The divergence of the constraint quantities is a major problem in
computational gravity today. Apparently, there are two sources for constraint
violations. The use of boundary conditions which are not compatible with the
constraint equations inadvertently leads to 'constraint violating modes'
propagating into the computational domain from the boundary. The other source
for constraint violation is intrinsic. It is already present in the initial
value problem, i.e. even when no boundary conditions have to be specified. Its
origin is due to the instability of the constraint surface in the phase space
of initial conditions for the time evolution equations. In this paper, we
present a technique to study in detail how this instability depends on gauge
parameters. We demonstrate this for the influence of the choice of the time
foliation in context of the Weyl system. This system is the essential
hyperbolic part in various formulations of the Einstein equations.Comment: 25 pages, 5 figures; v2: small additions, new reference, publication
number, classification and keywords added, address fixed; v3: update to match
journal versio