicles. The potential field is derived

upon the the signal strength measured from wireless communication devices. Egerstedt and Hu

(2001) presented a solution to keep in formation a team with n elements. The approach conceptu-

ally considers n+1 virtual robots and is very interesting in the sense that the individual dynamics

are decoupled from the formation dynamics using a formation constraint function, that can be

seen as a potential function. Within the same context, Ogren et al. (2002) presented a method for

formation keeping along arbitrary paths defined by a virtual leader, and formation geometries. Ihle

et al. (2006) also proposed an elegant and generic formulation resorting to Lagrangian multipliers

to reduce constraint functions, which measure general positioning errors, to zero. The approach is

also extended to underactuated ships.

6.1.1.2 Optimization based coordination

Control problems can be solved in an optimization framework where it is necessary to minimize

a given cost function while considering constraints. Optimization based methods in the context of
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robotic coordination mainly contemplate model predictive control (MPC), also known as receding

horizon control. Clearly, the literature is more limited than for the remaining methods presented

in this section.

One of the major advantages of the MPC is the direct manipulation of input constraints, such

as saturation. In fact, when using other control design tools, the control laws are commonly de-

rived based on the assumption that the required actuation effort does not reach saturation. This,

in turn, may introduce undesired effects in the dynamics if the combinations of gains and errors

are not handled properly. However, the MPC approach is generally computationally demanding

and it is not suitable for many robotics applications. In order to reduce the computational require-

ments, some authors proposed variants of the MPC algorithm with a randomized optimization by

using Monte Carlo sampling (Tanner and Piovesan, 2010) and hybrid particle swarm optimization

(Vaccarini and Longhi, 2009).

Under the obstacle avoidance scenario, Defoort et al. (2009) developed a decentralized al-

gorithm for optimal coordinated collision avoidance. After discretization, at each time step, the

optimal trajectory to the goal is computed by each robot using an MPC method while taking into

account possible collision with other robots moving in vicinity. In the presence of a conflict (pos-

sible collision), the robots dynamically adjust their trajectories.

Another method that uses MPC for formation keeping was developed by Dunbar and Murray

(2006). Their approach is decentralized but assumes that each robot knows the predicted states

of the team mates for the subsequent time step, obtained by means of communications. Using

a similar approach, the work by Nascimento (2012) addresses the coordination of ground robots

using a cost function, optimized using MPC, where predicted states, control actions and obstacles

are taken into account.

Besides MPC, optimization based cooperation also includes optimal coverage by robots. Schwa-

ger et al. (2011) proposed a common problem formulation to compare some methods used in cov-

erage (see Schwager et al. (2009) for an application to coverage). A group of robots is used to

cover an area of interest and some points have to be visited by one or more robots, depending on

its significance.

6.1.1.3 Swarm behaviors

Swarm behaviors constitutes another approach to coordinated control. Sahin (2005) provides an

overview on swarm robotics, defining it as “the study of how large a number of relatively sim-

ple physically embodied agents can be designed such that a desired collective behavior emerges

from the local interactions among agents and between the agents and the environment”. Swarm

behaviors, generally employ decentralized methods at the coordination level and are commonly

characterized by simple and yet powerful control laws imitating animal behaviors. One of the

most famous work is the paper by Reynolds (1987), on the imitation of the behaviors of animals

flocking or schooling. Many studies within this context consider a biologic background to inspire

control laws such as in (Leonard and Fiorelli, 2001) and in (Kube and Bonabeau, 2000).
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Based on the pheromone mediated navigation of ants, Ducatelle et al. (2011) discuss the guid-

ance of swarms of wheeled robot in constrained environments. Two types of robots are used:

eye-bots and foot-bots. The eye-bots are distributed over the area of interest and provide direc-

tion information (policy) to foot-bots while regarding their area. By analogy with pheromone

based navigation of ants in trails, the authors argue that the process follows the biology-inspired

phenomenon: the foot-bots make use of the information on direction provided by the eye-bots

(pheromone effect, by analogy). Eye-bots are capable of learning from the trajectory followed by

the foot-bots by interpreting their directions and adjusting the policies according to their behaviors.

6.1.1.4 Consensus algorithm applied to formation keeping

Cooperation, and coordination in particular, implicitly assume that there is interaction between the

team mates. Such an interaction, achieved either by explicit communication, sensing or modifi-

cation of the environment, is used to infer about the state of the remaining team mates. In this

domain, graph theory has been used to model the interaction between elements and has assumed

an important role in several studies (Ghabcheloo, 2007; Ren and Atkins, 2007; Fax and Murray,

2004), where Laplacian matrices capture the interactions between the coordinated robots. The

properties of the resulting Laplacian matrix have been explored to solve the average-consensus

problem1, while capturing the network topology. The work by Olfati-Saber and Murray (2004) has

induced a significant part of the average-consensus and graph theory based solutions in robotics.

The paper provides an overview on the graph theory and contributes with several important results,

which are then applied to the consensus of a simple integrator systems (in the same issue of the

journal, the work by Fax and Murray (2004) addressed the stabilization of more general linear

system using graph theory).

A relevant work was also conducted by Ghabcheloo (Ghabcheloo et al., 2009; Ghabcheloo,

2007), who took advantage of graph theory and nonlinear control theory to address the problem

of coordinating a team of robots along predefined parallel paths (trimming paths). Moreover,

important issues arising from delays and communication losses are addressed in order to infer

about the stability and convergence of the systems. A similar approach was also followed by

Borhaug et al. (2007) and Almeida et al. (2012).

A relevant work in time-varying formation keeping was developed and tested by Sun et al.

(2009) in a ring communication topology, also known as a cycle topology (the ith robot knows

the position of the (i-1)th robot). The authors formulated the problem of synchronous trajectory

tracking adopting a decoupled translational and angular framework.

By adopting a very interesting kinematic error representation, Dong and Farrell (2008) pre-

sented a method for achieving coordination of multiple nonholonomic robots. In their work,

a canonical, chained form is adopted to solve two problems: formation keeping and trajectory

1consensus problems are concerned with the agreement of state of subsystems, that is, making the state variables
converge to the same values (limt→∞ xi(t) = limt→∞ x j(t) for all robots i, j, i 6= j in the formation, where x are the state
one want to make agree)
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tracking while keeping in formation. The approach was similarly explored in Dong and Farrell

(2009).

Although not directly related to formation keeping problems, Chung and Slotine (2009) have

presented a suitable control law to reach consensus on the state of generic robots within the context

of synchronization. The assumptions implicitly state that the robots are holonomic. By using mod-

ified Laplacian matrices and the contraction theory, the work presents several results on tracking

and synchronization.

6.1.2 Biased comparison of methods

This chapter concentrates on precise positioning of coordinated marine robots. In this context,

potential-field-, consensus- and optimization-based approaches are the most promising choices.

Optimization-based methods, using MPC for example, require prediction of future states in a finite

horizon. A model for this prediction may be difficult to obtain, since unpredictable disturbances

(wind, waves, currents) typically affect marine vehicles during their missions and optimization-

based methods may fall ill-suited. Furthermore, optimization-based methods are usually demand-

ing and their computational requirements significantly increase with the number of state variables

considered, and consequently with the number of vehicles in the formation. In contrast, agreement

on a given state through average-consensus is expected to be considerably less intensive in com-

putational terms and individual tracking errors can be treated locally without requiring predictions

(Chung and Slotine, 2009; Ghabcheloo et al., 2009), resulting in a more natural approach compar-

atively to optimization. Nevertheless, the theoretical framework behind average-consensus algo-

rithms generally originate specific solutions, such as consensus on an along-path scalar variable

(Ghabcheloo et al., 2009) or relative positions while tracking a geometrically changing formation

shape (Sun et al., 2009). For these reasons, a solution based on potential-field is the most promis-

ing approach for the work presented in this thesis since it establishes a simple and yet powerful

base framework that can also incorporate new behaviors (such as obstacle avoidance, changing

geometry formations, etc.) in a more straightforward manner comparatively to optimization- and

consensus-based approaches.

6.2 Formation keeping

The coordination algorithm presented in this work is based on the work by Egerstedt and Hu

(2001). This centralized approach assumes the existence of a virtual leader, which can be coinci-

dent with one of the robots, and an unlimited number of followers. The leader collects the positions

of the different followers and instructs them on the position references in order to keep the desired

formation. One of the main advantages of this method is that, under individual bounded errors,

the formation is guaranteed to be stable, that is, each vehicle will eventually reach its relative po-

sition in the formation. This is especially important since it makes it possible to abstract from the

lower level control layers, and therefore disregard the individual errors caused by control parame-

ter mismatches or drifts, for example, as long as they remain bounded. Though this coordination
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algorithm provides versatile behaviors and interesting performances, there is room for extensions,

so that it is possible to explicitly handle motion constraints or communication limitations. An

alternative mathematical construction of the method can make the formation tolerant to commu-

nication losses and delays. As long as bounded delays and periodical exchanges of feedback data

and commands are guaranteed, the formation can be maintained and a smooth evolution can be

obtained.

The next subsection presents a brief summary of the key concepts in Egerstedt and Hu (2001),

which are subsequently generalized, extended and adapted to the problem of marine vehicle coor-

dination under communication constraints.

6.2.1 Background

In order to make the forthcoming analysis easier and to self-contain the present section, the vari-

ables used throughout the following developments are introduced and the main ideas behind the

work in (Egerstedt and Hu, 2001) are summarized.

Consider N vehicles moving in formation. The (possibly reduced order) position of the ith

vehicle is denoted ηi(t) ∈Rm, i = 1, ...,N, with m≤ 3. Similarly, the position of the virtual leader

is given by η0(t) ∈ Rm, which is continuous and differentiable. Hereafter, the subscript (·)0 is

used to denote the vectors or scalars corresponding to the virtual leader. The idea of considering a

virtual leader instead of a real one is advantageous because it is not affected by real disturbances,

which could degrade the overall performances of the formation.

Consider a continuous and differentiable path p0(s0(t)) : R → Rm, parametrized by a scalar

function s0(t) : R → R, that defines the virtual leader position at instant t: η0(t) = p0(s0(t)).

Each real vehicle (follower) should assume a specific position in the formation, with regard to the

virtual leader. Therefore, a change of coordinates is appropriate. The desired relative position

of a vehicle with regard to the virtual leader is given by η̃∗i (t) = η∗i (t)−η0(t), where η∗i (t) is

the desired vehicle position expressed in an absolute inertial frame. Similarly, the position of the

vehicle is also expressed with regard to the leader as η̃i(t) = ηi(t)−η0(t).

The desired positions of the vehicles are given by η̃d
i (t) ∈ Rm, also defined with regard to the

virtual leader position. These vectors, which can be seen as the vector defining the position of

virtual followers, make it possible for the vehicles to follow a time-varying reference that is not

rigidly coupled to the position of the virtual leader. Instead, its dynamics can be assigned so that it

converges to η̃∗i (t), as intended, but still considering the individual tracking errors defined by the

difference between this virtual follower position and the corresponding real vehicle position.

To drive the individual references η̃d
i (t) to their respective desired final positions η̃∗i (t), a

formation constraint function is used

F : Rm× ...×Rm→ R
+
. (6.1)
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It is assumed that this function is differentiable and strictly convex, and the solution of

F(η̃d
1 (t), ..., η̃

d
n (t)) = 0

is uniquely determined by (η̃∗1 (t), ..., η̃∗n (t)), or equivalently F−1(0) = (η̃∗1 (t), ..., η̃∗n (t)). This

formation constraint function is actually a positive definite potential-field function that creates a

measure of the distance between all the reference positions η̃d
i (t) and their respective desired final

positions η̃∗i (t).
As for the virtual leader, suppose that the evolution of the individual references are determined

by paths pi(si(t)) : R→ Rm that can be designed so that η̃d
i (t) converges to η̃∗i (t). Take

η̃d
i (t) = pi(si(t)), (6.2)

which, differentiating with respect to time, results

˙̃ηd
i (t) =

d pi(si(t))
dsi(t)

ṡi(t), i = 1, ...,N. (6.3)

Choosing
d pi(si(t))

dsi(t)
=−∇η̃d

i (t)
F, (6.4)

and

ṡi(t) = cie−αiρi(t), (6.5)

for all i= 1, ...,N, where ci,αi > 0 and ρi(t) = ||η̃i(t)− η̃d
i (t)||makes the reference η̃d

i (t) converge

to η̃∗i (t) under bounded error ρi(t) (see the theorems in (Egerstedt and Hu, 2001)).

It is still necessary to define the evolution of the virtual leader over its path. Similarly, the time

derivative of the evolution rate is given by

ṡ0(t) =
c0e−α0 ∑

N
i=1 ρi(t)

∣∣∣
∣∣∣d p0(s0(t)))

ds0(t)

∣∣∣
∣∣∣
, (6.6)

which takes into account the sum of all the vehicle tracking errors, and where c0,α0 > 0. Of

course, it is supposed that
∣∣∣
∣∣∣d p0(s0(t)))

ds0(t)

∣∣∣
∣∣∣ 6= 0 for all s0(t), which means that the path of the virtual

leader has no stationary points.

6.2.2 Generalization

The method presented is suitable for most robotic applications with vehicles that are not strongly

affected by communication latency and intermittence. The only requirement for the algorithm to

work properly is ensuring individual bounded tracking errors. This construction is powerful but

may be limited when it comes to practical implementation. For example, note that in a faulty

formation, with a vehicle that cannot move or that is unable to communicate its position to the

virtual leader, this latter will continue evolving since ṡ0(t)> 0,∀ρi(t)∈R+ (see (6.6)). Depending
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on the requirements, it may be preferable to stop the formation, that is, the virtual leader holds its

position and so do all real and virtual followers vehicles operating properly, if one of the vehicles is

unable to reach its position reference or is unable to communicate. Furthermore, the construction

above does not allow static formations, that is, formations holding position.

This set of reasons leads us to present a more general construction for this centralized coor-

dination problem. Some changes to the control scheme are proposed. Firstly, and following the

same sequence as above, the direction of the path does not necessarily need to follow the steepest

descent direction. Instead of (6.4), the use of continuous functions of the type fi(F) : R→Rm that

verify

(∇η̃d
i (t)

F)T · fi(F)< 0, ∀ F 6= 0,

and

fi(0) = 0.

is proposed. Then, the path is chosen so that it obeys the following relationship:

d pi(si)

dsi
= fi(F), i = 1, ...,N. (6.7)

Furthermore, the proposed path evolution parameters si are given by

ṡi = gi(ρi(t)), i = 1, ...,N, (6.8)

where gi(ρi(t)) : R+→ R+ are continuous non-increasing functions.

Finally, the leader path evolution is dictated by the product

ṡ0 = λ0

N

∏
i=1

αigi(ρi(t)), (6.9)

where λ0 and αi are positive constants.

Note that ṡi = 0 and ṡ0 = 0 if gi(ρi(t)) = 0, for any i = 1, ...,N. This means that both the

vehicle (virtual) reference and the virtual leader hold their positions, awaiting for the vehicle i to

track its reference so that gi(ρi(t)) > 0, and so do the remaining references after having tracked

their desired positions in the formation with respect to the virtual leader. This is also valid when

there are more than one vehicle whose tracking errors imply gi(ρi(t)) = 0.

The rest of the proof of convergence follows the same steps as in (Egerstedt and Hu, 2001).

Suppose that each vehicle is able to track its reference in finite time so that gi(ρi(t)) is non null,
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that is, there exists a time t ′, that verifies gi(ρi(t))> 0, ∀ t > t ′. Then, it follows that

Ḟ =
N

∑
i=0

(∇η̃d
i (t)

F)T ˙̃ηd
i (t)

=
N

∑
i=0

(∇η̃d
i (t)

F)T d pi(si))

dsi
ṡi

=
N

∑
i=0

(∇η̃d
i (t)

F)T fi(F) ṡi, ∀ t > t ′.

Since, by definition, (∇η̃d
i (t)

F)T fi(F) < 0, ∀ F > 0, and ṡi = gi(ρi(t)) > 0 and consequently

ṡ0 > 0, for all t > t ′, it yields

Ḟ < 0, ∀ t > t ′ ,∀ F > 0.

This proves that the formation converges to the desired shape and position. In contrast to

(6.6), note that no assumption was made on the leader path. This makes it possible to handle both

dynamically changing paths, as well as stationary points and, as a result, station-keeping behaviors

can be obtained.

6.2.3 Particular method

For a scenario with limited communication bandwidth, limited range and intermittence, there are

special concerns regarding the relative vehicle placement and the behavior of the formation in

case of faults, which include communication losses or malfunctioning vehicles. In such cases, it

may be preferable to make the formation hold its position, waiting for the missing(s) vehicle(s)2.

Furthermore, supposing that a given geometry configuration allows robust communication links,

it may be desirable that such a configuration is achieved. Nevertheless, the scheme proposed in

(Egerstedt and Hu, 2001) can not guarantee that the vehicles converge to their desired position

η̃∗i (t), i = 1, ...,N in the formation since ṡi > 0, i = 0, ...,N if they have bounded velocity.

Next, a particular implementation is proposed based on the generalization presented above.

Any other choice of function meeting the conditions above would be valid as well. Here, a focus

on limited formation errors and rigid formations is given. Empirically, the aim is to guarantee that

the vehicles do not deviate too much from their position references in the formation.

The objective is to reduce the distance between the desired and the reference positions. There-

fore, define the proposed formation constraint function to be given by

F =
N

∑
i=1
||η̃d

i (t)− η̃∗i (t)||2, (6.10)

2missing vehicles are seen here as vehicles that are above a predefined threshold distance from their respective
references (virtual follower) or that can not communicate with the virtual leader
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which is strictly convex and positive definite. As real marine vehicles have bounded velocities, the

functions fi(F) are defined to be a bounded function of the gradient of F :

fi(F) =−sat
(

∇η̃d
i (t)

F, Γi

)
, (6.11)

where Γi are positive constants and sat(·, ·) : Rn×R → Rn is the saturation function now de-

fined as in (5.37). This definition obviously meets the condition (∇η̃d
i (t)

F)T fi(F) < 0. Note that

decreasing the constants Γi makes it possible to evolve the position references more slowly.

The next step is to define the functions gi(ρi(t)). The aim is to achieve a rigid formation where

possible failures in both tracking performances and/or communication links cause the formation to

stop (virtual leader holding its position and vehicles holding their positions in the formation). This

will allow the missing vehicles to join the formation before it continues evolving over the desired

path. Henceforth, the choice is a simple piecewise linear and nonnegative function as follows:

gi(ρi(t)) =





Λi−λiρi(t), if 0≤ ρi(t)≤ Λi
λi

0, otherwise
, (6.12)

where Λi,λi > 0 are positive constants.

This definition implies that the formation evolves only if ρi(t) < Λi
λi

for all i = 1, ...,N. Oth-

erwise, the formation will end up stopping, because the virtual leader stops. Hence the rigidity

of the formation, that is, the error tolerance for the vehicles to track their respective references,

is dictated by the ratio Λi
λi

. This can be used to design rigid formations where the positions in the

formation are maintained as precisely as desired. This, however, may come at the expense of a

slower formation evolution.

Additionally, as Λi is the maximum value of gi(ρi(t)), the evolution rate is directly defined by

this constant: the greater the value of Λi, the faster the evolution of the ith position reference along

the path that conducts the vehicle to the desired position in the formation.

6.2.4 Convergence under bounded tracking error and communication constraints

The overall stability and convergence of the formation can be assessed through the leader evolution

variable s0. It has been clear that the formation converges to the desired position, that is, the virtual

leader converges to its reference position and so do the virtual followers, whenever the condition

ṡ0 > 0 is verified (see (6.8), (6.9) and (6.12)). This condition means that all the vehicles are

tracking their respective references with a bounded error. Therefore, it suffices to prove that ṡ0 > 0

in order to demonstrate the convergence of the formation.

Hence, choose Λi and λi so that

gi(ρi(t))> 0⇔ ρMi <
Λi

λi
. (6.13)
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Recall that ρMi is the upper bound on the target tracking error (see (5.42)). If this is satisfied for

all i = 1, ...,N, then using the convergence properties derived in (5.42), it follows that there is a

finite time t ′ that ensures

ṡ0 = λ0

N

∏
i=1

αigi(ρi(t))> 0, ∀ t > t ′. (6.14)

Obviously, the time t ′ depends on the initial vehicle poses and disturbances.

Hereafter, the discrete nature of the communications is explicitly addressed while the inter-

mittence is addressed implicitly. Suppose that the vehicle i reports its tracking error vector η̃i(tk)

to the virtual leader at time tk. In the absence of new data, the virtual leader assumes that the

position of the ith vehicles remains constant until the new position is reported at time tk+1. The in-

tention is to analyze how the position reference for the vehicle i evolves between two consecutive

transmissions of the position. What follows is valid for any i = 1, ...,N. Without loss of gener-

ality, assume first that ρi(tk) < Λi
λi

. Moreover, it is assumed that the leader transmits the position

reference somewhere in the interval [tk, tk+1].

Supposing that η̃li(t) = η̃i(tk), that is, the position of position error of the vehicle i seen by

the the leader is constant in the interval tk < t < tk+1, the aim is to determine how the position

reference evolves. The time derivative of the estimated distance between the reference and the

estimated position of the vehicle η̃i(tk), which is denoted ρ̂i = ||η̃d
i (t)− η̃i(tk)||, is given by

dρ̂i

dt
=

∂ ρ̂i

∂ η̃d
i (t)

dη̃d
i (t)
dt

+
∂ ρ̂i

∂ η̃i(tk)
dη̃i(tk)

dt
.

Since dη̃i(tk)
dt = 0, it yields:

dρ̂i

dt
=− (η̃d

i (t)− η̃i(tk))T

ρ̂i
fi(F)gi(ρ̂i)

=− (η̃d
i (t)− η̃i(tk))T

ρ̂i
fi(F)(Λi−λiρ̂i)

≤Γi(Λi−λiρ̂i).

By the comparison lemma (Khalil, 2002), it is possible to obtain

ρ̂i ≤
Λi

λi
− Λi−λiρ̂i(tk)

λi
e−λiΓi(t−tk).

The case where ρ̂i(tk)≥ Λi
λi

is straightforward: because gi(ρ̂i) = 0, ∀ t ∈ [tk, tk+1),
dρ̂i
dt = 0. In

other words, the reference does not evolve and neither does the virtual leader as long as all the real

vehicles have not tracked their references with error distances below ρi(t)< Λi
λi

.

Since the vehicles are able to track their references with errors ρi(t)< Λi
λi

in a finite time, and

assuming that the vehicles are able to communicate in a bi-directional way with the virtual leader

with bounded communication periods, which may be constant or not, it is possible to conclude
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that

lim
t→∞

1
t− t0

s0 = lim
t→∞

(
1

t− t0

∫ t

t0

N

∏
i=1

αigi(ρi(t)) dt + s0(t0)

)
> 0. (6.15)

Hence s0 continues increasing over time, thus guaranteeing that the formation evolves along

its path.

6.3 Experimental results

Several experiments have been carried out at the river and at sea. The results presented next have

been carried out in the Douro river, close to Porto, Portugal and in the Mediterranean Sea, in

La Spezia, Italy. The setup description is borrowed from section 5.3. The formation has been

operating both with radio (WiFi) communications and acoustics communications to validate the

approach for underwater operations and still keep accuracy of surface vehicles for data analysis.

On shore, the virtual leader was running on a local computer for direct feedback on the vehicles

positions and on the performances of the algorithm. The update rate for the virtual leader was set

equal to the local control rate in the vehicles (10 Hz). When operating over radio communications,

the communication rate was also set to this rate. For acoustic communications, the communication

rate has been imposed by the acoustic channel.

This section is divided according to the communication means used to exchange data between

the leader and the followers. In the first part, a high data rate, using radio communications, is

considered. To assess the performances of the method under nominal and degraded modes, two

different types of missions are presented. In degraded mode operation, the local control of a vehi-

cle has been degraded by attaching sensors on the vehicle body which have not been considered

in the vehicle dynamics model. In the second part, the formation-keeping control scheme is tested

over acoustic links provided by underwater acoustic modems attached to the vehicles.

Although only two vehicles were used, it has been demonstrated in the previous section that the

coordination scheme is expandable to as many vehicles as desired, as long as the communication

means has the capability to handle all the transmissions of the vehicles states to the virtual leader

and of the references to the vehicles. Henceforth, if this is verified, similar results are expected

with formations incorporating more vehicles. The use of low data rates is still possible in this

context, but at the cost of obtaining poorer performances and slower motions. The parameters Λi

and λi introduced in section 6.2.3 can be tuned to balance data rate and desired performances.

6.3.1 Operation using radio communications

6.3.1.1 The “perfect” case

Zarco and Gama were deployed on the La Spezia shore, Italy. Apart from navigation sensors

and dry body parts, the vehicles had the same body configuration. In the operation area, natural

disturbances impacted on the motion of the vehicles. Namely, the presence of wind, small currents

and waves were the main causes for deviations. The position references of the vehicles were set to
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Figure 6.1: Coordinated mission of Zarco and Gama in La Spezia

follow the leader with offsets in the eastward direction. Specifically, Zarco position reference, with

regard to the leader, was set to η̃∗Z(t)− η̃∗0 (t) = [0,10]T , while Gama’s was set η̃∗G(t)− η̃∗0 (t) =
[0,−10]T . Therefore, their relative position should be η̃∗Z(t)− η̃∗G(t) = [0,20]T along all the path,

if perfect tracking was possible. The starting position of the leader was [−60,0]T

A short mission composed of 6 waypoints separated by 30 meters was ran. To assess the

impact of the parameters λi and Λi on the formation, the parameter λi has been varied to change

the rigidity of the formation. The parameter Λi was kept constant over this experiment and set

to Λi = 1.7, while λi was set first to λi =
1
2 , i = Z,G. The virtual leader parameter was set to

λ0 = 1.2.

Figure 6.1 depicts the trajectories of Zarco and Gama. The maximum allowed deviation before

the formation “stops” is Λi/λi = 3.4 meters. Note that the necessary condition for the virtual leader

to track the next waypoint is to approach the current waypoint with a distance below one meter.

For further rigidity in the formation, the parameters λi, i = Z,G were reduced to 1. Hence, the

formation ultimately stops if a vehicle deviates more than Λi/λi = 1.7 meters from its reference.

The resulting figure 6.2 shows the trajectories of the vehicles. These show accurate motions of

the vehicles even in the presence of disturbances induced by wind, small waves and currents.

Similarly, the relative positions of the vehicles show to be precise, as it can be seen from the

circles on the plot, which indicate the positions of the vehicles at the same instants of time. Note

that the trajectories deviate much less from the segments that join two adjacent waypoints. This is

due to the reduced error tolerance and consequent slightly slower formation evolution. The norm

of the relative position error is shown in figure 6.3. It is possible to notice that the error remains

below one meter for most of the time, which is below the GPS measurement standard deviation

(1.5 meters, announced by the manufacturer). The largest peak (t ≈ 270 seconds) happens after

Gama has lost communication which makes it hold its position after a short time, as it can be seen

at position [x,y]≈ [−62,−70]T and later at position [x,y]≈ [−72.5,−70]T .
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Figure 6.2: Positions of Zarco and Gama resulting from the coordinated mission in La Spezia. The
circles indicate the positions of the vehicles at intervals of 30 seconds.
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Figure 6.3: Relative positioning error between Zarco and Gama for the trajectory of figure 6.2
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6.3.1.2 The “not-so-perfect” case

In March 2013, both vehicles were deployed in the Douro river for a set of tasks including

bathymetry and acoustic signal recording. Both vehicles were equipped with minimal navigation

setup, but differed on the protuberances originated by external devices carried on board as Zarco

was equipped with an echosounder and a sidescan. Furthermore, each ASV carried an appended

acoustic transponder. The dynamics models of the vehicles were not adapted to their new config-

urations in order to assess the robustness of the velocity control law, guidance and coordination

scheme.

Therefore, it is expected that the damping of Zarco is significantly larger than in its basic

configuration and thus the velocity control loop will suffer from severe errors. The same happens

with Gama, though the effect of the added transducer is much less significant than the effect of

the combined sensors added to Zarco. This impacts on the formation, as the desired velocities

generated by the guidance law will be tracked with larger errors. In turn, the reference positions

will be tracked more slowly and will naturally present larger tracking errors for non-static position

references.

Figure 6.4 depicts the trajectories of Zarco and Gama along a path defined by eight waypoints.

These eight waypoints define seven legs sequentially perpendicular with 100 meters and 30 meters

of length, respectively. The necessary condition for the virtual leader to track the next waypoint is

to approach the current waypoint with a distance below one meter. The virtual leader is initially

placed at point [−50,−50], Zarco must hold a relative position [−5,0] and the relative position of

Gama was set to [5,0] with regard to the leader. These relative positions are expressed in a frame

with the same directions of the inertial frame (NE).

The figure shows that the trajectory of Zarco is smoother than that of Gama. This is a result of

the tracking errors: because Zarco moves slower due to unconsidered damping effects, its position

is delayed with regard to Gama. As such, during transitions, when the virtual leader moves toward

to the next waypoint, the reference position of Zarco changes its direction, thus inducing a heading

change.

The circle indicates the positions of the vehicles every 30 seconds since the starting time. Note

that the trajectory of the virtual leader has not been included for clarity.

Based on the desired relative positions of the ASVs, if the position references were perfectly

tracked, a distance of 10 meters between the vehicles would be expected. However, the neglected

additional damping and the disturbances originate an error on the relative distance as displayed in

figure 6.5. The relative distance appears to be larger than expected in almost the entire path. This

was due to the non-modelled added damping on Zarco, which is delayed with regard to Gama.

It is possible to see that the distance between the vehicle decreases when following the smallest

legs in the path. Here, Gama clearly follows a longer path than Zarco as it tracks its reference

with smaller error than Zarco. Since the virtual leader reference changes from one corner to

the following before Zarco reaches the corner, the trajectory of this latter is made shorter and

smoother. The direct correspondence of the circles in figure 6.4 with the figure 6.5 shows that the
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Figure 6.4: Coordinated mission of Zarco and Gama
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Figure 6.5: Relative distance error of Zarco and Gama along the coordinated operation
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Figure 6.6: Coordinated mission of Zarco and Gama

vehicles get closer when following the smallest legs of the path.

These results show that the vehicles can maintain the formation with a limited error and that the

vehicles are able to track their references under disturbances and even when mismatching model

parameters are used. However, the vehicles ability to accurately track their position references

can be further exploited by penalizing more the tracking errors in the formation. Therefore, by

appropriately tuning the parameters λi and Λi, more rigid formations can be obtained.

Hence, the value of alpha was reduced to λi =
1
5 , i = 1,2 and left Λi = 1.7. This implies

that the formation stops if any vehicles presents a tracking error above Λi
λi

= 8.5 meters. For the

previous results, the parameters used were λi =
1

15 implying that the formation stops evolving

whenever a vehicle presents a tracking errors above 25.5 meters.

The results of this second mission are shown in figure 6.6. As in the previous case, the vehicles

are required to maintain a relative distance on the north axis. This time, the vehicles were set to

be at relative positions [2.5,0] (Zarco) and [−2.5,0] (Gama) with regard to the position of the

virtual leader. The plot shows that the trajectories do not seem to hold this exact distance with to

the virtual leader. Gama is closer to the virtual leader than desired, while Zarco is farther. The

vehicles slightly deviate from their desired positions because of drift, whose direction is clearly

in the first quadrant (0 to 90o). Along its path, Gama trajectory shows a discontinuity caused by

wrong a GPS fix ([x y] ≈ [−26,−48]), which is quickly handled by the controller moving Gama

to its predefined path.

This discontinuity can also be seen in the figure 6.7, where the relative distance of the ASVs

is shown, at time t ≈ 180 (the first peak). The second peak at time t ≈ 300 seconds is caused

by an abrupt change in the direction of the formation after the virtual leader reached the position

[−70,−30]. At this time, the vehicles rotate with with a relatively small forward motion as the

control law in (B.1) dictates. The vehicles are subjected to unpredicted disturbances and their rel-

ative positions vary. A similar behavior has also happened in the first abrupt change at [−70,−30],

but this time, the trajectory followed by the two vehicles was more consistent
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Figure 6.7: Relative distance error of Zarco and Gama along the coordinated operation

These results demonstrate that the formation rigidity can be tuned at will. Of course, dis-

turbances and vehicle capabilities have to be taken into consideration and may hinder relative

positioning accuracy. Nevertheless, vehicles are able to keep in formation with a relative error

below 1.5 meters, which is of the same order of magnitude as the GPS accuracy.

6.3.2 Operation using acoustic communications

Further experiments have been conducted using acoustic communications. The main objective

was to explore and to validate the overall control scheme in more constrained conditions. For this

purpose, two ASVs equipped with acoustic modems have been employed and a base station that

acted as the virtual leader on shore. This base station was also equipped with an acoustic modem.

The status of the two ASVs and of the virtual leader was visualized in real-time and the desired

position of the virtual leader was dynamically set by means of an user interface running on the

base station. A short mission was run in a small area where the communications were constrained

by the environment, having encountered several transmission failures, intrinsic delays and low

bandwidth.

As the main objective of the experiment was to assess the robustness of the method, no ef-

forts have been made to tune the acoustic modems to improve the communication channel. As a

consequence, during the mission, a relatively large variability of transmission success was found

and the time between two consecutive transmissions was large (tens of seconds in some cases).

Moreover, this variability was different for the two ASVs. The resulting trajectory is depicted in

figure 6.8. It is important to highlight that both the references and the reported positions had their

resolution reduced to one meter. The figure shows the real references (circles) and the evolution

of the position of the ASVs.

Here, the robustness of the method was assessed by comparing the reference relative positions

of the ASVs with their real relative positions in figure 6.9. It is possible to observe that the real
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Figure 6.8: Discrete position references and trajectories of the two ASVs. The circles indicate the
position references.
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Figure 6.10: Time difference between two consecutive successful transmissions of state to the
virtual leader

north and east components of the relative positions differ less than two meters from the desired

ones, even in the presence of large and variable intermittences, as it can be seen in figure 6.10.

Obviously, the decrease of resolution in both position feedback and references to one meter have

also impacted on the performances of the formation.

From figure 6.8, it is possible to verify that both the vehicles had to hold their positions, facing

the mean disturbance vector. The causes for that can be twofold: a vehicle does not receive new

references for a large amount of time or is receiving the same reference (this happens when the

formation stops); the other vehicle in the formation has not reached its reference and has caused

the formation to stop, or the position report has not been transmitted to the virtual leader. From

the plots, it is clear that these behaviors were caused by large delays on communications, which

forced the evolution of the virtual leader to slow.

The trajectories of the vehicles in figure 6.8 are much less smooth as compared to the tra-

jectories using radio links (figure 6.2). This is a consequence of the lower bandwidth and larger

intermittences and delays but, if no drifts influenced the vehicles trajectories, they would be simi-

lar. From figure 6.8, and from our empirical verification, the drift was mainly induced by eastward

wind. It is possible to conclude that the trajectory may have been rougher if the direction of the

trajectory was in the same as that of the drift vector, as the vehicle would have to turn 180o to face

the drift in order to hold the position.

6.4 Conclusions

Motivated by several sensor fusion applications that are intrinsically centralized, a centralized

coordination scheme have utilized the target tracking algorithm developed in chapter 5 to drive the

vehicles coherently. With the lower level target tracking algorithm, no pre-established paths have

to be known a priori. Depending on the technology used for communications, the data exchange

may suffer from significant delays (acoustic communications, for instance). By construction, the

formation keeping method can become tolerant to delays with very small or ultimately no effort

on parameter tuning. Of course, for optimal performances according to a given metric, some

parameters may have to be modified but the convergence of the vehicles to their positions in the

formation and the convergence of the entire formation remain guaranteed. Additionally, as a result
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of the control scheme presented in the current and in the previous chapter, it is possible to obtain

both mobile and static formations.

The experiments conducted in real conditions have provided very encouraging results, allow-

ing the vehicles to behave robustly under drifts induced by wind and currents as well as commu-

nication limitations.

Using the results presented here, a natural extension of this chapter would be a weakly central-

ized formation where several virtual leaders would be dictating their local formation in a macro

formation composed of several sub-formations. Furthermore, using roles and higher level proto-

cols and methods, one can obtain very versatile and fault tolerant formations where the composi-

tion of the sub-formation can be obtained as a function of the overall state of the formation or as a

function of the on-going task.



Chapter 7

Cooperative localization and tracking

As introduced in chapter 2, underwater localization and positioning is still a considerable chal-

lenge due to environmental and technological constraints. Such limitations have been restraining

the growth of autonomous robotic systems in such environments and therefore the localization

of underwater targets, including mobile robots, has attracted the interest of several researchers

over the last years (Whitcomb et al., 1999; Cruz et al., 2001; Bahr et al., 2009; Vaganay et al.,

2004; Kussat et al., 2005; Aparicio et al., 2011; Casey et al., 2007; Eustice et al., 2011). In this

chapter, the three-dimensional positioning of time-of-arrival (TOA) sensors to track and optimally

estimate the three-dimensional position of an underwater sound source is addressed. Firstly, an

unconstrained case, in which sensors can be placed anywhere in space, is addressed to find the op-

timal configuration. Subsequently, motivated by real applications, the same problem is tackled for

the plane-constrained case. Although instigated by underwater applications, the work presented

here has applications in general networks of distributed sensors that make use of TOA measure-

ments to estimate the position of a source.

7.1 Related works and motivation

Underwater localization solutions predominantly include two types of methods: range-based and

combined angle/range-based. Range based solutions use trilateration to determine the position of

an active transmitter underwater. The long baseline (LBL) has been employed in many georeferen-

tiation applications for which bounded error localization is required (Whitcomb et al., 1999; Cruz

et al., 2001; Bahr et al., 2009; Vaganay et al., 2004). LBL systems require precise synchroniza-

tion between the transmitters and the receivers for one-way travel time (OWTT) (Eustice et al.,

2011). In opposition, two-way travel time (TWTT) based systems do not need synchronization

(Cruz et al., 2001). While the former can be composed of two sets of sensors (active transmitters

and passive receivers), the second scheme must use both in each beacon or use transducers that

accumulate the two roles.

The ultra-short baseline (USBL) systems (see, for example, Gadre et al. (2008)) use the bearing

and ranging capabilities of acoustic receivers and transmitters. Receivers are placed closely and

123



124 Cooperative localization and tracking

measure the time-differences-of-arrival (TDOAs), thus making it possible to compute the angle of

arrival. The range measurements are obtained similarly to LBL.

As seen in chapter 2, self-localization can still be achieved from integration over time of iner-

tial measurements only but recall that this does not ensure bounded error on the position estimate

for unlimited time.

All these techniques have been used in several self-localization problems, which are a funda-

mental part of autonomous vehicle navigation. In order to estimate its position, a vehicle measures

its relative ranges or angles to one or more beacons, whose positions are known. Complementary,

tracking techniques typically have to measure variables in different places in order to infer the po-

sition of the target object. This is the case of tracking using TOA sensors. Under some conditions,

LBL and USBL systems can also be used for target tracking.

Optimal sensor positioning for tracking purposes has recently attracted the attention of several

researchers (Bishop et al., 2010; Martinez and Bullo, 2006; Meng et al., 2012; Dette, 1997; Zhao

et al., 2012b; Yang et al., 2011; Ray and Mahajan, 2002; Dai et al., 2013). Numerous algorithm

have been developed for estimation. The most recurrent in the literature are the Kalman filter

(Kalman, 1960), the particle filter and least-squares estimation methods. In several problems, and

as seen in chapter 4, the estimate variance depends on the state itself and some works have tackled

the problem so that the state is guaranteed to be in the vicinity of the optimal observability points.

The Cramer-Rao lower bound (CRLB), which provides a measure of the achievable performance

of an efficient estimator, has been used in several works to assess such a measure of observability

(see, for example, (Martinez and Bullo, 2006; Bishop et al., 2010; Bingham, 2003)). Mostly

based on the analysis of the Fisher information matrix (FIM), whose determinant is the inverse of

the CRLB, several results have been developed for multiple scenarios, including two- and three-

dimensional problems with homogeneous and heterogeneous sensors. Different types of sensors

that provide measurements on bearing, range, received signal strength (RSS), TOA, TDOA have

been considered. Significant contributions have been given in (Bishop et al., 2010; Martinez and

Bullo, 2006; Zhao et al., 2012b) and two common approaches are considered in the literature:

minimization of the average of the variances (A-optimality) or minimization of the volume of the

confidence regions (D-optimality) (refer to Dette (1997) for further details).

Aiming at minimizing the volume of the confidence regions, Bishop et al. (2010) present a

summary of the main results for bearing, ranging, TOA and TDOA. The sensors are considered

to be homogeneous with same variance. The authors provide interesting results presenting the

necessary conditions for optimal positions of the sensors in two-dimensional problems.

The optimal positioning of TDOA sensors has also been considered in Meng et al. (2012),

where the A-optimality criterion was used to optimize the average variance of the estimate for

homogeneous sensors in 2D scenarios. A solution considering an extended Kalman filter (EKF)

and a nonlinear programming problem to find the optimal trajectories of the sensor illustrate the

work with interesting simulation results.

Using a transversal approach for three different optimization problems, Zhao et al. (2012b)

provide an overview on range-only, bearing-only and RSS-only optimal positioning, in two- and
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three-dimensional spaces, extending the work in Zhao et al. (2012a). Beyond the unification of the

theory for the three methods, the extension of the localization problem to three-dimensional space

constitutes the main contribution of the work.

In the absence of theory supporting the optimal placement of TOA sensors in three-dimensional

spaces, Ray and Mahajan (2002) propose a genetic algorithm to solve a geometrically constrained

optimization problem, assuming that the position of the sound source is known. The results ob-

tained from simulation are very interesting and are in agreement with the result presented later on

in this chapter.

Other works also include the analysis for bearing-only and combined bearing/ranging optimal

positioning of sensors in Yang et al. (2011) and range-only in Dai et al. (2013). Martinez and

Bullo (2006) present an optimal positioning algorithm for a network of ranging sensors that uses

an extended Kalman filter (EKF) and a decentralized control method to drive the sensors towards

their optimal positions.

As mentioned in previous works (Zhao et al., 2012b; Ray and Mahajan, 2002), the extension

of the optimal positioning of sensor to 3D is not trivial. Motivated by marine applications, in

this chapter, results in the context of TOA-only sound source localization are presented for both

unconstrained three-dimensional and plane-constrained positioning.

7.2 Unconstrained optimal positioning of sensors

7.2.1 Background

As seen before, several methods can be used for the localization of a sound source underwater.

Our interest focuses now on the TOA-based estimation problem, for which a minimum of four

sensors is required to solve the problem of position estimation since, in addition to the position,

the time of emission is unknown. Next, the main theoretical background is presented, including

the measurement model and the specific FIM used afterwards to find the optimal relative positions

of the sensors, with respect to the target, in order to obtain the best possible estimate, that is, with

the least possible uncertainty.

7.2.1.1 Time-of-arrival measurements

Consider a set of N sensors. Let us write the vector of observations as

τ̂ =




τ̂1

τ̂2
...

τ̂N



= τ +ws =




τ1

τ2
...

τN



+




ws1

ws2

...

wsN



, (7.1)

where τ ∈ RN is a vector, whose entries are the TOAs, which is corrupted by a noise vector

ws = [ws1 ws2 . . . wsN ]
T ∈ RN .
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Note that wsi are variable and depend on several quantities such as the temperature along the

water column, which also varies according to the horizontal position, and the positions of both

emitter and receivers. Moreover, effects such as multipath or occlusions influence the distribution

followed by wsi , as seen in chapter 2. In this chapter, it is assumed that, due to the proximity of the

sensors to the target, such effects are negligible and that the noise variables can be drawn from a

normal distributions wsi ∼N (0,σ2
i ), where σ2

i are the variances. It is also assumed that the noise

variables wsi are uncorrelated.

Let the vector ηt = [xt yt zt ]
T define the position of the target. Similarly, define ηsi = [xsi ysi zsi ]

T ,

i = 1, ...,N, where N ≥ 4 in the present case, to be the position of the i-th TOA sensor. Therefore,

the relative positions are given by

η̃i = ηsi−ηt , i = 1, ...,N. (7.2)

Given the sound speed, cs, and assuming a linear propagation of acoustic waves, the entries of the

vector τ simply result:

τi = ||η̃i||/cs + τt . (7.3)

The position η̃i and the time of emission τt are unknown, thus the need for at least four sensors to

determine the three-dimensional position of the target.

7.2.1.2 The Fisher information matrix

Define the measurement likelihood function ft
(
τ̂,τ(ηt)

)
. The entries of the FIM, I(ηt) ∈ R4×4,

then result (see (Bishop et al., 2010) and (Martinez and Bullo, 2006)):

[I(ηt)]kl = E
{ ∂

∂ (ηt)k
ln
(

ft
(
τ̂,τ(ηt)

))
· ∂

∂ (ηt)l
ln
(

ft
(
τ̂,τ(ηt)

))}
,

where E{·} denotes the expected value and recall that the notation [·]i j is used to identify the

matrix entry in the i-th row and j-th column. Similarly, the notation (·)i is used to denote the i-th

element of a vector.

By assuming that the likelihood ft
(
τ̂,τ(ηt)

)
is a Gaussian function, one can show that the FIM

results into

I(ηt) =
(
Jt(ηt)

)T
Σ
−1Jt(ηt), (7.4)

where Jt(ηt) is the Jacobian of the vector τ(ηt) and Σ = diag(σ2
1 ,σ2

2 , ...,σ2
N) is the covariance

matrix.

The Jacobian of τ(ηt) can be written as

Jt(ηt) =−
1
cs




η̃T
1 /||η̃1|| cs

η̃T
2 /||η̃2|| cs

...
...

η̃T
N/||η̃N || cs



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and, after some algebra, the FIM follows:

I(ηt) =
1
c2

s


 ∑

N
i=1

η̃iη̃T
i

σ2
i ||η̃i||2 −cs ∑

N
i=1

η̃i
σ2

i ||η̃i||
−cs ∑

N
i=1

η̃T
i

σ2
i ||η̃i|| ∑

N
i=1

c2
s

σ2
i


 . (7.5)

In the next section, the necessary conditions to minimize the volume of the confidence region

are derived.

7.2.2 Unconstrained optimal 3D localization

This section presents the analysis and the conditions to obtain the best achievable performance of

an efficient estimator tracking the position of a sound source using TOA measurements. For the

sake of illustration, the figure (7.1) and (7.2) show the optimal positions of the sensors and the

corresponding FIM determinant, respectively.

7.2.2.1 Coordinates and metric

Let us decompose the FIM (7.5) as

I(ηt) =
1
c2

s

[
I1(ηt) I2(ηt)

I3(ηt) I4(ηt)

]
, (7.6)

where

I1(ηt) =
N

∑
i=1

η̃iη̃T
i /(σ

2
i ||η̃i||2)

I2(ηt) = I3(ηt)
T =−cs

N

∑
i=1

η̃i/(σ2
i ||η̃i||)

I4(ηt) = c2
s

N

∑
i=1

1
σ2

i
.

In order to explore the FIM under the relative angular position of the target and of the sensors,

express the matrix in spherical coordinates:





x̃i = ||η̃i||sθicψi

ỹi = ||η̃i||sθisψi

z̃i = ||η̃i||cθi

, (7.7)

where it is recalled that s·= sin(·) and c·= cos(·).
The submatrices of the FIM thus become



128 Cooperative localization and tracking

−10 −5 0 5 10

−10
−5

0
5

10
−6

−4

−2

0

2

4

6

x (m)y (m)

z 
(m

)

Figure 7.1: Optimal positions of receivers (circles). The target (cross) is located at the origin. The
parameters considered are σi = 10−4 s ∀i.

Figure 7.2: Metric value as a function of target position as a function of the target position in the
plane defined by zt = 0. The parameters considered are cs = 1500 m/s, σi = 10−4 s ∀i∈ {1, ...,N}.

I1(ηt) =
N

∑
i=1

1
σ2

i




sθ 2
i cψ2

i sθ 2
i cψisψi sθicθicψi

sθ 2
i cψisψi sθ 2

i sψ2
i sθicθisψi

sθicθicψi sθicθisψi cθ 2
i




I2(ηt) = I3(ηt)
T =−cs

N

∑
i=1

1
σ2

i




sθicψi

sθisψi

cθi




I4(ηt) = c2
s

N

∑
i=1

1
σ2

i
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It is interesting to note that, under this scenario, the FIM does not depend on the range between

the sensors and the target but only on the relative angles.

In order to find the optimal position of the sensors to observe the target, choose the determinant

of the FIM as the metric M for this scenario:

M = det(I(ηt)). (7.8)

This metric quantifies the amount of information given by a set of measurements collected by

the sensors, which is aimed at being maximized. Therefore our problem is reduced to finding the

set of angles θi and ψi that maximizes M. The D-optimality criterion is used to derive the optimal

positions of the sensors so that the volume of the uncertainty ellipsoid is minimized (Dette, 1997).

Mathematically, it is desired to find the pairs

{θ ∗i , ψ∗i } ∈ argmax
{θi, ψi}
i=1,...,N

M({θi, ψi}). (7.9)

7.2.2.2 Optimal positions

Firstly, note that the FIM is symmetric. Hence, using the Schur complement as in (Bishop et al.,

2010), the metric M, that is, the determinant of the matrix can be written in an alternative form as

det
(
I({θi,ψi})

)
=

1
c8

s
det(I4)det(I1− I2I−1

4 I3), (7.10)

where the arguments of the matrix Ik, k = 1, ...,4, were dropped for clarity.

Since I4 is a positive scalar, det(I4) = I4, note that I2I−1
4 I3 ≥ 0 (the proof is simply based on

the fact that, for any x ∈ R3, xT I2I−1
4 I3x = I−1

4 xT I2IT
2 x = I−1

4 ||xT I2||2 ≥ 0 which, in turn, implies

that I2I−1
4 I3 is positive semi-definite) and therefore

M({θi,ψi}) =
1
c8

s
I4 det(I1− I2I−1

4 I3)

≤ 1
c8

s
I4 det(I1). (7.11)

Hence, it is possible to conclude that the equality is achieved when I2 = IT
3 = 0 or equivalently

N

∑
i=1

sθicψi

σ2
i

= 0,
N

∑
i=1

sθisψi

σ2
i

= 0,
N

∑
i=1

cθi

σ2
i
= 0, (7.12)

Let us focus now our attention on the determinant of I1. Similarly to the previous step, decom-

pose the matrix in blocks as follows:

I1 =

[
A B

C D

]
(7.13)
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with

A =
N

∑
i=1

1
σ2

i

[
sθ 2

i cψ2
i sθ 2

i cψisψi

sθ 2
i cψisψi sθ 2

i sψ2
i

]
,

B =CT =
N

∑
i=1

1
σ2

i

[
sθicθicψi

sθicθisψi

]
,

D =
N

∑
i=1

1
σ2

i
cθ 2

i .

Under the assumption that I2 = IT
3 = 0, it comes

M({θi,ψi}) =
1
c8

s
I4 det(D)det(A−BD−1C). (7.14)

Using the same reasoning as above and noting that D is a positive scalar, the verification that

BD−1C ≥ 0 is straightforward. Therefore, the choice

B =CT =
N

∑
i=1

1
σ2

i

[
s(2θi)cψi

s(2θi)sψi

]
= 0

or, equivalently,
N

∑
i=1

s(2θi)cψi

σ2
i

= 0,
N

∑
i=1

s(2θi)sψi

σ2
i

= 0, (7.15)

maximizes the metric M over B = CT . Note that the fact that sθicθi = 1/2s(2θi) has been used.

Under this condition, the metric M becomes

M({θi,ψi}) =
1
c8

s
I4Ddet(A) (7.16)

Let us concentrate now on maximizing det(A). Using the equalities cψ2
i = (1+ c(2ψi))/2 and

sψ2
i = (1− c(2ψi))/2, rewrite the matrix A as

A =
N

∑
i=1

1
σ2

i

[
sθ 2

i (
1
2 +

c(2ψi)
2 ) sθ 2

i cψisψi

sθ 2
i cψisψi sθ 2

i (
1
2 −

c(2ψi)
2 )

]

whose determinant becomes

det(A) =
( N

∑
i=1

1
2σ2

i
sθ 2

i

)2
−
( N

∑
i=1

1
2σ2

i

sθ 2
i c(2ψi)

2

)2
−
( N

∑
i=1

1
2σ2

i
sθ 2

i s(2ψi)
)2

Hence, setting
N

∑
i=1

sθ 2
i c(2ψi)

σ2
i

= 0,
N

∑
i=1

sθ 2
i s(2ψi)

σ2
i

= 0, (7.17)

maximizes the determinant of A over these terms.



7.2 Unconstrained optimal positioning of sensors 131

Finally, if the conditions (7.12), (7.15) and (7.17) are satisfied, the metric is given by

M =
1
c8

s
c2

s

N

∑
i=1

1
σ2

i

N

∑
i=1

1
σ2

i
cθ 2

i

( N

∑
i=1

1
2σ2

i
sθ 2

i

)2
,

which can be rewritten as

M =
1
c8

s
c2

s

N

∑
i=1

1
σ2

i

N

∑
i=1

1
σ2

i
cθ 2

i

( N

∑
i=1

1
2σ2

i
−

N

∑
i=1

1
2σ2

i
cθ 2

i

)2
.

Define ξ = ∑
N
i=1

1
σ2

i
cθ 2

i , the constant α = ∑
N
i=1

1
σ2

i
and write, by substitution,

M =
1
c6

s
αξ
(1

2
α− 1

2
ξ
)2

.

Note that ξ ∈ [0,α]. It can be shown (by finding the roots of the derivative with respect to ξ ) that

the maximal value of M is reached when ξ = α
3 , or equivalently

N

∑
i=1

cθ 2
i

σ2
i

=
1
3

N

∑
i=1

1
σ2

i
. (7.18)

To summarize, the determinant of the FIM, M(·), reaches its maximum value, which is equal

to M∗ = 1
27c6

s

(
∑

N
i=1

1
σ2

i

)4
when the following conditions are simultaneously satisfied:

N

∑
i=1

sθicψi

σ2
i

= 0,
N

∑
i=1

sθisψi

σ2
i

= 0,
N

∑
i=1

cθi

σ2
i
= 0,

N

∑
i=1

s(2θi)cψi

σ2
i

= 0,
N

∑
i=1

s(2θi)sψi

σ2
i

= 0,

N

∑
i=1

sθ 2
i c(2ψi)

σ2
i

= 0,
N

∑
i=1

sθ 2
i s(2ψi)

σ2
i

= 0,

N

∑
i=1

cθ 2
i

σ2
i

=
1
3

N

∑
i=1

1
σ2

i
.

7.2.3 Positioning and estimation

In the previous section, it has been considered that the target position is perfectly known, which

is very unlikely in most real estimation problems. In this section, an algorithm is proposed for

estimation and positioning. The estimation algorithm is based on a nonlinear Newton’s method to

solve a nonlinear least-square formulated problem.

The algorithm is composed of two sequential steps that are iteratively ran whenever a new

measurement set is available:

1. Estimation: given a set of TOA measurements, the position of the target is estimated us-

ing a least-squares method. Since the problem is nonlinear, a Newton’s method is used to
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iteratively estimate the position and the time of emission until the difference between the

new estimate and the previous is less than a pre-set threshold value or exceeds a maximum

number of iterations;

2. Positioning: given the estimate, the receivers are moved towards their (estimated) optimal

relative positions. A gradient descent algorithm is employed to iteratively compute the

directions to follow. The algorithm stops after a predefined number of iterations.

The convergence issues are not addressed here, since they have a large coverage in specialized

literature. Nevertheless, one can anticipate that the overall speed performances and number of

iterations that the algorithm requires to obtain an equivalent estimate uncertainty and positioning

depend on the gains used in the Newton’s and gradient descent methods.

7.2.3.1 Estimation

In order to estimate the target position, the estimation problem is formulated as a nonlinear least-

square problem. The Newton’s method is then applied to find the optimal point that minimizes a

given error function.

Define the state estimate as the concatenation of the position vector and of the time of emission

estimates:

X̂k =
[
η̂t(k)T τ̂t(k)

]T ∈ R4, (7.19)

where k ∈ N.

Recall that the relative positions of the receivers are given by η̃i = ηsi−ηt and that the TOAs

are given by τ = [τ1, ...,τN ] and define the error vector as

g(ηt ,τt) =




||η̃1||2− c2
s (τ1− τt)

2

...

||η̃N ||2− c2
s (τN− τt)

2


 . (7.20)

Given an initial guess estimate of the state X̂0 and a set of measurements composing the entries

of τ̂ = [τ̂1, ..., τ̂N ], the state estimate is recursively estimated, until a given criterion is met, by the

Newton’s method applied to multidimensional nonlinear equations:

X̂k+1 = X̂k−K(Jg(X̂k))
†g(η̂t(k), τ̂t(k)) , (7.21)

where K > 0 is a scalar gain, Jg(X̂k) stands for the Jacobian of g evaluated at X̂k for the set of

measured times of arrival, which is given by

Jg(X̂k) = 2 ·




−η̃T
1 c2

s (τ̂1− τt)
...

...

−η̃T
N c2

s (τ̂N− τt)



|η̃i=ηsi−η̂t(k),τt=τ̂t(k)

.
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Figure 7.3: Error evolution
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Figure 7.4: Step increment

7.2.3.2 Positioning algorithm

A very simple positioning algorithm can be obtained by applying a gradient descent algorithm to a

function that takes into account the individual errors of the constraints in (7.12), (7.15), (7.17) and

(7.18). For this purpose, define the error functions ei as the square of the conditions above, that is,

e1 =
(

∑
N
i=1

1
σ2

i
sθicψi

)2
, e2 =

(
∑

N
i=1

1
σ2

i
sθisψi

)2
, e3 =

(
∑

N
i=1

1
σ2

i
cθi

)2
, e4 =

(
∑

N
i=1

1
σ2

i
s(2θi)cψi

)2
,

e5 =
(

∑
N
i=1

1
σ2

i
s(2θi)sψi

)2
, e6 =

(
∑

N
i=1

1
σ2

i
sθ 2

i c(2ψi)
)2

, e7 =
(

∑
N
i=1

1
σ2

i
sθ 2

i s(2ψi)
)2

, e8 =
(

∑
N
i=1

1
σ2

i
cθ 2

i − 1
3 ∑

N
i=1

1
σ2

i

)2
.

Then, the problem can be formulated using a potential function

V (ηs1 , ...,ηsN ) =
8

∑
i=1

ei(ηs1 , ...,ηsN ), (7.22)

which is used to iteratively to update the receiver positions using the straightforward gradient

descent algorithm:




ηs1(l +1)
...

ηsN (l +1)


=




ηs1(l)
...

ηsN (l)


+KV




∇ηs1
V

...

∇ηsN
V



∣∣

ηsi=ηsi (l)

, (7.23)

where KV > 0 is a scalar gain and ∇v(·) denotes the gradient of a function with respect to a vector

v.
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7.2.4 Results

Simulations have been conducted to validate the approach. For the results presented next, it is

assumed that the variances are equal for all the sensors, that is σi = σ for all i, and the gains have

been set as follows: K = 10−1 and KV = 10−1 ·σ4.

The initial positions of the receivers were generated randomly within a cube of side equal

to 100 meters. To ensure that the position is observable, it has been considered that the initial

configurations must verify M ≥ M, where 0 < M < M∗ is a constant. Otherwise, the estimation

algorithm can originate poor estimates, which could lead to divergence. For the simulations,

a uniform distribution in the interval [−σ ,σ ] was employed instead of a Gaussian distribution

as assumed in the model. The reason for this choice was to show by means of simulation that

the algorithms perform properly even under unmatched assumptions on noise. Two cases are

considered: σ = 10−4 s and σ = 10−2 s. In underwater environments, the former value is realistic

when using digital signal processing. The latter was exaggerated in order to assess the robustness

of the method.

For each epoch, a new set of TOAs is drawn, which is subsequently used to estimate the target

position. For what concerns optimal placement of sensors, the positioning algorithm is iterated five

times at each epoch, after the estimate has been computed. The recursive estimation algorithm is

stopped after the sum of the squared increment verifies

K(Jg(X̂k))
−1g)T (K(Jg(X̂k))

−1g)< 10−30 (7.24)

(see (7.21) and note that Jg(X̂k))
† = Jg(X̂k))

−1 for N = 4) or has been iterated more than one

thousand times. These values have been selected after resorting to simulations and are justified in

figure (7.3) and figure (7.4), where the evolution of the estimate error and the respective estimate

increment are depicted for a simulation considering σ = 10−4 s. In figure (7.3), the plot shows that

most of the estimation steps do not use more than five hundred iterations because the increments

become small and satisfy the first condition.

Figure 7.5 depicts the trajectories (lines) and the final positions (circles) of the mobile receivers

for σ = 10−4 s. The cross (at the origin) indicates the sound source position. The trajectories are

smooth and remain stable after tracking the sound source. In figure 7.8, the position estimate error

resulting from the estimation algorithm is shown. The estimate error rapidly decreases from the

first to the second epoch and remains around 0.1 meters.

Figure 7.7 shows the evolution of the trajectories of the receivers. The lines show coarser

trajectories than in the previous case. This is the result of a larger noise that originates coarser

estimates that vary more significantly. The optimal positions of the sensors are adjusted after

each new estimate and consequently become noisier. Larger relative distances would make the

trajectory smoother as the sensitivity of a change on the estimate would become smaller, that is,

the corresponding angles {θi,ψi} would suffer less from estimate variance.
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7.3 Plane-constrained optimal 3D localization

Motivated by real applications of optimal localization of an acoustic source using surface vehicles,

this section provides the necessary conditions to obtain the best possible estimate.

Recall the definition of the FIM in section 7.2.1.2 and re-define the composing matrices Ii,

i = 1, ...,4 in Cartesian coordinates, as follows:

I(ηt) =
1
c2

s

[
I1(ηt) I2(ηt)

I3(ηt) I4

]
(7.25)

with

I1(ηt) =
N

∑
i=1

1
σ2

i ||η̃i||2




x̃2
i x̃iỹi x̃iz̃i

x̃iỹi ỹ2
i ỹiz̃i

x̃iz̃i ỹiz̃i z̃2
i


,

I2(ηt) = IT
3 (ηt) =−cs

N

∑
i=1

1
σ2

i ||η̃i||




x̃i

ỹi

z̃i


,

I4 = c2
s

N

∑
i=1

1
σ2

i
.

The problem can be formulated as follows: given the target position ηt , find the relative hor-

izontal positions of the sensors [x̃i, ỹi] that maximize the metric M({x̃i, ỹi}), or, mathematically,

{x̃i, ỹi}N
i=1 ∈ argmax

{x̃i,ỹi}N
i=1

M({x̃i, ỹi}). (7.26)

7.3.1 Plane constrained optimal positions

It is clear from (7.5) that the relative positions of the sensors with regard to the source impact on

the FIM and consequently on the objective function M in (7.8). The idea is to find a set of con-

ditions that ensure optimal positioning of the sensors for optimal estimation. In the forthcoming

developments, the solution that maximizes M is derived. In what follows, it is considered that

z̃i = z > 0 for all i = 1, ...,N, that is, the sensors are at the same vertical position and are not

coplanar with the target.

Consider (7.25) and note that I4 is invertible. Applying the Schur complement to I(ηt), as in

(Bishop et al., 2010) and as in the previous section, the objective function results into

M({x̃i, ỹi}) =
1
c8

s
det(I4)det(I1− I2I−1

4 I3), (7.27)

where the argument of the matrix functions were dropped for clarity.
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Again, note that I4 is a scalar. Since I4 > 0 and I2 = IT
3 , I2I−1

4 I3 is positive semi-definite, as

shown previously. Moreover, by the matrix determinant lemma (see (Ding and Zhou, 2007), for

example), assuming that I1 is invertible, it is possible to write

M({x̃i, ỹi}) =
1
c8

s
I4
[
(1− I−1

4 I3I−1
1 I2)det(I1)

]
,

and it becomes clear that, in order to maximize M, the term I−1
4 I3I−1

1 I2 has to be minimized. To

this end, suppose that it is possible to set the horizontal positions of the sensors at will and choose

N

∑
i=1

x̃i

σ2
i ||η̃i||

=
N

∑
i=1

ỹi

σ2
i ||η̃i||

= 0. (7.28)

It is important to note that the vertical position of the sensors with respect to the target can not be

controlled and hence, unlike section 7.2.2, the last entry of the vectors I2 and I3 can not be set to

zero.

Based on (7.27) and assuming that the condition in (7.28) is verified, define the matrix

A = I1− I2I−1
4 I3

=

[
A1 A2

A3 A4

]
(7.29)

where

A1 =
N

∑
i=1

1
σ2

i ||η̃i||2

[
x̃2

i x̃iỹi

x̃iỹi ỹ2
i

]
,

A2 = AT
3 =

N

∑
i=1

1
σ2

i ||η̃i||2

[
x̃iz̃i

ỹiz̃i

]
,

A4 =
N

∑
i=1

z̃2
i

σ2
i ||η̃i||2

− 1

∑
N
i=1

1
σ2

i

(
N

∑
i=1

z̃i

σ2
i ||η̃i||

)2

.

Following the same reasoning as above and using again the Schur complement, the objective

function can be rewritten as

M({x̃i, ỹi}) =
1
c8

s
I4A4 det(A1−A2A−1

4 A3).

Since the product A2A−1
4 A3 is positive semi-definite (note that supposing that A4 is negative con-

tradicts the fact that the determinant of the FIM is non-negative), it has to be minimized. Hence,

suppose that it can be imposed that A2 = 0, or equivalently

N

∑
i=1

x̃iz̃i

σ2
i ||η̃i||2

=
N

∑
i=1

ỹiz̃i

σ2
i ||η̃i||2

= 0, (7.30)
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the metric results

M({x̃i, ỹi}) =
1
c8

s
I4A4 det(A1).

The maximization of the metric proceeds with the maximization of the determinant of the

matrix A1. Thus, it is easy to verify that

det(A1) =
N

∑
i=1

x̃2
i

σ2
i ||η̃i||2

N

∑
i=1

ỹ2
i

σ2
i ||η̃i||2

−
(

N

∑
i=1

x̃iỹi

σ2
i ||η̃i||2

)2

, (7.31)

which leads to an additional condition in order to maximize the metric: by verifying that the last

term is non-negative, suppose that it can be imposed that

N

∑
i=1

x̃iỹi

σ2
i ||η̃i||2

= 0. (7.32)

Additionally, by noting that

N

∑
i=1

x̃2
i

σ2
i ||η̃i||2

N

∑
i=1

ỹ2
i

σ2
i ||η̃i||2

=
1
4



(

N

∑
i=1

x̃2
i + ỹ2

i

σ2
i ||η̃i||2

)2

−
(

N

∑
i=1

x̃2
i − ỹ2

i

σ2
i ||η̃i||2

)2



and imposing
N

∑
i=1

x̃2
i − ỹ2

i

σ2
i ||η̃i||2

= 0 (7.33)

gives

det(A1) =
1
4

(
x̃2

i + ỹ2
i

σ2
i ||η̃i||2

)2

=
1
4

(
N

∑
i=1

1
σ2

i
− z̃2

i

σ2
i ||η̃i||2

)2

,

where the relationship x̃2
i + ỹ2

i = ||η̃i||2− z̃2
i has been used.

Assuming that the conditions (7.28), (7.30), (7.32) and (7.33) hold, expanding the metric

function results into

M({x̃i, ỹi}) =
1
c8

s
c2

s

N

∑
i=1

1
σ2

i
·




N

∑
i=1

z̃2
i

σ2
i ||η̃i||2

− 1

∑
N
i=1

1
σ2

i

(
N

∑
i=1

z̃i

σ2
i ||η̃i||

)2

 · 1

4

(
N

∑
i=1

1
σ2

i
− z̃2

i

σ2
i ||η̃i||2

)2

=
1

4c6
s
·m1(η̃i) ·m2(η̃i) (7.34)
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where

m1(η̃i) =




N

∑
i=1

z̃2
i

σ2
i ||η̃i||2

N

∑
i=1

1
σ2

i
−
(

N

∑
i=1

z̃i

σ2
i ||η̃i||

)2



m2(η̃i) =

(
N

∑
i=1

1
σ2

i
−

N

∑
i=1

z̃2
i

σ2
i ||η̃i||2

)2

.

It is clear that m2(η̃i) ≥ 0 and m1(η̃i) ≥ 0 since, from the definition of the metric, M ≥ 0.

From m1 and m2, it is possible to verify that the metric depends only on the relative distances of

the sensor with regard to the target, that is, the norm of the vectors η̃i. In order to find a clearer

representation and to maximize the objective function, let us expand the function m1 as follows:

m1(η̃i) =
N

∑
i=1

z̃2
i

σ4
i ||η̃i||2

+
N

∑
i=1

N

∑
j 6=i

z̃2
i

σ2
i σ2

j ||η̃i||2
−

N

∑
i=1

z̃2
i

σ4
i ||η̃i||2

−
N

∑
i=1

N

∑
j 6=i

z̃2
i

σ2
i σ2

j ||η̃i||||η̃ j||

=
N

∑
i=1

N

∑
j 6=i

z̃2
i

σ2
i σ2

j ||η̃i||2
−

N

∑
i=1

N

∑
j 6=i

z̃2
i

σ2
i σ2

j ||η̃i||||η̃ j||

For each sensor i, define the set of the remaining sensors that are at the same distance from the

target, that is, Ωi = { j = 1,2, ...,N, η̃ j ∈R3 : j 6= i, ||η̃ j||= ||η̃i||}. Similarly, for each sensor i, the

complement of Ωi is denoted Ω̄i. Hence, m1 can be decomposed and simplified as follows:

m1(η̃i) =
N

∑
i=1

N

∑
j∈Ω̄i

z̃2
i

σ2
i σ2

j ||η̃i||2
+

N

∑
i=1

N

∑
j∈Ωi

z̃2
i

σ2
i σ2

j ||η̃i||2

−
N

∑
i=1

N

∑
j∈Ω̄i

z̃2
i

σ2
i σ2

j ||η̃i||||η̃ j||
−

N

∑
i=1

N

∑
j∈Ωi

z̃2
i

σ2
i σ2

j ||η̃i||2

=
N

∑
i=1

N

∑
j∈Ω̄i

z̃2
i

σ2
i σ2

j ||η̃i||2
−

N

∑
i=1

N

∑
j∈Ω̄i

z̃2
i

σ2
i σ2

j ||η̃i||||η̃ j||
. (7.35)

Some conclusions can be drawn at this point: 1) sensors that are equally distant from the target

do not impact on the m1 function; 2) the complement of Ωi, Ω̄i, can not be null, otherwise m1 is

null and so is the objective function M, in other words, there must be at least one sensor whose

distance from the target must be different from the others; 3) since m2 is non-negative, the second

term of m1 in (7.35) has to be minimized in order to maximize the objective function.

The change of variables γi =
z̃i
||η̃i|| and λi =

1
σ2

i
is now adopted. Henceforth, by noting that

z̃i = z̃ j = z ∀ i, j = 1, ...,N, the function m1 can be rewritten as

m1(η̃i) =
N

∑
i=1

N

∑
j∈Ω̄i

λiλ jγ2
i −

N

∑
i=1

N

∑
j∈Ω̄i

λiλ jγiγ j. (7.36)

It is important to observe that γi = 1 implies that ||η̃i|| = z̃i and γi→ 0 implies η̃i→ ∞. Assume

that the distance to the target can be made so large that γi ∈ [0,1]. According to the expression
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of m1, the second term is intended to be minimized. Without loss of generality, suppose that the

sensors can be organized in two complementary sets according to their distance to the target: the

set Γ0 groups the sensors that are at an infinite distance Γ0 = {i = 1, ...,N,γi ∈ [0,1] : γi = 0} and

Γ̄0 = {i = 1, ...,N,γi ∈ [0,1] : γi 6= 0} is its complement.

Suppose that the placement of the sensors verifies the condition

N

∑
i=1

N

∑
j∈Ω̄i

λiλ jγiγ j = 0. (7.37)

Hence, using (7.34), (7.36) and (7.37), the metric finally results

M({x̃i, ỹi}) =
1

4c6
s

(
∑

i∈Γ̄0

λiγi ∑
j∈Ω̄i

λ j

)(
N

∑
i=1

λi− ∑
i∈Γ̄0

λiγ2
i

)2

. (7.38)

The maximization of this last expression is not trivial since it admits several local maxima and

the different combinations in the organizations of the sets Γ0 and Γ̄0 may lead to different discrete

solutions that have to be individually analyzed in practice. Hereafter, the case with four sensors is

addressed.

7.3.2 Case with four sensors and same noise variance

In order to exemplify and to assess the optimal sensor configuration, a problem considering four

sensors is now addressed. Recall that this is the minimum number of sensors required to estimate

the position of a target whose time of emission is unknown. Consider that λi = λ , ∀ i = 1, ...,4

and that the sensor {1} belongs to the set Γ̄0, that is, its distance from the target is finite, while the

remaining sensors, {2,3,4} belong to Γ0. Therefore, it is easy to verify that the metric function

becomes

M({x̃i, ỹi}) =
1

4c6
s

(
λγ2

1 ·3λ
)(

4λ −λγ2
i
)2

=
3

4c6
s

λ 3γ2
1
(
4− γ2

1
)2
.

Interestingly, for the domain of γ1, the maximum value of the metric is reached when γ1 = 1, that

is, when the sensor {1} is above the target.

Hence, setting

η̃1 =[0,0, z̃i]
T

η̃i =




ρ cos
(

2π(i−2)
3 +ψ0

)

ρ sin
(

2π(i−2)
3 +ψ0

)

z̃i


 , i = 2, ...,4 (7.39)
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Figure 7.9: Influence of ρ on the metric

with ρ = ∞ and ψ0 being any angular offset, verifies the conditions (7.28), (7.30), (7.32), (7.33)

and (7.37). Therefore, the metric M is maximized over the horizontal positions of the sensors. The

offset ψ0 was added only to emphasize the independence of the metric with regard to the rotation

of the overall configuration of sensors.

Impact of bounded distances from the target

In practice, infinite distances from the target are obviously impossible. Therefore, it is important

to understand how the bounded distances between the vehicles impact on the metric M. As seen

in (7.38), if the optimal angular configuration is satisfied and the distance obey (7.39), the metric

becomes a function of the variances σi and of the division of the depth by the distance between

each sensor and the target, z̃i
||η̃i|| . By contemplating the scenario with four sensors and same vari-

ances, figure 7.9 depicts the metric M normalized by the optimal value M∗, that is, obtained from

M when ρ = ∞. Although the metric depends only on the quotients of the depth by the distances

to the target, the plot shows the results for several depth, for clarity.

For the present case with four sensors with same variance and under the assumption that the

distance to the target is bounded, that is, for a fixed γi = γ, i = 2,3,4, from (7.38) and (7.34), it can

be proven that

M∗ =
27λ 4

4c6
s

M({x̃i, ỹi}) =
27λ 4

4c6
s
(γ−1)2(1− γ2)
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respectively. The quotient then becomes

M({x̃i, ỹi})
M∗

= (γ−1)2(1− γ2)2

In practice, from this last expression, and also from the figure, it is possible to conclude that

the metric reaches about 20% of the optimal value M∗ when ρ is two times the depth and about

90% when ρ is twenty times the value of the depth. It is clear that small ρ , with regard to the

depth, can considerably degrade the estimate. This has to be taken into account when designing

the tracking algorithm.

7.4 Coordinated placement of sensors

Given the target location, the optimal positions of the sensors and hence of the vehicles are

uniquely determined up to a formation rotation. Using this important feature, the formation of

vehicles can be guided so that the observation of the target is maintained optimal even under

motion of the target. A two-step iterative procedure, similar to the one that has been proposed in

section 7.2.3, contemplating estimation and positioning steps is implemented. For formation keep-

ing, the centralized coordination scheme presented in chapter 6 is employed. A brief explanation

of the methods used is now provided.

7.4.1 Coordination of autonomous vehicles

Coherent motion and formation keeping of vehicles has been achieved by means of a centralized

coordination algorithm that guides the vehicles as exposed in chapter 6. The virtual leader position,

along with relative positions of the references of the vehicles with regard to this latter, uniquely

define the formation. The inclusion of a virtual leader is advantageous in this scenarios since it

does not suffer from external disturbances, measurement or positioning errors, in opposition to

real vehicles, and thus prevents the propagation of these undesired effects in the formation.

According to the optimal configuration (7.39), the formation is set so that it satisfies the final

angular configuration, that is, vehicle {1} on the center of a circle of radius ρ f where the remaining

three vehicles are placed so that

ηsi−ηs1 =




ρ f cos
(

2π(i−2)
3 +ψ0

)

ρ f sin
(

2π(i−2)
3 +ψ0

)

0


 , i = 2, ...,4

The radius of the formation ρ f is varied according to the behavior adopted: during homing,

that is, the approach to the target, the formation is maintained small and thus ρ f is small. After

having approached the target, the formation must grow to improve the estimate confidence and

thus ρ f is made larger.
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7.4.2 Homing to target

As previously seen, and strengthened in this chapter, the relative positions of the sensors have a

strong impact on the expected variance of the estimate. For simulations of the optimal uncon-

strained positioning case presented in section 7.2.4, it has been considered that the initial value of

the metric was above a pre-defined threshold, which would guarantee that the system is sufficiently

observable in order to obtain a sufficiently precise initial estimate of the position from the TOA

measurements. In reality, exploring different configurations at different positions is obviously

impracticable. Additionally, as the confidence on the estimate depends on the relative positions,

it might be insensate to position the formation of vehicles equipped with the sensors based on

any estimate, regardless of the observability of the target. Therefore, alternative behaviors should

be adopted to drive the vehicles to a near optimal configuration to subsequently start positioning

based on the estimate of the target. Hereafter, the positions of the sensors are considered to be

coincident with the vehicles that carry them.

Using the same principle as in USBL systems, it is possible to determine the direction of the

target with a relatively tight and carefully placed set of sensors. By making use of the formation

of vehicles already in their final angular configuration, at each epoch, the direction is determined

and subsequently used to drive the formation towards the target. Let η̄ = 1
N ∑

N
i=1 ηsi be the mean

position of the sensors and τ̄ = 1
N ∑

N
i=1 τ̂i be the mean TOA. The direction to which the formation

is driven is determined as

ζ =− ∑
N
i=1 (ηsi− η̄)(τ̂i− τ̄)∣∣∣∣∑N
i=1 (ηsi− η̄)(τ̂i− τ̄)

∣∣∣∣ . (7.40)

This direction is provided to the virtual leader, which subsequently generates the path of the for-

mation.

7.4.3 Estimation-based positioning

Estimation

The position of the target is estimated whenever a new set of coherent measurements has been

reported by the vehicles to a central estimation algorithm. It is considered that coherent measure-

ments are those that, given the distances between the vehicles in the formation, do not differ more

than a given user-defined threshold, which obviously depends on the desired distances between

the sensors and the target. By combining the positions of the sensors to the TOAs, the position of

the target is estimated using a Newton’s method applied to multidimensional nonlinear equations

as described in section 7.2.3.1

Positioning

As stated earlier, positioning the formation based on the estimate may lead to poor performances.

Two criteria have been adopted to switch the behavior of the formation from homing to estimation-

based positioning:
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1. The Newton’s algorithm converges in a limited number of iterations;

2. The horizontal position estimate is sufficiently close to the horizontal center of mass (mean

position) of the formation.

Given a successful estimate of the target position, the virtual leader drives the formation to-

wards the target at each epoch. The second criterion ensures that the formation is in an appropriate

position to estimate the target position. If these two criteria are simultaneously met, the outer ve-

hicles can enlarge the formation by placing themselves farther apart from the target and thus

improving the estimation confidence by augmenting the metric M according to the derivations of

the previous section. In practice, the largest radius of the formation must be limited because of the

attenuation of the acoustic signal and, in some scenarios, because of the bounds of the operation

area.

7.5 Field trials

Field trials have been carried out in the Douro river. The operation is described and the collected

data is analyzed next.

7.5.1 Assets

In order to compute the TOAs of a signal sent by an acoustic target underwater, a set composed of

acoustic transducers and signal processing boards has been used. These signal processing boards

are responsible to compute, by using matching filters tuned to detect the desired signal, and re-

port the TOAs over a serial port to the local computer running aboard the vehicle. The boards

require synchronization between them to report the collected TOAs with regard to a common time

basis. After computation of the TOA, the local computer is responsible to forward the relevant

information to a central estimator that estimates the target position on-line.

The four heterogeneous autonomous surface vehicles (ASVs) described in 2.6 and depicted

in figure 7.10 have been used to estimate and optimally position themselves according to the

TOA measurements and to the corresponding estimate. The vehicles were equipped with general

Figure 7.10: Formation of four heterogeneous vehicles
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positioning system (GPS) devices and compasses or inertial measurement units (IMUs). The

formers were providing precise time information to the acoustic receivers enclosed aboard the

vehicles. The coordination algorithm has been ran on a computer on the margin interacting with

the vehicles by means of radio communications. The overall operation ran autonomously.

An acoustic pinger emitting a signal of 35 kHz lasting 11 milliseconds has been anchored in

the river, in the water column, which has a maximum depth of about 10 meters at the deployment

location. As the pinger was not rigidly attached to the bottom nor any structure, it is impossible to

provide ground-truth information about its position. Nonetheless, it is expected that the vehicles

can track the pinger and estimate its position. Moreover, the convergence of the formation to

a given point would suggest that the algorithm can track and estimate the position of the target

successfully.

7.5.2 Operation

The vehicles were placed in formation at an arbitrary point in the operation area. This point was

chosen to be [x,y] = [−35,−115]. According to section 7.4, the formation must first approach the

target using the homing method. To do this, the radius of the formation was set to ρ f = 20 meters.

For practical reasons, the radius adopted for the estimation-based positioning behavior was set to

ρ f = 50 meters because of bounded operation area. According to the section 7.3.2, the expected

metric value should be higher than 60% of the optimal value, provided that the maximum depth is

10 meters.

Over the entire operation, the estimation algorithm was continuously ran to decide when the

formation should switch from homing behavior to estimation-based positioning. The results are

presented and discussed hereafter. It must be highlighted that some incoherent GPS fixes occurred

on two vehicles during the operation, conducting to poor positioning and to poor estimates during

some instants. These malfunctions were observed in the field via an interface providing feedback

on the positions of the vehicles in real time. As it is not trivial to filter them at this point, the

results presented include these occurrences, which were robustly accommodated by the algorithm

though, as the results hereafter demonstrate.

7.5.3 Performances

The estimated coordinates of the target over time are depicted in figure 7.11. The results shown

in this figure have been computed using the last 60 estimates of the target to smooth the obtained

results. Incoherent estimates caused by the divergence of the estimator have been filtered. All

the estimates that were not contained in a cube with 2000 meters side length and centered at the

origin were removed to avoid results biased by incoherent estimates. Nevertheless, it should be

noted that these were only two over 537 estimates. The standard deviations of these estimates

are shown in figure 7.12. It is important to note that the mean estimate converges to a constant
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Figure 7.11: Mean estimated position over a window of 60 sequential estimates

value, suggesting a successful tracking and position estimation of the target. Moreover, the stan-

dard deviation of the estimate generally shows a decreasing trend although it was affected by the

erroneous measurements of the positions of the vehicles.

Figure 7.13 depicts the mean position of the formation as well as the final estimated target

position. For the sake of clarity, the trajectories of the vehicles have not been included. Note that

there are several discontinuities in the mean position of the formation. These are caused by the

erroneous GPS fixes, which also have impacted on the estimate during some intervals of time.

From the figure, it is clear that the center of mass of the formation ends over a small region very

close to the mean estimated position of the target.

7.6 Conclusions

In this chapter, the solution for optimal placement of TOA sensors in three-dimensional spaces has

been presented. Based on the FIM, the necessary conditions have been derived to minimize the

volume of the confidence region and consequently reduce the estimate uncertainty. Using the ge-

ometric properties of the optimal sensor positions, simulation results illustrated an approach that

contemplates a two-step algorithm that sequentially considers estimation and placement. Con-

cerning unconstrained three-dimensional positioning, the real implementation of this approach

into real robots would require special attention on sensor motions. In particular, the limited speed

of the vehicles and the precision on positioning would constitute the main constraints. A proper
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Figure 7.12: Standard deviation of the estimate

tuning of gain and/or saturating the position increments would surely solve the former. The second

constraint implies that robotic platform equipped with precise navigation sensors and control laws

have to be employed to improve the localization. Nonetheless, very accurate positioning may not

be available for underwater robots in an unlimited volume of operation.

The optimal positioning of sensors was further explored to the plane-constrained case and the

optimal positions of the sensors were derived. The special case with four sensors was explored

and the results presented here are in agreement with the work in Ray and Mahajan (2002), in a

slightly different formulation where the difference TOA problem was considered. Through genetic

algorithm simulation, the results have provided a similar configuration with a central receiver and

three other placed on the vertices of a equilateral triangle. Nonetheless, in Ray and Mahajan

(2002), by construction the receivers were constrained to move in a circle with bounded radius.

The optimal solution found in this chapter indicates that the outside receivers should be placed as

far as possible. For practical reasons this bound is finite and must be carefully considered during

the placement of receivers. The coordinated placement of sensors was subsequently implemented

on a formation of four ASVs. The first field trials have provided very motivating results that

still require tuning to accelerate the tracking task and to improve the estimate by means of more

precise positioning of vehicles in the formation. Although the malfunction of some GPS devices

influenced the overall performances of the formation and of the estimation, the results obtained for

the position estimate, and namely its standard deviation, have demonstrated the proof of concept

of this novel coordinated localization method.
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Chapter 8

Conclusions

This thesis addressed the control and the coordination of a broad family of marine vehicles. A

theoretical framework based on the Lyapunov theory has been used in most of the thesis to derive

control and guidance laws and to assess the stability of the controllers. The general dynamics and

kinematics models were introduced to support the control and guidance laws derivations and the

related control methods were presented. An example on how models and control tools can be ap-

plied to control a hovering autonomous underwater vehicle (AUV) in the vertical pose was given.

Two control laws were developed to stabilize the vehicle vertically and to drive it to a horizontal

position reference by taking advantage of the heave degree of freedom (DOF). At the kinematics

level, a very simple and basic exercise of coordination was then presented. In order to home the

vehicle to a possibly moving beacon, estimation-based and sensor-based approaches were devel-

oped for a scenario where only ranges can be measured. The proposed guidance laws for homing

presumed the existence of a lower level velocity control loop, which was subsequently formalized

in chapter 5 for generic marine vehicles. This velocity control loop was further exploited and a

target tracking and station-keeping guidance law was developed for several types of underactuated

marine vehicles with different DOFs. This additional loop was then employed by a coordination

scheme for marine vehicles under potential communication constraints. All these control loops

building blocks, from the very low-level velocity controller to the formation control method, were

used in an application contemplating coordinated localization and tracking of a sound source un-

derwater. A solution to drive a team of heterogeneous vehicles carrying time-of-arrival (TOA)

sensors was proposed to optimally estimate the position of a target underwater, that is, with the

least possible uncertainty.

8.1 Main contributions

A list of contributions, organized by chapter, is summarized below.
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Chapter 3

• Development of a control law based on the backstepping method to stabilize a hovering

AUV in the vertical pose.

• Derivation of a guidance law to drive the vehicle horizontally when the vehicle is pitching

up or down. The vehicle periodically rotates due to torques originated by the thrusters

actuation when keeping the depth constant. By exploring such a rotation, the heave motion

was exploited to guide the vehicle to a given horizontal position reference.

Chapter 4

• Development of an estimation-based approach to home a vehicle to a possibly moving ref-

erence based on range measurements only. The resulting estimate then feeds a guidance law

that adjusts the vehicle heading while assuming that the surge velocity is constant.

• Implementation of an extended Kalman filter (EKF) and a particle filter (PF) for relative

localization and comparison of their performances. In general, the EKF performs better

than the PF for the parameters (modelled covariances for the EKF and approximation of

the likelihood for the PF) and the scenario considered. For EKF initialization, a combined

implementation of both filters was implemented to take advantage of the straightforward

initialization of the PF.

• Design of an alternative, sensor-based, guidance law to home the vehicle using range-only

measurements. It was demonstrated that homing does not require estimation and a guidance

law that only uses range measurements was derived. The guidance law makes the vehicle

track a defined gradient that has to take into account the vehicle velocity and the drift vec-

tor. Actually, only a rough notion of their absolute values is needed to drive the vehicle

towards the reference point. The robustness of the approach was demonstrated by means of

experimental data that validated the guidance law.

Chapter 5

• Derivation and formalization of a velocity control loop for generic marine vehicles. Addi-

tionally, the tracking performances of the velocity control loop were assessed by a focused

analysis of the error under model uncertainties.

• Development of a simple architecture (inner/outer loop) enabling straightforward imple-

mentation of guidance laws granting versatility of the approach, as demonstrated in the

implementation on TriMARES.

• Design of a target tracking and station-keeping guidance law for several types of underactu-

ated marine vehicles with different DOFs. An analysis on the tracking errors has also been

performed for this guidance law.
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Chapter 6

• Generalization of the control scheme by Egerstedt and Hu (2001) for centralized formation

control, while keeping the convergence properties.

• Particularization of the method to accommodate communication constraints, which include

intermittence, non-periodic exchange of data. Additionally, the control scheme makes the

formation tolerant to communication faults by holding its position in the case of prolonged

lack of feedback from one or more vehicles in the formation.

• Validation of the approach in real conditions using two coordinated autonomous surface

vehicle (ASV) and under different communication scenarios: high rate radio-based commu-

nications on the surface and low rate underwater acoustics communications.

Chapter 7

• Derivation of the optimal positions of TOA sensors that minimize the volume of the un-

certainty of an estimate by using the determinant of the Fisher information matrix (FIM),

which served as a metric to quantify the amount of information carried on each set of mea-

surements. The optimal position were derived for an unconstrained case, where the sensors

can be placed anywhere in three-dimensional space, and to the plane constrained case, where

the vehicles are constrained to lie in a plane to estimate the three-dimensional position of

the target.

• Design of a coordinated optimal solution to track and estimate the position of an acoustic

target underwater. The building blocks derived in the previous chapter have been used to

carry TOA sensors on a team of coordinated robots in a formation whose geometry uses the

results obtained from the derivation of the optimal positions of sensors.

• Validation of the target tracking and localization approach using a team of four heteroge-

neous ASVs.

8.2 Publications

The developments of the present thesis have naturally originated some publications. A list of

publications related to the work presented in this thesis and written during the Ph.D. program is

given below. Other publications less related to this thesis have been omitted. This list contains

both published and submitted publications. After each entry, a brief description of the paper is

provided.
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Conference papers

• Bruno M. Ferreira, Aníbal Matos, Helder S. Campos, Nuno A. Cruz. Localization of a sound

source: optimal positioning of sensors carried on autonomous surface vehicles. Proceedings

of the MTS/IEEE Oceans 2013 Conference, San Diego, CA, September 2013.

This work presents the results on plane constrained optimal positioning of TOA sensors

addressed in chapter 7. This paper has been selected to be part of the student poster compe-

tition held at the conference.

• Miguel Pinto, Bruno Ferreira, Heber Sobreira, Aníbal Matos, Nuno Cruz. Spline Navigation

and Reactive Collision Avoidance with COLREGs for ASVs. Proceedings of the MTS/IEEE

Oceans 2013 Conference, San Diego, CA, September 2013.

This work proposes a collision avoidance method using splines and reactive behaviors

that are based on the local automatic controllers presented in chapter 5.

• B. Ferreira, A. Matos, N. Cruz. Optimal positioning of autonomous marine vehicles for

underwater acoustic source localization using TOA measurements. Proceedings of 2013

IEEE International Underwater Technology Symposium (UT13).

This paper reports the results obtained for optimal positioning of TOA sensors in three-

dimensional space (unconstrained). Most of the developments are based on the first part of

the chapter 7.

• N. Cruz, A. Matos, B. Ferreira. Modular Building Blocks for the Development of AUVs

– from MARES to TriMARES. Proceedings of 2013 IEEE International Underwater Tech-

nology Symposium (UT13).

The modular architecture adopted in both the mechanical structure and in the software

designs is described in this paper. More concretely, the use of dynamic models and con-

trollers than can be adapted (off-line) is addressed and the method employed to “port” the

control software is explained.

• B. Ferreira, A. Matos, N. Cruz, R. Almeida. Towards cooperative localization of an acous-

tic pinger. Proceedings of the MTS/IEEE Oceans 2012 Conference, Hampton Roads, VA,

USA, October 2012.

A preliminary study on the effect of the relative positions of the TOA sensors, with re-

gard to the acoustic target, is presented. The study essentially employs simulations to come

up with some conclusions on where the target should be, given the positions of the TOA

sensors. This study also served as a motivation to chapter 7. This paper was also selected to
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be inserted in the student poster competition held at the conference and awarded the second

place.

• B. Ferreira, J. Jouffroy, A. Matos, N. Cruz. Control and guidance of a hovering AUV

pitching up or down. Proceedings of the MTS/IEEE Oceans 2012 Conference, Hampton

Roads, VA, USA, October 2012.

The control and guidance laws adopted to stabilize a hovering AUV in the vertical pose

and drive it horizontally at the same time are presented in this paper. Most the content is

based on chapter 3.

• N. Cruz, B. Ferreira, A. Matos, Chiara Petrioli, Roberto Petroccia, Daniele Spaccini. Im-

plementation of an Underwater Acoustic Network using Multiple Heterogeneous Vehicles.

Proceedings of the MTS/IEEE Oceans 2012 Conference, Hampton Roads, VA, USA, Octo-

ber 2012.

This joint work with researchers from La Sapienza University, Rome, Italy, reports the

preliminary implementation and tests of a mobile underwater acoustic network. Based on

the control and guidance laws proposed in 5, underwater and surface vehicles were com-

manded over the acoustic channel.

• B. Ferreira, A. Matos. Design of a framework for cooperative marine robots. Proceedings

of the StudECE - First PhD Student Conference on Electrical and Computers Engineering,

Porto, Portugal, June 2012.

Beyond the control solution proposed in 5, this short paper gives an overview on the

control architecture to achieve versatile maneuvers and on how to use it to coordinate au-

tonomous vehicles.

• Bruno M. Ferreira, Aníbal C. Matos, Nuno A. Cruz. Modeling and control of TriMARES

AUV. Proceedings of the Robotica 2012 Conference, Guimarães, Portugal, April 2012.

This paper mostly presents the model derived for the TriMARES AUV and its control

architecture, adapted from 5. Preliminary tests from field trials are also presented.

• Nuno A. Cruz, Aníbal C. Matos, Rui M. Almeida, Bruno M. Ferreira, Nuno Abreu. Tri-

MARES - A hybrid AUV/ROV for dam inspection. Proceedings of the MTS/IEEE Oceans

2011 Conference, Kona, Hawaii, pp.1-7, 19-22 Sept. 2011.

The design process of the TriMARES AUV is presented in this paper.
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• Bruno M. Ferreira, Aníbal C. Matos, Nuno A. Cruz (2011). Automatic reconfiguration and

control of the MARES AUV in the presence of a thruster fault. Proceedings of the IEEE

Oceans 2011 Conference, Santander, Spain, 4-6 June 2011.

An approach to detect, identify and accommodate possible thruster faults is proposed.

The detection and the identification are based on an EKF that utilizes a dynamics model to

predict the state. Two alternative control laws are proposed to control the MARES AUV

with one vertical thruster only, that is, assuming that the other is malfunctioning.

• Bruno M. Ferreira, Aníbal C. Matos, Nuno A. Cruz (2010). Single beacon navigation: local-

ization and control of the MARES AUV. Proceedings of the IEEE Oceans 2010 Conference,

Sydney, Australia, 2010.

The estimation approach to home an AUV to a beacon using range-only measurements

presented in chapter 4 is presented in this paper.

Journal papers and book chapter

• Bruno M. Ferreira, Aníbal C. Matos, Nuno A. Cruz, A. P. Moreira. Robust coordination of

multiple marine robots. Submitted, December 2013, IEEE Journal of Oceanic Engineering.

This article encompasses the coordination scheme extension in chapter 6.

• Nuno A. Cruz, Bruno M. Ferreira, Aníbal C. Matos. Ocean Observation With Coordinated

Robotic Platforms. Sea Technology, vol. 54, no. 5, May 2013.

This short paper summarizes the goals related with the use of coordinated autonomous

marine vehicles as well as some of the main achievements already accomplished.

• Nuno A. Cruz, Bruno M. Ferreira, Oleksiy Kebkal, Aníbal C. Matos, Chiara Petrioli, Roberto

Petroccia, Daniele Spaccini. Investigation of Underwater Acoustic Networking Enabling

the Cooperative Operation of Multiple Heterogeneous Vehicles. Marine Technology Soci-

ety Journal, vol. 47, no. 2, March/April 2013.

This is an extension of the conference paper Cruz et al. (2012) where the coordination

scheme proposed in chapter 6 has been used over acoustic communications and the perfor-

mances of the combined control solution and communication technology has been assessed

by means of data from field trials and simulations.

• Bruno M. Ferreira, Aníbal C. Matos, Nuno A. Cruz. Fault Tolerant Depth Control of the

MARES AUV. Challenges and Paradigms in Applied Robust Control, Andrzej Bartoszewicz

(ed.), ISBN: 978-953-307-33, October 2011.
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This book chapter is an extension of the conference paper to detect, identify and ac-

commodate possible faults in vertical thrusters of MARES AUV.

• Bruno M. Ferreira, Aníbal C. Matos, Nuno A. Cruz, A. P. Moreira. Homing a robot with

range-only measurements under unknown drifts. Submitted, August 2011, Re-submitted in

revised form, August 2013, Robotics and Autonomous Systems, Elsevier.

The sensor-based approach to home an AUV, as proposed in 4, is presented in this pa-

per. A brief comparison with the estimation-based approach is also carried out.

• Bruno M. Ferreira, Aníbal C. Matos, Nuno A. Cruz. Estimation approach for AUV naviga-

tion using a single acoustic beacon. Sea Technology, vol.51, no.12, December 2010.

The main ideas and the achievements obtained in the conference paper Ferreira et al.

(2010a) were summarized in this brief paper.

• Bruno M. Ferreira, Aníbal C. Matos, Nuno A. Cruz, Miguel A. Pinto. Modeling and Control

of the MARES Autonomous Underwater Vehicle. Marine Technology Society Journal, vol.

44, no. 2, March/April 2010.

This paper presents the preliminary design of the control laws and architecture of the

control and guidance layer posteriorly adapted on MARES.

8.3 Future work

Several avenues have been identified to further exploit the work presented in this thesis. Concern-

ing vertical pose control, it would be very interesting to control the roll angle so that the vehicle

direction can be controlled for all time. This would yield precise positioning which could be

used for docking using precise relative localization, for example. Such a precise docking could

be complemented with a prior homing to a docking-station, possibly using range measurements.

Regarding homing, there is room for exploring the impact of the parameters used in both EKF and

PF as well as the distribution approximation used by the PF. Moreover, the augmented estimate

vector including the drift vector in the PF would certainly improve the estimate.

Concerning the coordination of vehicles, an interesting avenue would be the implementation

of a weakly centralized method, with several virtual leaders and sub-formations. Furthermore,

the employment of roles and tasks assignment as used in several robotic applications such as

robotic soccer would permit versatile formations of vehicles and would improve robustness by

taking decisions according to the state of the formation, the goals of the mission and each vehicle

performances. Additionally, different implementations of the formation constraint function could

enable introducing new behaviors such as collision avoidance.
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Finally, the coordinated tracking and localization of underwater sound sources has a tremen-

dous potential in underwater navigation applications. Using acoustics communications, the local-

ization of an AUV equipped with an acoustic pinger and navigating underwater can be obtained

using a formation of vehicles on the surface, which subsequently can communicate to the pas-

sively listening AUV its position accurately, while following it. This enables bounded localization

error no matter where the AUV is nor the travelled distance, at the cost of being accompanied by

a formation of vehicles at the surface. Moreover, if communications are established between the

AUV and one of the ASVs and communications are guaranteed by means of radio to the ASV,

then a less intermittent and faster link can be obtained from the AUV to any external entity. In a

different but close context, the benefits of using the vertical channel to guarantee a communica-

tion link between an AUV and an ASV have been identified by Pascoal et al. (2000). The results

obtained in the last two chapters could be further exploited to coordinate and to improve the nav-

igation of an AUV: as seen in chapter 7, the optimal solution to localize an acoustic source using

TOA sensors at the surface is to have a sensor on the vertical line and the remaining distributed on

a circle. In the case where ASVs are used to cooperatively localize the AUV, the “central” ASV

may also compile the role of a communication and navigation aid (CNA) asset (see also Vaganay

et al. (2004)) that grants a communication link to the AUV and sends information on the AUV

externally estimated position or any other kind of relevant information during the mission.



Appendix A

Guidance laws for other DOFs
combinations

A.1 Controlled surge, heave and yaw rate

Choose r∗ as in (5.34). As t → ∞, the vehicle velocity component projected in the frame defined

by the positions of the target and of the vehicle, becomes

lim
t→∞

ϑ =−uc(θ +β )−ws(θ +β )

Define ζ as a virtual velocity control input and take

u∗ = ζ c(θ +β ) (A.1)

w∗ = ζ s(θ +β ) . (A.2)

The vehicle velocity component results

lim
t→∞

ϑ =−ζ

and, similarly to (5.37), choose

ζ = ϑD +ϑ ∗+Kρsat
(
ρ(t)−δ , µρ

)
(A.3)

which makes the distance dynamics

lim
t→∞

ρ̇(t) =−ζ +ϑD +ϑ ∗

=−Kρsat
(
ρ(t)−δ , µρ

)
. (A.4)

Clearly, the vehicle linearly converges to the desired position for ρ(t)≥ µρ and then exponentially

convergences to a sphere of radius δ around the desired position for ρ(t)< µρ .
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A.2 Controlled heave, pitch rate and yaw rate

The resulting control law is similar to the one presented for the case of controlled surge, pitch rate

and yaw rate. However, we will see that the heave direction will have to point towards the desired

position.

The yaw rate r∗ guidance law is taken as in (5.34) and the pitch rate control law as

q∗ = Kθ (θ +β − π
2
)− β̇ (A.5)

which makes the convergence of θ to −β + π
2 exponential:

θ = (θ0 +β0−
π
2
)e−Kθ t −β +

π
2
. (A.6)

Hence, it yields

lim
t→∞

ϑ = w.

Thus, setting

w∗ =−ϑD−ϑ ∗−Kρsat
(
ρ(t)−δ , µρ

)
(A.7)

and substituting into (5.32), the distance time derivative becomes

lim
t→∞

ρ̇(t) =−Kρsat
(
ρ(t)−δ , µρ

)
. (A.8)

A.3 Controlled surge, heave, pitch rate and yaw rate

With four DOFs, any of the control laws presented above can be applied, while leaving one of the

DOFs inactive. However a more suitable control law can be derived. Using the pitch rate and the

yaw rate control laws in (5.33) and (5.34), respectively and setting

u∗ = ζ (c(ψ−α)cθcβ + sθsβ ) (A.9)

w∗ = ζ (c(ψ−α)sθcβ + cθsβ ) (A.10)

with

ζ =−ϑD−ϑ ∗−Kρsat
(
ρ(t)−δ , µρ

)
.

This control law makes limt→∞ ρ̇(t) equal to (A.4). In addition to the combined control of surge

and heave, minor differences are introduced in this guidance law comparatively to (5.37) and

(A.7): in these control laws, the surge and heave velocities take the same magnitude of ϑD +ϑ ∗+
Kρsat

(
ρ(t)−δ , µρ

)
regardless of the azimuth and of the altitude. This means that initially the

vehicle may move in the opposite direction of the target during a short interval of time. With

the control law in (A.9)-(A.10) this is avoided, making the vehicle move backwards during the

corresponding instants. This raises some questions related to efficiency, which will be addressed

next.
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Efficiency considerations

In the kinematic guidance laws presented thus far, the surge and heave velocities (u∗ and w∗) may

be chosen so that the vehicle trajectory is shorter, which means that a less curvilinear trajectory

can be obtained during the initial time. For example, consider the guidance law (5.37). It is easy to

verify that the surge velocity is independent of the relative angle to the target. Hence, if the vehicle

points in the opposite direction of the target, it will move with positive surge velocity though it is

enlarging the distance from the target. Note that, without affecting the convergence properties, the

surge velocity can be set equal to (A.9) instead of (5.37) or (5.35), allowing backward motion if

the vehicle orientation points to the opposite direction of the target. The same applies to the heave

velocity, for which the control law in (A.10) can be used instead of (A.7).

Furthermore, backward motion may be undesired for marine vehicles as many thrusters are

asymmetric and consequently make the motion in one direction (supposed to be frontwards) much

more efficient than in the opposite. Therefore, without affecting the convergence of the vehicle,

an appropriate choice would be

u∗ =





ζ (c(ψ−α)cθcβ + sθsβ )

if c(ψ−α)cθcβ + sθsβ ≤ 0

0, else

(B.1)

w∗ =





ζ (c(ψ−α)sθcβ + cθsβ )

if c(ψ−α)sθcβ + cθsβ ≤ 0

0, else

(B.2)

with ζ = −ϑD−ϑ ∗−Kρsat
(
ρ(t)−δ , µρ

)
, instead of (5.37) or (A.9) and (A.7) or (A.10), re-

spectively.

Example B.1. In order to illustrate the control laws and their alternatives, the results of the

simulation considering the control laws in (5.37), (A.9) and (B.1) are presented. It was considered

that the heave is null w = w∗ = 0 and that surge, pitch and yaw are controlled. The trajectories

are depicted in the figure B.1 for the vehicle starting at the position [x y z]|t=t0 = [2 2 2] with initial
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Figure B.1: Comparison of trajectories for control law variants

orientation [θ ψ]|t=t0 = [π/4 π/4]. The gains considered are Kρ = 1, Kψ = Kθ = 0.5 and the

offset constant δ = 0.5.

The plot shows that when the orientation is not taken into consideration, the trajectory may

be larger than in the other cases. During the first instants, it is possible to confirm that allowing

the vehicle to move in the backwards, using (5.37), causes the trajectory not to coincide with that

obtained when the vehicle cannot move backwards as a result of using the control law in (B.1).

Although very similar, allowing backward motion may be inefficient for certain vehicles.



Appendix C

MARES model

The current reduced model of MARES is given in this section. The vehicle can have different

configurations resulting in different mathematical models (Cruz and Matos, 2008; Cruz et al.,

2013). Hence, here, the mathematical model for the configuration with a module that includes

an altimeter, a beam attenuation meter and a camera is presented. Since common configuration

changes mainly result in modifications of the length, weight and buoyancy, the model remains

similar, that is, in terms of non-null entries of the matrices, with changes on the values of the

parameters only. The values of the parameters shown hereafter are based on theoretical and semi-

empirical formulas. The reader is referred to (Hoerner, 1965; White, 2003; Fossen, 1994; Prestero,

2001) for further details.

It is assumed that the origin of the body-fixed frame coincides with the center of gravity of the

vehicles for all the forthcoming derivations. The reduced-order combined inertia and added mass

matrix M is given in (C.1). The derivation of the matrix of centripetal and Coriolis terms C(·),
resulting from the sum of the terms from rigid-body from inertia matrix and from added mass, is

straightforward from Fossen (1994) and is given in (C.2).

M =




m−Xu̇ 0 0 0 −Xq̇ 0

0 m−Yv̇ 0 −Yṗ 0 −Yṙ

0 0 m−Zẇ 0 −Zq̇ 0

0 −Kv̇ 0 Ixx−Kṗ 0 0

−Mu̇ 0 −Mż 0 Iyy−Mq̇ 0

0 −Nv̇ 0 0 0 Izz−Nṙ




(C.1)

163



164 MARES model

C(ν) =




0 −mr mq

mr 0 −mp

−mq mp 0

0 −Zẇw−Zq̇q +Yv̇v+Yṗ p+Yṙr

+Zẇw+Zq̇q 0 −Xu̇u−Xq̇q

−Yv̇v−Yṗ p−Yṙr +Xu̇u+Xq̇q 0

0 −Zẇw−Zq̇q +Yv̇v+Yṗ p+Yṙr

+Zẇw+Zq̇q 0 −Xu̇u−Xq̇q

−Yv̇v−Yṗ p−Yṙr +Xu̇u+Xq̇q 0

0 Izzr−Yṙv−Nṙr −Iyyq+Xq̇u+Zq̇w+Mq̇q

−Izzr+Yṙv+Nṙr 0 Ixx p−Yṗv−Kṗ p

Iyyq−Xq̇u−Zq̇w−Mq̇q −Ixx p+Yṗv+Kṗ p 0




(C.2)

D(ν) =−




Xu|u||u| 0 0 0 Xq|q||q| 0

0 Yv|v||v| 0 Yp|p||p| 0 Yr|r||r|
0 0 Zw|w||w| 0 Zq|q||q| 0

0 Kv|v||v| 0 Kp|p||p| 0 0

Mu|u||u| 0 Mw|w||w| 0 Mq|q||q| 0

0 Nv|v||v| 0 0 0 Nr|r||r|




(C.3)

g(η) = g(ηa) =




(W −B)sinθ
−(W −B)cosθ sinφ
−(W −B)cos(θ)cosφ

yBBcosθ cosφ − zBBcosθ sinφ
−zBBsinθ − xBBcosθ cosφ
xBBcosθ sinφ + yBBsinθ




, (C.4)

P =

[
d1 ... dna

r1×d1 ... rna×dna

]
=




1 1 0 0

0 0 0 0

0 0 1 1

0 0 0 0

z1 z2 x3 x4

−y1 −y2 0 0




(C.5)

Regarding the viscous damping matrix, it is assumed that linear components of damping are

negligible for the velocity under consideration. Similarly, the terms higher than second order are

also considered to be small enough to be neglected. Therefore, the resulting nonlinear viscous

damping matrix is expressed in (C.3).

The matrix mapping the forces exerted by the thrusters in the vector of forces and moments

expressed in the body-fixed frame is given in C.5.
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Table C.1: Added mass coefficients

Coefficient Value Units
Xu̇ −2.64 ·100 kg
Yv̇, Zẇ −4.81 ·101 kg
Kṗ −1.56 ·10−2 kg·m2/rad
Mq̇, Nṙ −9.61 ·100 kg·m2/rad
Yṗ, Kv̇ 3.07 ·10−3 kg·m/rad, kg·m
Yṙ, −Zq̇, −Mẇ, Nv̇ 1.20 ·100 kg·m/rad, kg·m
Xq̇, Mu̇ −3.07 ·10−3 kg·m/rad, kg·m

Table C.2: Viscous damping coefficients

Coefficient Value Units
Xu|u| −1.02 ·101 kg/m
Yv|v| −1.34 ·102 kg/m
Zw|w| −1.29 ·102 kg/m
Kp|p| −2.52 ·10−2 kg·m2/rad2

Mq|q| −1.72 ·101 kg·m2/rad2

Nr|r| −1.80 ·101 kg·m2/rad2

Xq|q| 4.37 ·10−3 kg·m/rad
Yp|p| −4.37 ·10−3 kg·m/rad
Yr|r| −1.44 ·100 kg·m/rad
Zq|q| 1.32 ·100 kg·m/rad
Kv|v| 1.85 ·10−1 kg
Mu|u| −1.85 ·10−1 kg
Mw|w| −2.07 ·100 kg
Nv|v| −2.17 ·100 kg



166 MARES model

Table C.3: Parameters

Parameter Value Units
m 3.61 ·101 kg
W 3.54 ·102 N
B 3.56 ·102 N
xB, yB 0 m
zB −3.63 ·10−3 m
z1,z2 −3.63 ·10−3 m
y1,−y2 −1.09 ·10−1 m
x3 −4.32 ·10−1 m
x4 4.38 ·10−1 m

The vector of restoring forces and moments is given in Fossen (1994), and is easily reduced to

(C.4), where W and B denote the weight and the buoyancy forces, respectively.

The values of the parameters of the Coriolis and centriptal matrix and of the damping matrix

are listed in tables C.1 and C.2, respectively. The remaining coefficients of the added mass matrix

and of the restoring forces and moments vector are given in table C.3

Table C.4: Inertia tensors

Parameter Value Units
Ixx 2.04 ·10−1 kg· m2

Iyy 8.96 ·100 kg· m2

Izz 8.96 ·100 kg· m2



Appendix D

TriMARES model

Apart from the matrix that maps the forces exerted by the thrusters on the body-fixed frame axes,

which is given in (D.1), the model of TriMARES takes the same form as the model of MARES,

given in C. Therefore, this specific model differs only on the values of the parameters, which are

listed below in the corresponding tables.

P =




1 1 1 1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 0

z1 z2 z3 z4 0 x6 x7

y1 y2 y3 y4 −x5 0 0




(D.1)

Table D.1: Added mass coefficients

Coefficient Value Units
Xu̇ −5.87 ·100 kg
Yv̇, Zẇ −1.11 ·102 kg
Kṗ −1.90 ·102 kg·m2/rad
Mq̇, Nṙ −1.26 ·101 kg·m2/rad
Yṗ, Kv̇ −5.59 ·101 kg·m/rad, kg·m
Yṙ, −Zq̇, −Mẇ, Nv̇ −5.00 ·100 kg·m/rad, kg·m
Xq̇, Mu̇ 3.02 ·100 kg·m/rad, kg·m
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Table D.2: Viscous damping coefficients

Coefficient Value Units
Xu|u| −3.24 ·101 kg/m
Yv|v| −3.03 ·102 kg/m
Zw|w| −3.27 ·102 kg/m
Kp|p| −1.22 ·100 kg·m2/rad2

Mq|q| −1.75 ·101 kg·m2/rad2

Nr|r| −1.64 ·101 kg·m2/rad2

Xq|q| 9.52 ·10−2 kg·m/rad
Yp|p| −6.32 ·100 kg·m/rad
Yr|r| −5.87 ·100 kg·m/rad
Zq|q| 7.20 ·100 kg·m/rad
Kv|v| 1.92 ·10−1 kg
Mu|u| 7.27 ·10−1 kg
Mw|w| 1.31 ·101 kg
Nv|v| −1.08 ·101 kg

Table D.3: Parameters

Parameter Value Units
m 1.1 ·102 kg
W 7.84 ·102 N
B 7.87 ·102 N
xB, yB 0 m
zB −3.50 ·10−2 m
z1,z2 −4.69 ·10−2 m
z3,z4 9.97 ·10−2 m
y1,−y2 2.29 ·10−1 m
y3,−y4 7.67 ·10−2 m
x3 −4.32 ·10−1 m
x4 4.38 ·10−1 m
x7 −4.38 ·10−1 m

Table D.4: Inertia tensors

Parameter Value Units
Ixx 5.68 ·100 kg· m2

Iyy 1.03 ·101 kg· m2

Izz 1.23 ·101 kg· m2



Appendix E

Zarco and Gama model

Since Zarco and Gama are very similar vehicles, their model is assumed to be the same. Struc-

turally, the model is similar to the one presented for MARES in C. Besides the dissimilar values

that the parameters take, for Zarco and Gama, the restoring forces and moments vector are con-

sidered to be null and some cross-coupling effects are considered negligible. In particular, the

coupling between sway and roll, heave and sway and surge and pitch are considered null. For

completeness, the matrices composing the model are presented next.

M =




m−Xu̇ 0 0 0 0 0

0 m−Yv̇ 0 0 0 −Yṙ

0 0 m−Zẇ 0 0 0

0 0 0 Ixx−Kṗ 0 0

0 0 0 0 Iyy−Mq̇ 0

0 −Nv̇ 0 0 0 Izz−Nṙ




(E.1)

C(ν) =




0 −mr mq

mr 0 −mp

−mq mp 0

0 −Zẇw +Yv̇v+Yṙr

+Zẇw 0 −Xu̇u

−Yv̇v−Yṙr +Xu̇u 0

0 −Zẇw +Yv̇v+Yṙr

+Zẇw 0 −Xu̇u

−Yv̇v−Yṙr +Xu̇u 0

0 Izzr−Yṙv−Nṙr −Iyyq+Mq̇q

−Izzr+Yṙv+Nṙr 0 Ixx p−Kṗ p

Iyyq−Mq̇q −Ixx p+Kṗ p 0




(E.2)
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Table E.1: Added mass coefficients

Coefficient Value Units
Xu̇ −5.5 ·100 kg
Yv̇, Zẇ −6.74 ·101 kg
Kṗ −1.08 ·101 kg·m2/rad
Mq̇, Nṙ −1.39 ·101 kg·m2/rad
Yṗ, Kv̇ −5.59 ·101 kg·m/rad, kg·m
Yṙ, −Zq̇, −Mẇ, Nv̇ 3.36 ·100 kg·m/rad, kg·m
Xq̇, Mu̇ 3.02 ·100 kg·m/rad, kg·m

D(ν) =−




Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 Yr|r||r|
0 0 Zw|w||w| 0 0 0

0 0 0 Kp|p||p| 0 0

0 0 0 0 Mq|q||q| 0

0 Nv|v||v| 0 0 0 Nr|r||r|




(E.3)

P =




1 1

0 0

0 0

0 0

0 0

−y1 −y2




(E.4)

The parameters of the matrices are given in tables E.1,E.2, E.3 and E.4.
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Table E.2: Viscous damping coefficients

Coefficient Value Units
Xu|u| −3.07 ·101 kg/m
Yv|v| −1.29 ·102 kg/m
Zw|w| −3.32 ·102 kg/m
Kp|p| −2.32 ·101 kg·m2/rad2

Mq|q| −2.20 ·101 kg·m2/rad2

Nr|r| −1.17 ·101 kg·m2/rad2

Yr|r| −7.12 ·100 kg·m/rad
Nv|v| −1.12 ·100 kg

Table E.3: Parameters

Parameter Value Units
m 5.5 ·101 kg
z1,z2 5.00 ·10−1 m
y1,−y2 −2.45 ·10−1 m

Table E.4: Inertia tensors

Parameter Value Units
Ixx 5.5 ·10−1 kg· m2

Iyy 8.28 ·100 kg· m2

Izz 7.73 ·100 kg· m2
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Appendix F

BASV model

Because of their similar design in terms of actuators and symmetries, the BASV and Zarco have

similar models, taking the same forms of model matrices. In this thesis, it was considered that

only the coefficients varied. As such, the matrices composing the model will not be exposed

again. Only the parameters are given hereafter.

Table F.1: Added mass coefficients

Coefficient Value Units
Xu̇ −1.1 ·100 kg
Yv̇, Zẇ −1.24 ·101 kg
Kṗ −5.8 ·10−2 kg·m2/rad
Mq̇, Nṙ −4.24 ·10−1 kg·m2/rad
Yṗ, Kv̇ −5.59 ·101 kg·m/rad, kg·m
Yṙ, −Zq̇, −Mẇ, Nv̇ −1.77 ·10−1 kg·m/rad, kg·m
Xq̇, Mu̇ 3.02 ·100 kg·m/rad, kg·m
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Table F.2: Viscous damping coefficients

Coefficient Value Units
Xu|u| −7.81 ·100 kg/m
Yv|v| −4.94 ·101 kg/m
Zw|w| −2.31 ·102 kg/m
Kp|p| −9.86 ·100 kg·m2/rad2

Mq|q| −4.41 ·100 kg·m2/rad2

Nr|r| −2.38 ·10−1 kg·m2/rad2

Xq|q| 9.52 ·10−2 kg·m/rad
Yp|p| −6.32 ·100 kg·m/rad
Yr|r| −2.79 ·10−1 kg·m/rad
Zq|q| 7.20 ·100 kg·m/rad
Kv|v| 1.92 ·10−1 kg
Mu|u| 7.27 ·10−1 kg
Mw|w| 1.31 ·101 kg
Nv|v| −1.98 ·100 kg

Table F.3: Parameters

Parameter Value Units
m 1.1 ·101 kg
W 7.84 ·102 N
B 7.87 ·102 N
xB, yB 0 m
zB −3.50 ·10−2 m
z1,z2 0 ·10−1 m
y1,−y2 −1.48 ·10−1 m
x3 −4.32 ·10−1 m
x4 4.38 ·10−1 m

Table F.4: Inertia tensors

Parameter Value Units
Ixx 3.3 ·10−1 kg· m2

Iyy 5.08 ·10−1 kg· m2

Izz 3.98 ·10−1 kg· m2



Appendix G

LASV model

As for the BASV, the model is assumed to be similar to the presented in appendix E. Only the

parameters and coefficients differ. These are listed in the following tables.

Table G.1: Added mass coefficients

Coefficient Value Units
Xu̇ −2.8 ·100 kg
Yv̇, Zẇ −2.93 ·101 kg
Kṗ −1.08 ·101 kg·m2/rad
Mq̇, Nṙ −3.49 ·100 kg·m2/rad
Yṗ, Kv̇ −5.59 ·101 kg·m/rad, kg·m
Yṙ, −Zq̇, −Mẇ, Nv̇ −2.51 ·10−1 kg·m/rad, kg·m
Xq̇, Mu̇ 3.02 ·100 kg·m/rad, kg·m
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Table G.2: Viscous damping coefficients

Coefficient Value Units
Xu|u| −7.23 ·100 kg/m
Yv|v| −1.28 ·102 kg/m
Zw|w| −1.77 ·102 kg/m
Kp|p| −2.32 ·101 kg·m2/rad2

Mq|q| −9.74 ·100 kg·m2/rad2

Nr|r| −7.22 ·100 kg·m2/rad2

Xq|q| 9.52 ·10−2 kg·m/rad
Yp|p| −6.32 ·100 kg·m/rad
Yr|r| 1.19 ·100 kg·m/rad
Zq|q| 7.20 ·100 kg·m/rad
Kv|v| 1.92 ·10−1 kg
Mu|u| 7.27 ·10−1 kg
Mw|w| 1.31 ·101 kg
Nv|v| 5.22 ·100 kg

Table G.3: Parameters

Parameter Value Units
m 2.8 ·101 kg
W 7.84 ·102 N
B 7.87 ·102 N
xB, yB 0 m
zB −3.50 ·10−2 m
z1,z2 0 ·10−1 m
y1,−y2 −1.48 ·10−1 m
x3 −4.32 ·10−1 m
x4 4.38 ·10−1 m

Table G.4: Inertia tensors

Parameter Value Units
Ixx 1.41 ·100 kg· m2

Iyy 3.12 ·100 kg· m2

Izz 2.54 ·100 kg· m2
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