9 research outputs found

    Union Types for Semistructured Data

    Get PDF
    Semistructured databases are treated as dynamically typed: they come equipped with no independent schema or type system to constrain the data. Query languages that are designed for semistructured data, even when used with structured data, typically ignore any type information that may be present. The consequences of this are what one would expect from using a dynamic type system with complex data: fewer guarantees on the correctness of applications. For example, a query that would cause a type error in a statically typed query language will return the empty set when applied to a semistructured representation of the same data. Much semistructured data originates in structured data. A semistructured representation is useful when one wants to add data that does not conform to the original type or when one wants to combine sources of different types. However, the deviations from the prescribed types are often minor, and we believe that a better strategy than throwing away all typ..

    Regular Expression Types for XML

    Get PDF
    We propose regular expression types as a foundation for statically typed XML processing languages. Regular expression types, like most schema languages for XML, introduce regular expression notations such as repetition (*), alternation (|), etc., to describe XML documents. The novelty of our type system is a semantic presentation of subtyping, as inclusion between the sets of documents denoted by two types. We give several examples illustrating the usefulness of this form of subtyping in XML processing. The decision problem for the subtype relation reduces to the inclusion problem between tree automata, which is known to be EXPTIME-complete. To avoid this high complexity in typical cases, we develop a practical algorithm that, unlike classical algorithms based on determinization of tree automata, checks the inclusion relation by a top-down traversal of the original type expressions. The main advantage of this algorithm is that it can exploit the property that type expressions being compared often share portions of their representations. Our algorithm is a variant of Aiken and Murphy\u27s set-inclusion constraint solver, to which are added several new implementation techniques, correctness proofs, and preliminary performance measurements on some small programs in the domain of typed XML processing

    Subtyping with union types, intersection types and recursive types II

    Get PDF
    Disponible dans les fichiers attachés à ce documen

    A type-theoretic framework for software component synthesis

    Get PDF
    A language-agnostic approach for type-based component-oriented software synthesis is developed from the fundamental principles of abstract algebra and Combinatory Logic. It relies on an enumerative type inhabitation algorithm for Finite Combinatory Logic with Intersection Types (FCL) and a universal algebraic construction to translate terms of Combinatory Logic into any given target language. New insights are gained on the combination of semantic domains of discourse with intersection types. Long standing gaps in the algorithmic understanding of the type inhabitation question of FCL are closed. A practical implementation is developed and its applications by the author and other researchers are discussed. They include, but are not limited to, vast improvements in the context of synthesis of software product line members. An interactive theorem prover, Coq, is used to formalize and check all the theoretical results. This makes them more reusable for other developments and enhances confidence in their correctness.Es wird ein sprachunabhängiger Ansatz für die typbasierte und komponentenorientierte Synthese von Software entwickelt. Hierzu werden grundlegende Erkenntnisse über abstrakte Algebra und kombinatorische Logik verwendet. Der Ansatz beruht auf dem enumerativen Typinhabitationsproblem der endlichen kombinatorischen Logik mit Intersektionstypen, sowie einer universellen algebraischen Konstruktion, um Ergebnisterme in jede beliebe Zielsprache übersetzen zu können. Es werden neue Einblicke gewonnen, wie verschiedene semantische Domänen des Diskurses über Softwareeigenschaften miteinander verbunden werden können. Offene Fragestellungen im Zusammenhand mit der Algorithmik des Typinhabitationsproblems für Intersektionstypen werden beantwortet. Eine praktische Implementierung des Ansatzes wird entwickelt und ihre bisherigen Anwendungen durch den Autor und andere Wissenschaftler werden diskutiert. Diese beinhalten starke Verbesserungen im Zusammenhang mit der Synthese von Ausprägungen von Software Produktlinien. Ein interaktiver Theorembeweiser wir genutzt, um alle Ergebnisse der Arbeit zu formalisieren und mechanisch zu überprüfen. Dies trägt zum einen zur Wiederverwendbarkeit der theoretischen Ergebnisse in anderen Kontexten bei, und erhöht zum andern das Vertrauen in ihre Korrektheit

    Subtyping with Union Types, Intersection Types and Recursive Types II

    No full text
    : This paper is a follow-up on previous work by the author on subtyping with (set-theoretic) union, intersection and recursive types. Previously, it was shown how types may be encoded as regular tree expressions/set constraints. This gave rise to a sound and complete decision procedure for type inclusion. The result was, however, limited to a rather specific type language. In the work reported on here, we generalize the result and develop a general technique for deriving subtyping algorithms for type languages with union, intersection and recursive types. We present separate requirements for obtaining a subtyping algorithm which is respectively sound and complete. In this way we obtain a generic strategy for implementing the subtype relation for a broad class of very expressive type languages. Key-words: Type theory, Regular tree expressions, Set constraints, Algorithms, Semantics, Ideal model, Intersection types, Union types, Recursive types (R'esum'e : tsvp) The author is partiall..
    corecore