75,176 research outputs found

    Sum of Products of Read-Once Formulas

    Get PDF
    We study limitations of polynomials computed by depth two circuits built over read-once formulas (ROFs). In particular, 1. We prove an exponential lower bound for the sum of ROFs computing the 2n-variate polynomial in VP defined by Raz and Yehudayoff [CC,2009]. 2. We obtain an exponential lower bound on the size of arithmetic circuits computing sum of products of restricted ROFs of unbounded depth computing the permanent of an n by n matrix. The restriction is on the number of variables with + gates as a parent in a proper sub formula of the ROF to be bounded by sqrt(n). Additionally, we restrict the product fan in to be bounded by a sub linear function. This proves an exponential lower bound for a subclass of possibly non-multilinear formulas of unbounded depth computing the permanent polynomial. 3. We also show an exponential lower bound for the above model against a polynomial in VP. 4. Finally we observe that the techniques developed yield an exponential lower bound on the size of sums of products of syntactically multilinear arithmetic circuits computing a product of variable disjoint linear forms where the bottom sum gate and product gates at the second level have fan in bounded by a sub linear function. Our proof techniques are built on the measure developed by Kumar et al.[ICALP 2013] and are based on a non-trivial analysis of ROFs under random partitions. Further, our results exhibit strengths and provide more insight into the lower bound techniques introduced by Raz [STOC 2004]

    Representation theory of sl(2|1)

    Full text link
    In this note we present a complete analysis of finite dimensional representations of the Lie superalgebra sl(2|1). This includes, in particular, the decomposition of all tensor products into their indecomposable building blocks. Our derivation makes use of a close relation with the representation theory of gl(1|1) for which analogous results are described and derived.Comment: 26pp, v2: minor typos correcte

    Jacobian hits circuits: Hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits

    Full text link
    We present a single, common tool to strictly subsume all known cases of polynomial time blackbox polynomial identity testing (PIT) that have been hitherto solved using diverse tools and techniques. In particular, we show that polynomial time hitting-set generators for identity testing of the two seemingly different and well studied models - depth-3 circuits with bounded top fanin, and constant-depth constant-read multilinear formulas - can be constructed using one common algebraic-geometry theme: Jacobian captures algebraic independence. By exploiting the Jacobian, we design the first efficient hitting-set generators for broad generalizations of the above-mentioned models, namely: (1) depth-3 (Sigma-Pi-Sigma) circuits with constant transcendence degree of the polynomials computed by the product gates (no bounded top fanin restriction), and (2) constant-depth constant-occur formulas (no multilinear restriction). Constant-occur of a variable, as we define it, is a much more general concept than constant-read. Also, earlier work on the latter model assumed that the formula is multilinear. Thus, our work goes further beyond the results obtained by Saxena & Seshadhri (STOC 2011), Saraf & Volkovich (STOC 2011), Anderson et al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet et al. (FSTTCS 2011), and brings them under one unifying technique. In addition, using the same Jacobian based approach, we prove exponential lower bounds for the immanant (which includes permanent and determinant) on the same depth-3 and depth-4 models for which we give efficient PIT algorithms. Our results reinforce the intimate connection between identity testing and lower bounds by exhibiting a concrete mathematical tool - the Jacobian - that is equally effective in solving both the problems on certain interesting and previously well-investigated (but not well understood) models of computation

    Towards Verifying Nonlinear Integer Arithmetic

    Full text link
    We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n^{O(1)} size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result

    Faster Deterministic Algorithms for Packing, Matching and tt-Dominating Set Problems

    Full text link
    In this paper, we devise three deterministic algorithms for solving the mm-set kk-packing, mm-dimensional kk-matching, and tt-dominating set problems in time O(5.44mk)O^*(5.44^{mk}), O(5.44(m1)k)O^*(5.44^{(m-1)k}) and O(5.44t)O^*(5.44^{t}), respectively. Although recently there has been remarkable progress on randomized solutions to those problems, our bounds make good improvements on the best known bounds for deterministic solutions to those problems.Comment: ISAAC13 Submission. arXiv admin note: substantial text overlap with arXiv:1303.047

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve
    corecore