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Univerzitet u Novom Sadu, Serbia

Jovanka Pantović
Univerzitet u Novom Sadu, Serbia

Nobuko Yoshida
Imperial College London‡

The notion of subtyping has gained an important role both in theoretical and applicative domains: in
lambda and concurrent calculi as well as in programming languages. The soundness and the com-
pleteness, together referred to as the preciseness of subtyping, can be considered from two different
points of view: operational and denotational. The former preciseness has been recently developed
with respect to type safety, i.e. the safe replacement of a term of a smaller type when a term of a
bigger type is expected. The latter preciseness is based on the denotation of a type which is a math-
ematical object that describes the meaning of the type in accordance with the denotations of other
expressions from the language. The result of this paper is the operational and denotational precise-
ness of the subtyping for a synchronous multiparty session calculus. The novelty of this paper is the
introduction of characteristic global types to prove the operational completeness.

1 Introduction
In modelling distributed systems, where many processes interact by means of message passing, one
soon realises that most interactions are meant to occur within the scope of private channels according
to disciplined protocols. Following [13], we call such private interactionsmultiparty sessionsand the
protocols that describe themmultiparty session types.

The ability to describe complex interaction protocols by means of a formal, simple and yet expressive
type language can have a profound impact on the way distributed systems are designed and developed.
This is witnessed by the fact that some important standardisation bodies for web-based business and
finance protocols [2, 22, 20] have recently investigated design and implementation frameworks for spec-
ifying message exchange rules and validating business logic based on the notion of multiparty sessions,
where multiparty session types are “shared agreements” between teams of programmers developing pos-
sibly large and complex distributed protocols or software systems.

Subtypinghas been extensively studied as one of the most interesting issues in type theory. The
correctness of subtyping relations has been usually provided as the operational soundness: IfT is a
subtype ofT′ (notationT ≤ T′), then a term of typeT may be provided whenever a term of typeT′ is
needed, see [19] (Chapter 15) and [9] (Chapter 23). The converse direction, the operational completeness,
has been largely ignored in spite of its usefulness to define the greatest subtyping relation ensuring type
safety. If [[T]] is the set interpretating typeT, then a subtyping is denotationally sound whenT ≤ T′

implies [[T]] ⊆ [[T′]] and denotationally complete when[[T]] ⊆ [[T′]] impliesT ≤ T′. Precisenessmeans
both soundness and completeness.
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Operational preciseness has been first introduced in [16] for a call-by-valueλ -calculus with sum,
product and recursive types. Both operational and denotational preciseness have been studied in [7] for
a λ -calculus with choice and parallel constructors [6] and in [3] for binary sessions [21].

These facts ask for investigating precise subtyping for multiparty session types, the subject of this pa-
per. Subtyping for session calculi can be defined to assure safety of substitutability of either channels [8]
or processes [5]. We claim that substitutability of processes better fits the notion of preciseness.

We show the operational and denotational preciseness of thesubtyping introduced in [5] for a simpli-
fication of the synchronous multiparty session calculus in [15]. For the operational preciseness we take
the view that well-typed sessions never get stuck. For the denotational preciseness we interpret a type as
the set of processes having that type.

The most technical challenge is the operational completeness, which requires a non trivial extension
of the method used in the case of binary sessions. The core of this extension is the construction of
characteristic global types.

Outline The calculus and its type system are introduced in Sections 2and 3, respectively. Sections 4
and 6 contain the proofs of operational and denotational preciseness. Section 5 illustrates the operational
preciseness by means of an example. Some concluding remarksare the content of Section 7.

2 Synchronous Multiparty Session Calculus
This section introduces syntax and semantics of a synchronous multiparty session calculus. Since our
focus is on subtyping, we simplify the calculus in [15] eliminating both shared channels for session
initiations and session channels for communications inside sessions. We conjecture the preciseness of
the subtyping in [5] also for the full calculus, but we could not use the present approach for the proof,
since well-typed interleaved sessions can be stuck [4].

Syntax A multiparty sessionis a series of interactions between a fixed number of participants, possibly
with branching and recursion, and serves as a unit of abstraction for describing communication protocols.

We use the following base sets:values, ranged over byv,v′, . . .; expressions, ranged over bye,e′, . . .;
expression variables, ranged over byx,y,z. . . ; labels, ranged over byℓ,ℓ′, . . . ; session participants,
ranged over byp,q, . . .; process variables, ranged over byX,Y, . . . ; processes, ranged over byP,Q, . . . ;
andmultiparty sessions, ranged over byM ,M ′, . . . .

The values are natural numbersn, integersi, and boolean valuestrue andfalse. The expressionse are
variables or values or expressions built from expressions by applying the operatorssucc,neg,¬,⊕, or
the relation> . An evaluation contextE is an expression with exactly one hole, built in the same manner
from expressions and the hole.

ProcessesP are defined by:

P ::= p?ℓ(x).P || p!ℓ(e).P || P+P || if e then P else P || µX.P || X || 0

The input processp?ℓ(x).P waits for an expression with labelℓ from participantp and the output
processq!ℓ(e).Q sends the value of expressione with labelℓ to participantq. The external choiceP+Q
offers to choose eitherP or Q. The processµX.P is a recursive process. We take an equi-recursive view,
not distinguishing between a processµX.P and its unfoldingP{µX.P/X}. We assume that the recursive
processes are guarded, i.e.µX.X is not a process.

A multiparty sessionM is a parallel composition of pairs (denoted byp ⊳P) of participants and
processes:

M ::= p⊳P || M | M
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succ(n) ↓ (n+1) neg(i) ↓ (−i) ¬true ↓ false ¬false ↓ true v ↓ v

(i1 > i2) ↓

{

true if i1 > i2,

false otherwise

e1 ↓ v or e2 ↓ v

e1⊕ e2 ↓ v

e ↓ v E (v) ↓ v′

E (e) ↓ v′

Table 1: Expression evaluation.

[S-EXTCH 1]
P+Q≡ Q+P

[S-EXTCH 2]
(P+Q)+R≡ P+(Q+R)

[S-MULTI ]
P≡ Q⇒ p⊳P≡ p⊳Q

[S-PAR 1]
p⊳0 | M ≡ M

[S-PAR 2]
M | M ′ ≡ M

′ | M
[S-PAR 3]
(M | M ′) | M ′′ ≡ M | (M ′ | M ′′)

Table 2: Structural congruence.

We will use ∑
i∈I

Pi as short forP1+ . . .+Pn, and ∏
i∈I

pi ⊳Pi as short forp1 ⊳P1 | . . . | pn ⊳Pn, whereI =

{1, . . . ,n}.

If p ⊳P is well typed (see Table 8), then participantp does not occur in processP, since we do not
allow self-communications.

Operational semantics The valuev of expressione (notatione ↓ v) is as expected, see Table 1. The
successor operationsucc is defined only on natural numbers, the negationneg is defined on integers
(and then also on natural numbers), and¬ is defined only on boolean values. The internal choicee1⊕ e2

evaluates either to the value ofe1 or to the value ofe2.

The computational rules of multiparty sessions(Table 3) are closed with respect to the structural
congruence defined in Table 2 and the following reduction contexts:

C [·] ::= [·] || C [·] | M

In rule [R-COMM] participantq sends the valuev choosing labelℓ j to participantp which offers inputs on
all labelsℓi with i ∈ I . We use−→∗ with the standard meaning.

In order to define the operational preciseness of subtyping it is crucial to formalise when a multiparty
session contains communications that will never be executed.

Definition 2.1 A multiparty sessionM is stuck if M 6≡ p ⊳ 0 and there is no multiparty sessionM ′

such thatM −→ M ′. A multiparty sessionM getsstuck, notationstuck(M ), if it reduces to a stuck
multiparty session.

[R-COMM]
j ∈ I e ↓ v

p⊳∑
i∈I

q?ℓi(x).Pi | q⊳p!ℓ j(e).Q−→ p⊳Pj{v/x} | q⊳Q

[T-CONDITIONAL ]
e ↓ true

p⊳ if e then P else Q−→ p⊳P

[F-CONDITIONAL ]
e ↓ false

p⊳ if e then P else Q−→ p⊳Q

[R-CONTEXT]
M −→ M

′

C [M ]−→ C [M ′]

[R-STRUCT]
M

′
1 ≡ M1 M1 −→ M2 M2 ≡ M

′
2

M
′
1 −→ M

′
2

Table 3: Reduction rules.
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T
∧∧

T′ =























T if T= T′,

T∧T′ if T=
∧

i∈I p?ℓi(Si).Ti andT′ =
∧

j∈Jp?ℓ′j(S
′
j).T

′
j

andℓi 6= ℓ′j for all i ∈ I , j ∈ J

undefined otherwise.

p→ q : {ℓi(Si).Gi}i∈I ↾ r =











∨

i∈I q!ℓi(Si).Gi ↾ r if r= p,
∧

i∈I p?ℓi(Si).Gi ↾ r if r= q,
∧∧

i∈I Gi ↾ r if r 6= p, r 6= q and
∧∧

i∈I Gi ↾ r is defined.

(µ t.G) ↾ r =

{

µ t.G ↾ r if r occurs inG,

end otherwise.
t ↾ r = t end ↾ r = end

Table 4: Projection of global types onto participants.

3 Type System
This section introduces the type system, which is a simplification of that in [15] due to the new formula-
tion of the calculus.

Types Sortsare ranged over bySand defined by: S ::= nat || int || bool
Global typesgenerated by:

G ::= p→ q : {ℓi(Si).Gi}i∈I || µ t.G || t || end

describe the whole conversation scenarios of multiparty sessions.Session typescorrespond to projections
of global types on the individual participants. Inspired by[18], we use intersection and union types
instead of standard branching and selection [13] to take advantage from the subtyping induced by subset
inclusion. The grammar of session types, ranged over byT, is then

T ::=
∧

i∈I p?ℓi(Si).Ti ||
∨

i∈I q!ℓi(Si).Ti || µ t.T || t || end

We require thatℓi 6= ℓ j with i 6= j and i, j ∈ I and recursion to be guarded in both global and session
types. Recursive types with the same regular tree are considered equal [19, Chapter 20, Section 2]. In
writing types we omit unnecessary brackets, intersections, unions andend.

We extend the original definition of projection of global types onto participants [13] in the line
of [23], but keeping the definition simpler than that of [23].This generalisation is enough to project
the characteristic global types of next Section. We use the partial operator

∧∧

on session types. This
operator applied to two identical types gives one of them, applied to two intersection types with same
sender and different labels gives their intersection and itis undefined otherwise, see Table 4. The same
table gives theprojectionof the global typeG onto the participantr, notationG ↾ r. This projection allows
participants to receive different messages in different branches of global types.

Example 3.1 If G= p→ q : {ℓ1(nat).G1, ℓ2(bool).G2}, where
G1 = q→ r : ℓ3(int) andG2 = q→ r : ℓ5(nat) andr 6= p, then

G ↾ r = G1 ↾ r
∧∧

G2 ↾ r = q?ℓ3(int)
∧∧

q?ℓ5(nat) = q?ℓ3(int)∧q?ℓ5(nat).

Subtyping Subsorting≤: on sorts is the minimal reflexive and transitive closure of the relation induced
by the rule:nat≤: int. Subtyping6 on session types takes into account the contra-variance of inputs,
the covariance of outputs, and the standard rules for intersection and union. Table 5 gives the subtyping
rules: the double line in rules indicates that the rules are interpretedcoinductively[19] (Chapter 21).
Subtyping can be easily decided, see for example [8]. For reader convenience Table 6 gives the procedure
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[SUB-END]
end6 end

[SUB-IN ]
∀i ∈ I : S′i ≤: Si Ti 6 T′

i
∧

i∈I∪J

p?ℓi(Si).Ti 6
∧

i∈I

p?ℓi(S
′
i).T

′
i

============================

[SUB-OUT]
∀i ∈ I : Si ≤: S′i Ti 6 T′

i
∨

i∈I

p!ℓi(Si).Ti 6
∨

i∈I∪J

p!ℓi(S
′
i).T

′
i

============================

Table 5: Subtyping rules.

S (Θ,T,T′) =







































true if T6 T′ ∈ Θ orT= T′

& i∈I S (Θ∪{T6 T′},Ti ,T
′
i) if (T=

∧

i∈I∪J
p?ℓi(Si).Ti andT′ =

∧

i∈I
p?ℓi(S′i).T

′
i

and∀i ∈ I : S′i ≤: Si) or
(T=

∨

i∈I
p!ℓi(Si).Ti andT′ =

∨

i∈I∪J
p!ℓi(S′i).T

′
i

and∀i ∈ I : Si ≤: S′i)
false otherwise

Table 6: The procedureS (Θ,T,T′).

S (Θ,T,T′), whereΘ is a set of subtyping judgments. This procedure terminates since unfolding of
session types generates regular trees, soΘ cannot grow indefinitely and we have only a finite number of
subtyping judgments to consider. ClearlyS ( /0,T,T′) is equivalent toT6 T′.

Typing system We distinguish three kinds of typing judgments

Γ ⊢ e : S Γ ⊢ P : T ⊢ M : G,

whereΓ is the environmentΓ ::= /0 || Γ,x : S || Γ,X : T that associates expression variables with sorts
and process variables with session types. The typing rules for expressions are standard, see Table 7.
Table 8 gives the typing rules for processes and multiparty sessions. Processes are typed as expected,
the syntax of session types only allows input processes in external choices and output processes in the
branches of conditionals. We need to assure that processes in external choices offer different labels. For
this reason rule [T-IN-CHOICE] types both inputs and external choices. With two separate rules:

Γ,x : S⊢ P : T
[T-IN ]

Γ ⊢ q?ℓ(x).P : q?ℓ(S).T

Γ ⊢ P1 : T1 Γ ⊢ P2 : T2
[T-CHOICE]

Γ ⊢ P1+P2 : T1∧T2

we could derive

⊢ q?ℓ1(x).0+q?ℓ2(x).0+q?ℓ1(x).q!ℓ5(true).0 : q?ℓ2(int).end∧q?ℓ1(int).q!ℓ5(bool).end.

In order to type a session, rule [T-SESS] requires that the processes in parallel can play as participants
of a whole communication protocol or the terminated process, i.e. their types are projections of a unique
global type. We define the setpt{G} of participants of a global typeG as follows:

pt{p→ q : {ℓi(Si).Gi}i∈I}= {p,q}∪pt{Gi} (i ∈ I)1

pt{µ t.G}= pt{G} pt{t}= /0 pt{end}= /0

The conditionpt{G} ⊆ {pi | i ∈ I} allows to type also sessions containingp ⊳0, a property needed to
assure invariance of types under structural congruence.

The proposed type system for multiparty sessions enjoys type preservation under reduction (subject
reduction) and the safety property that a typed multiparty session will never get stuck. The remaining of
this section is devoted to the proof of these properties.

1The projectability ofG assurespt{Gi}= pt{G j} for all i, j ∈ I .
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Γ ⊢ n : nat Γ ⊢ i : int Γ ⊢ true : bool Γ ⊢ false : bool Γ,x : S⊢ x : S

Γ ⊢ e : nat

Γ ⊢ succ(e) : nat

Γ ⊢ e : int

Γ ⊢ neg(e) : int

Γ ⊢ e : bool

Γ ⊢ ¬e : bool

Γ ⊢ e1 : S Γ ⊢ e2 : S

Γ ⊢ e1⊕ e2 : S

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 > e2 : bool

Γ ⊢ e : S S≤: S′

Γ ⊢ e : S′

Table 7: Typing rules for expressions.

∀i ∈ I Γ,x : Si ⊢ Pi : Ti
[T-IN-CHOICE]

Γ ⊢∑
i∈I

q?ℓi(x).Pi :
∧

i∈I

q?ℓi(Si).Ti
Γ ⊢ 0 : end [T-0]

Γ ⊢ e : S Γ ⊢ P : T
[T-OUT]

Γ ⊢ q!ℓ(e).P : q!ℓ(S).T

Γ ⊢ e : bool Γ ⊢ P1 : T1 Γ ⊢ P2 : T2
[T-COND]

Γ ⊢ if e then P1 else P2 : T1∨T2

Γ,X : T ⊢ P : T
[T-REC]

Γ ⊢ µX.P : T
Γ,X : T ⊢ X : T [T-VAR ]

Γ ⊢ P : T T6 T′

[T-SUB]
Γ ⊢ P : T′

∀i ∈ I ⊢ Pi : G ↾ pi pt{G} ⊆ {pi | i ∈ I}
[T-SESS]

⊢ ∏
i∈I

pi ⊳Pi : G

Table 8: Typing rules for processes and sessions.

As usual we start with an inversion and a substitution lemmas.

Lemma 3.2 (Inversion lemma)

1. LetΓ ⊢ P : T.
(a) If P= ∑

i∈I
pi?ℓi(x).Qi , then

∧

i∈I pi?ℓi(Si).Ti 6 T andΓ,x : Si ⊢ Qi : Ti.

(b) If P= p!ℓ(e).Q, thenp!ℓ(S).T′ 6 T andΓ ⊢ e : S andΓ ⊢ Q : T′.

(c) If P= if e then Q1 else Q2, thenT1∨T2 6 T andΓ ⊢ Q1 : T1 andΓ ⊢ Q2 : T2.

(d) If P= µX.Q, thenΓ,X : T ⊢ Q : T.

(e) If P= X, thenΓ = Γ′,X : T′ andT′ 6 T.

(f) If P = 0, thenT= end.
2. If ⊢ ∏

i∈I
pi ⊳Pi : G, then⊢ Pi : G ↾ pi for all i ∈ I andpt{G} ⊆ {pi | i ∈ I}.

Proof. By induction on type derivations.

Lemma 3.3 (Substitution lemma)If Γ,x : S⊢ P : T andΓ ⊢ v : S, thenΓ ⊢ P{v/x} : T.

Proof. By structural induction onP.

In order to state subject reduction we need to formalise how global types are modified by reducing
multiparty sessions.
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Definition 3.4 1. Theconsumptionof the communicationp
ℓ
−→ q for the global typeG (notation

G\p
ℓ
−→ q) is the global type inductively defined by:

(r→ s : {ℓi(Si).Gi}i∈I )\p
ℓ
−→ q=

{

Gi0 if r = p,s= q, ℓi0 = ℓ

r→ s : {ℓi(Si).Gi \p
ℓ
−→ q}i∈I otherwise

(µ t.G)\p ℓ
−→ q= µ t.G\p

ℓ
−→ q

2. The reduction of global types is the smallest pre-order relation closed under the rule:

G=⇒ G\p
ℓ
−→ q

Notice thatend \ p
ℓ
−→ q and t \ p ℓ

−→ q are undefined. It is easy to verify that, ifG is projectable and

G \ p
ℓ
−→ q is defined, then the global typeG \ p

ℓ
−→ q is projectable. The following lemma shows other

properties of consumption that are essential in the proof ofsubject reduction.

Lemma 3.5 If q!ℓ(S).T≤ G ↾ p andp?ℓ(S).T′∧T′′ ≤ G ↾ q, thenT≤ (G\p
ℓ
−→ q) ↾ p and

T′ ≤ (G\p
ℓ
−→ q) ↾ q. MoreoverG ↾ r= (G\p

ℓ
−→ q) ↾ r for r 6= p, r 6= q.

Proof. By induction onG and by cases on the definition ofG \ p
ℓ
−→ q. Notice thatG can only be

s1 → s2 : {ℓi(Si).Gi}i∈I with eithers1 = p ands2 = q or {s1,s2}∩{p,q}= /0, since otherwise the types in
the statement of the lemma could not be subtypes of the given projections ofG.

If G= p→ q : {ℓi(Si).Gi}i∈I , thenG ↾ p=
∨

i∈I q!ℓi(Si).Gi ↾ p andG ↾ q=
∧

i∈I p?ℓi(Si).Gi ↾ q. From
q!ℓ(S).T ≤

∨

i∈I q!ℓi(Si).Gi ↾ p we getℓ = ℓi0 andT ≤ Gi0 ↾ p for somei0 ∈ I . Fromp?ℓ(S).T′ ∧T′′ ≤
∧

i∈I p?ℓi(Si).Gi ↾ q andℓ= ℓi0 we getT′ ≤ Gi0 ↾ q. We getT≤ (G\p
ℓ
−→ q) ↾ p andT′ ≤ (G\p

ℓ
−→ q) ↾ q,

since(G\p
ℓ
−→ q) ↾ p=Gi0 ↾ p and(G\p

ℓ
−→ q) ↾ q=Gi0 ↾ q. If r 6= p, r 6= q, then by definition of projection

G ↾ r = Gi0 ↾ r for an arbitraryi0 ∈ I , and thenG ↾ r = (G\p
ℓ
−→ q) ↾ r by definition of consumption.

If G = s1 → s2 : {ℓi(Si).Gi}i∈I and{s1,s2}∩{p,q} = /0, thenG ↾ p = Gi0 ↾ p andG ↾ q= Gi0 ↾ q for
an arbitraryi0 ∈ I . By definition of consumption

G\p
ℓ
−→ q= s1 → s2 : {ℓi(Si).Gi \p

ℓ
−→ q}i∈I ,

which implies(G \p
ℓ
−→ q) ↾ p = (Gi0 \p

ℓ
−→ q) ↾ p and(G \p

ℓ
−→ q) ↾ q = (Gi0 \p

ℓ
−→ q) ↾ q. Notice that

the choice ofi0 does not modify the projection, by definition of projectability. We getq!ℓ(S).T≤ Gi0 ↾ p

andp?ℓ(S).T′∧T′′ ≤ Gi0 ↾ q, which imply by inductionT≤ (Gi0 \p
ℓ
−→ q) ↾ p andT′ ≤ (Gi0 \p

ℓ
−→ q) ↾ q.

If r= s1, thenG ↾ r=
∨

i∈I s2!ℓi(Si).Gi ↾ r and

(G\p
ℓ
−→ q) ↾ r=

∨

i∈I s2!ℓi(Si).(Gi \p
ℓ
−→ q) ↾ r,

so we conclude since by inductionGi ↾ r = (Gi \p
ℓ
−→ q) ↾ r for all i ∈ I .

If r= s2, thenG ↾ r=
∧

i∈I s1?ℓi(Si).Gi ↾ r and

(G\p
ℓ
−→ q) ↾ r=

∧

i∈I s1?ℓi(Si).(Gi \p
ℓ
−→ q) ↾ r,

so we conclude since by inductionGi ↾ r = (Gi \p
ℓ
−→ q) ↾ r for all i ∈ I .

If r 6∈ {s1,s2}, thenG ↾ r = Gi0 ↾ r and(G\p
ℓ
−→ q) ↾ r = (Gi0 \p

ℓ
−→ q) ↾ r for an arbitraryi0 ∈ I . We can

conclude using induction.

We can now prove subject reduction.

Theorem 3.6 (Subject reduction)If ⊢ M : G andM −→∗ M ′, then⊢ M ′ : G′ for someG′ such that
G=⇒ G′.



36 Precise subtyping for synchronous multiparty sessions

Proof. By induction on the multiparty session reduction. We only consider the case of rule[R-COMM]
as premise of rule[R-CONTEXT]. In this case

M ≡ p⊳ ∑
i∈I

q?ℓi(x).Pi | q⊳p!ℓ j(e).P | ∏
l∈L

pl ⊳Ql

and M ′ ≡ p⊳Pj{v/x} | q⊳P | ∏
l∈L

pl ⊳Ql ,

where j ∈ I , e ↓ v. By Lemma 3.2(2)⊢ M : G implies⊢ ∑
i∈I

q?ℓi(x).Pi : G ↾ p, and⊢ p!ℓ j(e).P : G ↾ q,

and⊢ Ql : G ↾ pl for l ∈ L. By Lemma 3.2(1a)
∧

i∈I q?ℓi(Si).Ti 6 G ↾ p andx : Si ⊢ Pi : Ti for i ∈ I .
By Lemma 3.2(1b) p!ℓ j(S).T 6 G ↾ q and ⊢ e : S and ⊢ P : T. From

∧

i∈I q?ℓi(Si).Ti 6 G ↾ p and
p!ℓ j(S).T6 G ↾ q we getSj = S. By Lemma 3.3x : S⊢Pj : T j and⊢ e : Sande ↓ v imply ⊢ Pj{v/x} : T j .

Then we chooseG′ = G\p
ℓ j
−→ q, since Lemma 3.5 givesT j ≤ (G\p

ℓ j
−→ q) ↾ p andT≤ (G\p

ℓ j
−→ q) ↾ q

and the same projections for all other participants ofG.

To show progress a lemma on canonical forms is handy. The proof easily follows from the inspection
of the typing rules.

Lemma 3.7 (Canonical forms)
1. If ⊢ P :

∧

i∈I p?ℓi(Si).Ti , then P= ∑
i∈I ′

p?ℓi(x).Pi with I ⊆ I ′.

2. If ⊢ P :
∨

i∈I p!ℓi(Si).Ti , thenq⊳P−→∗ q⊳p!ℓ j(e).Q with j ∈ I.

Theorem 3.8 (Progress)If ⊢ M : G, then eitherM ≡ p⊳0 or M −→ M ′.

Proof. If G= end, thenM ≡ p⊳0 by Lemma 3.2(2). IfG= p→ q : {ℓi(Si).Gi}i∈I , then
M ≡ p⊳P | q⊳Q | M ′′

and ⊢ P :
∨

i∈I q!ℓi(Si).Gi ↾ p and ⊢ Q :
∧

i∈I p?ℓi(Si).Gi ↾ q again by Lemma 3.2(2). By Lemma 3.7
P= ∑

i∈I ′
p?ℓi(x).Pi with I ⊆ I ′ andq⊳Q−→∗ q⊳p!ℓ j(e).Q′ with j ∈ I . Therefore, ife ↓ v, thenM −→∗

p⊳P | q⊳p!ℓ j(e).Q′ | M ′′ −→ p⊳Pj{v/x} | q⊳Q′ | M ′′.

The safety property that a typed multiparty session will never get stuck is a consequence of subject
reduction and progress.

Theorem 3.9 (Safety)If ⊢ M : G, then it does not holdstuck(M ).

4 Operational Preciseness
We adapt the notion of operational preciseness [16, 3, 7] to our calculus.

Definition 4.1 A subtyping relation isoperationally preciseif for any two typesT andT′ the following
equivalence holds:

T6 T′ if and only if there are no P,p,M such that:

• ⊢ P : T; and • ⊢ Q : T′ implies⊢ p⊳Q | M ; and • stuck(p⊳P | M ).

Theoperational soundness, i.e. if for all Q such that⊢ Q : T′ implies⊢ p⊳Q | M , thenp⊳P | M is
not stuck, follows from the subsumption rule [T-SUB] and the safety theorem, Theorem 3.9.

To show the vice versa, it is handy to define the setpt{T} of participants of a session typeT as
follows

pt{
∧

i∈I p?ℓi(Si).Ti}= pt{
∨

i∈I p!ℓi(Si).Ti}= {p}∪
⋃

i∈I pt{Ti}
pt{µ t.T}= pt{T} pt{t}= pt{end}= /0

The proof ofoperational completenesscomes in four steps.
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[NSUB-ENDL]
T 6= end

T 6E end

[NSUB-ENDR]
T 6= end

end 6E T

[NSUB-DIFF-PART]
p 6= q †,‡∈ {?, !}

p†ℓ1(S1).T1 6E q‡ℓ2(S2).T2

[NSUB-OUT-IN ]
p!ℓ1(S1).T1 6E p?ℓ2(S2).T2

[NSUB-IN-OUT]
p?ℓ1(S1).T1 6E p!ℓ2(S2).T2

[NSUB-IN-IN ]
ℓ1 6= ℓ2 or S2 6≤: S1 or T1 6E T2

p?ℓ1(S1).T1 6E p?ℓ2(S2).T2

[NSUB-OUT-OUT]
ℓ1 6= ℓ2 or S1 6≤: S2 or T1 6E T2

p!ℓ1(S1).T1 6E p!ℓ2(S2).T2

[NSUB-INTR]
T 6E T1 orT 6E T2

T 6E T1∧T2

[NSUB-UNIL]
T1 6E T orT2 6E T

T1∨T2 6E T

[NSUB-INTL-UNIR]
∀i ∈ I ∀ j ∈ J Ti 6E T′

j
∧

i∈I

Ti 6E
∨

j∈J

T′
j

Table 9: Negation of subtyping

• [Step 1] We characterise the negation of the subtyping relation by inductive rules (notation6E).

• [Step 2] For each typeT and participantp 6∈ pt{T}, we define acharacteristic global typeG (T,p)
such thatG (T,p) ↾ p= T.

• [Step 3] For each typeT, we define acharacteristic processP(T) typed byT, which offers the
series of interactions described byT.

• [Step 4] We prove that ifT 6E T′, thenstuck(p ⊳P(T) | ∏
1≤i≤n

pi ⊳P(Ti)), wherept{T′} =

{p1, . . . ,pn}, andTi = G (T′,p) ↾ pi for 1≤ i ≤ n. Hence we achieve completeness by choosing
P= P(T) andM = ∏

1≤i≤n
pi ⊳P(Ti) in the definition of preciseness (Definition 4.1).

Negation of subtyping Table 9 gives the negation of subtyping, which uses the negation of subsorting
6≤: defined as expected. These rules say that a type different from end cannot be compared toend, two
input or output types with different participants, or different labels, or with sorts or continuations which
do not match, cannot be compared. The rules in the last line just take into account the set theoretic
properties of intersection and union. One can show that eitherT6 T′ or T 6E T′ holds for two arbitrary
typesT,T′.

Lemma 4.2 T 6E T′ is the negation ofT6 T′.

Proof. If T 6E T′, then we can showT 66 T′ by induction on the derivation ofT 6E T′. We develop just
two cases (the others are similar):

• base case[NSUB-DIFF-PART]. Then,T = p † ℓ1(S1).T1 andT′ = q ‡ ℓ2(S2).T2 with p 6= q and
†,‡∈ {?, !}. We can verify thatT andT′ do not match the conclusion of[SUB-END], nor [SUB-IN],
nor [SUB-OUT] — hence, we concludeT 66 T′;

• inductive case[NSUB-INTL-UNIR]. Then,T=
∧

i∈I Ti andT′ =
∨

j∈JT
′
j ; moreover,∀i ∈ I ∀ j ∈ J :

Ti 6E T′
j — and thus, by the induction hypothesis,Ti 66 T′

j . We now notice thatT6 T′ could only
possibly hold by rule[SUB-IN] whenJ is a singleton and by rule[SUB-OUT] whenI is a singleton—
but, sinceTi 66 T′

j , at least one of the coinductive premises of such rules is notsatisfied. Hence,
we concludeT 66 T′.
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G0(
∧

i∈I p j0?ℓi(Si).Ti ,p,{p j}1≤ j≤n) = p j0 → p : {ℓi(Si).G
j0
i }i∈I

G0(
∨

i∈I p j0!ℓi(Si).Ti ,p,{p j}1≤ j≤n) = p→ p j0 : {ℓi(Si).G
j0
i }i∈I

G0(µ t.T,p,{p j}1≤ j≤n) = µ t.G0(T,p,{p j}1≤ j≤n)
G0(t,p,{p j}1≤ j≤n) = t G0(end,p,{p j}1≤ j≤n) = end

G
j0
i = p j0 → p j0+1 : ℓi(bool). . . .pn−1 → pn : ℓi(bool).pn → p1 : ℓi(bool).

p1 → p2 : ℓi(bool). . . . .p j0−1 → p j0 : ℓi(bool).G0(Ti ,p,{p j}1≤ j≤n)

Table 10: The functionG0(T,p,{p j}1≤ j≤n).

Vice versa, assumeT 66 T′: if we try to apply the subtyping rules to showT 6 T′, we will “fail” after
n derivation steps, by finding two typesT1,T2 whose syntactic shapes donot match the conclusion of
[SUB-END], nor [SUB-IN], nor [SUB-OUT]. We proveT 6E T′ by induction onn:

• base casen= 0. The derivation “fails” immediately, i.e.T1 = T andT2 = T′. By cases on the
possible shapes ofT andT′, we obtainT 6E T′ by one of the rules[NSUB-ENDL] , [NSUB-ENDR],
[NSUB-DIFF-PART], [NSUB-OUT-IN], [NSUB-IN-OUT], [NSUB-IN-IN], [NSUB-OUT-OUT];

• inductive casen=m+1. The shapes ofT,T′ match the conclusion of[SUB-IN] (resp.[SUB-OUT]),
but there is some coinductive premiseT1 6 T2 whose sub-derivation “fails” afterm steps. By the
induction hypothesis, we haveT1 6E T2: therefore, we can deriveT 6E T′ by one of the rules
[NSUB-IN-IN] or [NSUB-INTR] (or [NSUB-OUT-OUT] or [NSUB-UNIL]) or [NSUB-INTL-UNIR].

Characteristic global types The characteristic global typeG (T,p) of the typeT for the participant
p describes the communications betweenp and all participants inpt{T} following T. In fact after
each communication involvingp and someq ∈ pt{T}, q starts a cyclic communication involving all
participants inpt{T} both as receivers and senders. This is needed for getting both a projectable global
type and a stuck session, see the proof of Theorem 4.4 and Examples 4.3 and 4.5. More precisely, we
define the characteristic global typeG (T,p) of the typeT for the participantp 6∈ pt{T} asG (T,p) =
G0(T,p,pt{T}), whereG0(T,p,{p j}1≤ j≤n) is given in Table 10.

Example 4.3 Some characteristic global types are projectable thanks tothe cyclic communication.
Take for exampleT = q!ℓ1(nat).r?ℓ2(int).end ∨ q!ℓ3(int).end. Without the cyclic communication
we would get the global typeG = p → q : {ℓ1(nat).r → p : ℓ2(int).end, ℓ3(int).end} and G ↾ r =
p!ℓ2(int).end

∧∧

end is undefined. Instead

G (T,p) = p→ q : {ℓ1(nat).q→ r : ℓ1(bool).r→ q : ℓ1(bool).
r→ p : ℓ2(int).r→ q : ℓ2(bool).q→ r : ℓ2(bool).end,
ℓ3(int).q→ r : ℓ3(bool).r→ q : ℓ3(bool).end}

G (T,p) ↾ r= q?ℓ1(bool).q!ℓ1(bool).p!ℓ2(int).q!ℓ2(bool).q?ℓ2(bool).end∧
q?ℓ3(bool).q!ℓ3(bool).end

It is easy to verify thatG (T,p) ↾ p= T andG (T,p) ↾ q is defined for allq ∈ pt{T} by induction on the
definition of characteristic global types.

Characteristic processes We define the characteristic processP(T) of the typeT by using the op-
eratorssucc, neg, and¬ to check if the received values are of the right sort and exploiting the corre-
spondence between external choices and intersections, conditionals and unions. Conditionals also allow
the evaluation of expressions which can be stuck. The definition of P(T) by induction onT is given in
Table 11. By induction on the structure ofP(T) it is easy to verify that⊢ P(T) : T.

We have now all the necessary machinery to show operational preciseness of subtyping.
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P(T) =











































































p?ℓ(x).if succ(x) > 0 then P(T′) else P(T′) if T= p?ℓ(nat).T′,
p?ℓ(x).if neg(x)> 0 then P(T′) else P(T′) if T= p?ℓ(int).T′,
p?ℓ(x).if ¬x then P(T′) else P(T′) if T= p?ℓ(bool).T′,
p!ℓ(5).P(T′) if T= p!ℓ(nat).T′,
p!ℓ(−5).P(T′) if T= p!ℓ(int).T′,
p!ℓ(true).P(T′) if T= p!ℓ(bool).T′,
P(T1)+P(T2) if T= T1∧T2,
if true⊕ false then P(T1) else P(T2) if T= T1∨T2,
µXt.P(T′) if T= µ t.T′,
Xt if T= t,
0 if T= end.

Table 11: Characteristic processes

Theorem 4.4 (Preciseness)The synchronous multiparty session subtyping is operationally precise.
Proof. We only need to show completeness of the synchronous multiparty session subtyping.

LetT6 T′ andp 6∈ pt{T′}= {pi}1≤i≤n andG= G (T′,p) andTi = G ↾ pi for 1≤ i ≤ n.
Then⊢ Q : T′ implies⊢ p⊳Q | ∏

1≤i≤n
pi ⊳P(Ti) by rule [T-SESS]. We show that

stuck(p⊳P(T) | ∏
1≤i≤n

pi ⊳P(Ti)).

The proof is by induction on the definition of6E. We only consider some interesting cases.

[NSUB-DIFF-PART]
q 6= ph †,‡∈ {?, !}

q†ℓ(S).T0 6E ph ‡ℓ′(S′).T′
0

By definitionP(T) = q†ℓ(e).P for suitablee,P. If q 6∈ {pi}1≤i≤n, then

stuck(p⊳P(T) | ∏
1≤i≤n

pi ⊳P(Ti)),

sinceP(T) will never communicate.
Otherwise letq = p j with 1 ≤ j ≤ n and j 6= h. By constructionP(Th) = p‡ℓ′(eh).Ph, where‡ =
{

? if ‡=!

! if ‡ =?
, andP(Tk) = p f (k)?ℓ

′(x).Pk, where f (k) =

{

k−1 if k> 1

n if k= 1
for 1 ≤ k ≤ n and k 6= h.

Thereforep⊳P(T) | ∏
1≤i≤n

pi ⊳P(Ti) cannot reduce.

[NSUB-IN-IN ]
ℓ1 6= ℓ2 or S2 6≤: S1 or T1 6E T2

ph?ℓ1(S1).T1 6E ph?ℓ2(S2).T2

A paradigmatic case isℓ1 = ℓ2 = ℓ, S1 = nat, S2 = int, T1 = T2 = end. By definitionpt{T′} = {ph}
andP(T) = ph?ℓ(x).if succ(x)> 0 then 0 else 0 andP(Th)= p!ℓ(−5).0. Thereforep⊳P(T) |P(Th)
reduces top⊳ if succ(−5)> 0 then 0 else 0, which is stuck.

[NSUB-INTR]
T 6E T′

1 or T 6E T′
2

T 6E T′
1∧T′

2

By definition T′
1 andT′

2 must be intersections of inputs with the same sender, let it be ph. Let G1 =

G (T′
1,p), G2 = G (T′

2,p), P(1)
h = P(G1 ↾ ph), P(2)

h = P(G2 ↾ ph). Then by construction
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Ph = P(G (T′
1∧T′

2,p) ↾ ph) = if true⊕ false then P(1)
h else P(2)

h .

This implies thatp ⊳P(T) | ∏
1≤i≤n

pi ⊳P(Ti) reduces to bothp ⊳P(T) | ph ⊳P(1)
h | ∏

1≤i 6=h≤n
pi ⊳P(Ti)

andp⊳P(T) | ph⊳P(2)
h | ∏

1≤i 6=h≤n
pi ⊳P(Ti). By induction eitherp⊳P(T) | ph⊳P(1)

h | ∏
1≤i 6=h≤n

pi ⊳P(Ti)

or p ⊳P(T) | ph ⊳P(2)
h | ∏

1≤i 6=h≤n
pi ⊳P(Ti) is stuck, and therefore alsop ⊳P(T) | ∏

1≤i≤n
pi ⊳P(Ti) is

stuck.
[NSUB-UNIL]
T′

1 6E T or T′
2 6E T

T′
1∨T′

2 6E T

By definitionT′
1 andT′

2 must be unions of outputs with the same receiver, let it beph. By definition
P(T′

1∨T′
2) = if true⊕ false then P(T′

1) else P(T′
2). Thenp⊳P(T′

1∨T′
2) | ∏

1≤i≤n
pi ⊳P(Ti) reduces

to bothp⊳P(T′
1) | ∏

1≤i≤n
pi ⊳P(Ti) andp⊳P(T′

2) | ∏
1≤i≤n

pi ⊳P(Ti). By induction

eitherp⊳P(T′
1) | ∏

1≤i≤n
pi ⊳P(Ti) or p⊳P(T′

2) | ∏
1≤i≤n

pi ⊳P(Ti) is stuck,

and thereforep⊳P(T′
1∨T′

2) | ∏
1≤i≤n

pi ⊳P(Ti) is stuck too.

[NSUB-INTL-UNIR]
∀l ∈ L ∀ j ∈ J T′

l 6E T′′
j

∧

l∈L

T′
l 6E

∨

j∈J

T′′
j

If L andJ are both singleton sets it is immediate by induction.
If L andJ both contain more than one index, then by definition we can assume (without loss of generality)
thatT′

l for l ∈ L are input types with the same sender, let it beph, andT′′
j for j ∈ J are output types with

the same receiver, let it bepk. By definitionP(T) = ∑
l∈L

ph?ℓl (x).P′
l , andP(Tk) = ∑

j∈J
p?ℓ j(x).P′′

j and

P(Tu) = p f (u)?ℓ j(x).Pu, where f is as in the case of rule[NSUB-DIFF-PART], for 1≤ u≤ n andu 6= k.
Thereforep⊳P(T) | ∏

1≤i≤n
pi ⊳P(Ti) cannot reduce.

Let L contains more than one index andJ be a singleton set. By definitionP(T) = ∑
l∈L

P′
l , whereP′

l =

P(T′
l ) for l ∈ L. Let us assume ad absurdum thatp⊳P(T) | ∏

1≤i≤n
pi ⊳P(Ti) is not stuck. Then there

must bel0 ∈ L such thatp⊳P′
l0
| ∏

1≤i≤n
pi ⊳P(Ti) is not stuck, contradicting the hypothesis.

If L is a singleton set andJ contains more than one index, thenT′′
j for j ∈ J must be unions of outputs with

the same receiver, let it beph. LetG j = G (T′′
j ,p) andP( j)

h = P(G j ↾ ph). ThenPh =P(G (
∨

j∈JT
′′
j ,p) ↾

ph) = ∑
j∈J

P( j)
h . Let us assume ad absurdum thatp ⊳P(T) | ∏

1≤i≤n
pi ⊳P(Ti) is not stuck. In this case

there must bej0 ∈ J such thatp ⊳P(T) | ph ⊳P( j0)
h | ∏

1≤i 6=h≤n
pi ⊳P(Ti) is not stuck, contradicting the

hypothesis.

Example 4.5 An example showing the utility of the cyclic communication in the definition of charac-
teristic global types isT = p1!ℓ1(nat).p2!ℓ2(nat).end and T′ = p2!ℓ2(nat).p1!ℓ1(nat).end. In fact
without the cyclic communication the characteristic global type ofT′ would be

G= p→ p2 : ℓ2(nat).p→ p1 : ℓ1(nat).end
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and thenM = p1 ⊳P(G ↾ p1) | p2 ⊳P(G ↾ p2) = p1 ⊳ p?ℓ1(x).0 | p2 ⊳ p?ℓ2(x).0. Being P(T) =
p1!ℓ1(5).p2!ℓ2(5).0, the sessionp⊳P(T) | M reduces top⊳0. Instead

G (T′,p) = p→ p2 : ℓ2(nat).p2 → p1 : ℓ2(bool).p1 → p2 : ℓ2(bool).
p→ p1 : ℓ1(nat).p1 → p2 : ℓ1(bool).p2 → p1 : ℓ1(bool).end,

which impliesP(G (T′,p) ↾ p1) = p2?ℓ2(x). . . . andP(G (T′,p) ↾ p2) = p?ℓ2(x). . . . . It is then easy to
verify thatp⊳P(T) | p1⊳P(G (T′,p) ↾ p1) | p2⊳P(G (T′,p) ↾ p2) is stuck.

5 Operational Preciseness at Work
Consider a multiparty session with four participants: client (cl), adder(add), increment(inc), and
decrement(dec)

cl⊳Pcl || add⊳Padd || inc⊳Pinc || dec⊳Pdec.

Client sends two natural numbers to adder and expects the integer result of summation. Adder receives
the two numbers and sum them by successively increasing the first one by 1 (done byinc) and decreasing
the second one by 1 (done bydec). If the second summand equals 0, the first summand gives the required
sum. Processes modelling this behaviour are the following:

Pcl = add!ℓ1(5).add!ℓ2(4).add?ℓ3(x).0
Padd = cl?ℓ1(y1).cl?ℓ2(y2).µX.if y2 = 0 then inc!ℓ4(true).dec!ℓ4(true).cl!ℓ3(y1).end

else inc!ℓ5(y1).inc?ℓ6(y1).dec!ℓ7(y2).dec?ℓ8(y2).X
Pinc = µX.add?ℓ4(bool).end+add?ℓ5(y).add!ℓ6(y+1).X
Pdec = µX.add?ℓ4(bool).end+add?ℓ7(y).add!ℓ8(y−1).X.

We can extend addition to integers by changing the processPadd as follows:

P′
add

= cl?ℓ1(y1).cl?ℓ2(y2).µX.if y2 = 0 then inc!ℓ4(true).dec!ℓ4(true).cl!ℓ3(y1).end
else if y2 > 0 then inc!ℓ5(y1).inc?ℓ6(y1).dec!ℓ7(y2).dec?ℓ8(y2).X

else inc!ℓ5(y2).inc?ℓ6(y2).dec!ℓ7(y1).dec?ℓ8(y1).X.

ProcessP′
add

additionally checks if the second summand is positive. If itis not, the sum is calculated
by successively increasing the second summand by 1 and decreasing the first summand by 1. The new
multiparty session follows the global protocol

cl→ add : ℓ1(int).cl→ add : ℓ2(int).µ t.add→ inc : {
ℓ4(bool) : add→ dec : ℓ4(bool).add→ cl : ℓ3(int).end,
ℓ5(int).inc→ add : ℓ6(int).add→ dec : ℓ7(int).dec→ add : ℓ8(int).t}.

Operational soundness of the subtyping guarantees that thesummation of natural numbers will be safe
after this change, as fornat6 int we have

add!ℓ1(nat).add!ℓ2(nat).add?ℓ3(int).end6 add!ℓ1(int).add!ℓ2(int).add?ℓ3(int).end.

On the other hand, by operational completeness we cannot swap sending of messages with different
labels, e.g.

T= add!ℓ1(int).add!ℓ2(int).end 66 add!ℓ2(int).add!ℓ1(int).end= T′.

We can construct processesQcl = add!ℓ1(5).add!ℓ2(4).0 of typeT andQ′
cl

= add!ℓ2(4).add!ℓ1(5).0
of typeT′ and a multiparty session

M = add⊳cl?ℓ2(x).if neg(x)> 0 then cl?ℓ1(x).0 else cl?ℓ1(x).0

such thatcl⊳Q′
cl

|| M is well typed, whilecl⊳Qcl || M is stuck, since the multiparty session
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cl⊳add!ℓ1(5).add!ℓ2(4).0 || add⊳cl?ℓ2(x).if neg(x)> 0 then cl?ℓ1(x).0 else cl?ℓ1(x).0.

cannot reduce because of label mismatch.

6 Denotational Preciseness
In λ -calculus types are usually interpreted as subsets of the domains ofλ -models [1, 11].Denotational
precisenessof subtyping is then:

T6 T′ if and only if [[T]]⊆ [[T′]],

using[[ ]] to denote type interpretation.
In the present context let us interpret a session typeT as the set of closed processes typed byT, i.e.

[[T]] = {P | ⊢ P : T}

We can then show that the subtyping is denotationally precise. The subsumption rule [T-SUB] gives the
denotational soundness. Denotational completeness follows from the following key property of charac-
teristic processes:

⊢ P(T) : T′ impliesT6 T′.

If we could derive⊢ P(T) : T′ with T 66 T′, then the multiparty session

p⊳P(T) | ∏
1≤i≤n

pi ⊳P(Ti),

wherept{T′}= {pi}1≤i≤n andG= G (T′,p) andTi = G ↾ pi for 1≤ i ≤ n, could be typed. Theorem 4.4
shows that this process is stuck, and this contradicts the soundness of the type system. We get the desired
property, which implies denotational completeness, sinceif T 66T′, thenP(T)∈ [[T]], butP(T) 6∈ [[T′]].

Theorem 6.1 (Denotational preciseness)The subtyping relations is denotationally precise.

7 Conclusion
The preciseness result of this paper shows a rigorousness ofthe subtyping, which is implemented (as a
default) in most of session-based programming languages and tools [14, 5, 12, 10] for enlarging typabil-
ity.

The main technical contribution is the definition of characteristic global types, see Section 4. Given a
session typeT and a session participantp which does not occur inT, the associated characteristic global
type expresses the communications prescribed byT betweenp and the participants inT. After each
communication involvingp, the characteristic global type creates a cyclic communication between all
participants inT. Such a cyclic communication is essential to project the characteristic global type and
to generate deadlock when the the subtyping relation is extended.

The subtyping considered here is sound but not complete for asynchronous multiparty sessions [13],
as shown in [17]. We conjecture the completeness of the subtyping defined in [17] for asynchronous
multiparty sessions and we are working toward this proof.
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