12,836 research outputs found

    Algebraic stability analysis of constraint propagation

    Full text link
    The divergence of the constraint quantities is a major problem in computational gravity today. Apparently, there are two sources for constraint violations. The use of boundary conditions which are not compatible with the constraint equations inadvertently leads to 'constraint violating modes' propagating into the computational domain from the boundary. The other source for constraint violation is intrinsic. It is already present in the initial value problem, i.e. even when no boundary conditions have to be specified. Its origin is due to the instability of the constraint surface in the phase space of initial conditions for the time evolution equations. In this paper, we present a technique to study in detail how this instability depends on gauge parameters. We demonstrate this for the influence of the choice of the time foliation in context of the Weyl system. This system is the essential hyperbolic part in various formulations of the Einstein equations.Comment: 25 pages, 5 figures; v2: small additions, new reference, publication number, classification and keywords added, address fixed; v3: update to match journal versio

    Explicit local time-stepping methods for time-dependent wave propagation

    Get PDF
    Semi-discrete Galerkin formulations of transient wave equations, either with conforming or discontinuous Galerkin finite element discretizations, typically lead to large systems of ordinary differential equations. When explicit time integration is used, the time-step is constrained by the smallest elements in the mesh for numerical stability, possibly a high price to pay. To overcome that overly restrictive stability constraint on the time-step, yet without resorting to implicit methods, explicit local time-stepping schemes (LTS) are presented here for transient wave equations either with or without damping. In the undamped case, leap-frog based LTS methods lead to high-order explicit LTS schemes, which conserve the energy. In the damped case, when energy is no longer conserved, Adams-Bashforth based LTS methods also lead to explicit LTS schemes of arbitrarily high accuracy. When combined with a finite element discretization in space with an essentially diagonal mass matrix, the resulting time-marching schemes are fully explicit and thus inherently parallel. Numerical experiments with continuous and discontinuous Galerkin finite element discretizations validate the theory and illustrate the usefulness of these local time-stepping methods.Comment: overview paper, typos added, references updated. arXiv admin note: substantial text overlap with arXiv:1109.448

    Computing Solution Operators of Boundary-value Problems for Some Linear Hyperbolic Systems of PDEs

    Full text link
    We discuss possibilities of application of Numerical Analysis methods to proving computability, in the sense of the TTE approach, of solution operators of boundary-value problems for systems of PDEs. We prove computability of the solution operator for a symmetric hyperbolic system with computable real coefficients and dissipative boundary conditions, and of the Cauchy problem for the same system (we also prove computable dependence on the coefficients) in a cube Q⊆RmQ\subseteq\mathbb R^m. Such systems describe a wide variety of physical processes (e.g. elasticity, acoustics, Maxwell equations). Moreover, many boundary-value problems for the wave equation also can be reduced to this case, thus we partially answer a question raised in Weihrauch and Zhong (2002). Compared with most of other existing methods of proving computability for PDEs, this method does not require existence of explicit solution formulas and is thus applicable to a broader class of (systems of) equations.Comment: 31 page
    • …
    corecore