19 research outputs found

    On Julia\u27s Efficient Algorithm for Subtyping Union Types and Covariant Tuples (Artifact)

    Get PDF
    This is the artifact for the pearl paper "On Julia\u27s efficient algorithm for subtyping union types and covariant tuples.

    Preciseness of Subtyping on Intersection and Union Types

    Get PDF
    Abstract. The notion of subtyping has gained an important role both in theoretical and applicative domains: in lambda and concurrent calculi as well as in programming languages. The soundness and the complete-ness, together referred to as the preciseness of subtyping, can be consid-ered from two different points of view: denotational and operational. The former preciseness is based on the denotation of a type which is a math-ematical object that describes the meaning of the type in accordance with the denotations of other expressions from the language. The latter preciseness has been recently developed with respect to type safety, i.e. the safe replacement of a term of a smaller type when a term of a bigger type is expected. We propose a technique for formalising and proving operational pre-ciseness of the subtyping relation in the setting of a concurrent lambda calculus with intersection and union types. The key feature is the link between typings and the operational semantics. We then prove sound-ness and completeness getting that the subtyping relation of this calculus enjoys both denotational and operational preciseness.

    Denotational and operational preciseness of subtyping: A roadmap

    Get PDF
    The notion of subtyping has gained an important role both in theoretical and applicative domains: in lambda and concurrent calculi as well as in object-oriented programming languages. The soundness and the completeness, together referred to as the preciseness of subtyping, can be considered from two different points of view: denotational and operational. The former preciseness is based on the denotation of a type, which is a mathematical object describing the meaning of the type in accordance with the denotations of other expressions from the language. The latter preciseness has been recently developed with respect to type safety, i.e. the safe replacement of a term of a smaller type when a term of a bigger type is expected. The present paper shows that standard proofs of operational preciseness imply denotational preciseness and gives an overview on this subject

    Julia Subtyping: A Rational Reconstruction

    Get PDF
    OOPSLA, Article 113International audienceProgramming languages that support multiple dispatch rely on an expressive notion of subtyping to specify method applicability. In these languages, type annotations on method declarations are used to select, out of a potentially large set of methods, the one that is most appropriate for a particular tuple of arguments. Julia is a language for scientific computing built around multiple dispatch and an expressive subtyping relation. This paper provides the first formal definition of Julia's subtype relation and motivates its design. We validate our specification empirically with an implementation of our definition that we compare against the existing Julia implementation on a collection of real-world programs. Our subtype implementation differs on 122 subtype tests out of 6,014,476. The first 120 differences are due to a bug in Julia that was fixed once reported; the remaining 2 are under discussion

    Type Soundness for Path Polymorphism

    Get PDF
    Path polymorphism is the ability to define functions that can operate uniformly over arbitrary recursively specified data structures. Its essence is captured by patterns of the form x yx\,y which decompose a compound data structure into its parts. Typing these kinds of patterns is challenging since the type of a compound should determine the type of its components. We propose a static type system (i.e. no run-time analysis) for a pattern calculus that captures this feature. Our solution combines type application, constants as types, union types and recursive types. We address the fundamental properties of Subject Reduction and Progress that guarantee a well-behaved dynamics. Both these results rely crucially on a notion of pattern compatibility and also on a coinductive characterisation of subtyping

    Efficient Type Checking for Path Polymorphism

    Get PDF
    A type system combining type application, constants as types, union types (associative, commutative and idempotent) and recursive types has recently been proposed for statically typing path polymorphism, the ability to define functions that can operate uniformly over recursively specified applicative data structures. A typical pattern such functions resort to is dataterm{x}{y} which decomposes a compound, in other words any applicative tree structure, into its parts. We study type-checking for this type system in two stages. First we propose algorithms for checking type equivalence and subtyping based on coinductive characterizations of those relations. We then formulate a syntax-directed presentation and prove its equivalence with the original one. This yields a type-checking algorithm which unfortunately has exponential time complexity in the worst case. A second algorithm is then proposed, based on automata techniques, which yields a polynomial-time type-checking algorithm

    The Duality of Subtyping

    Get PDF
    Subtyping is a concept frequently encountered in many programming languages and calculi. Various forms of subtyping exist for different type system features, including intersection types, union types or bounded quantification. Normally these features are designed independently of each other, without exploiting obvious similarities (or dualities) between features. This paper proposes a novel methodology for designing subtyping relations that exploits duality between features. At the core of our methodology is a generalization of subtyping relations, which we call Duotyping. Duotyping is parameterized by the mode of the relation. One of these modes is the usual subtyping, while another mode is supertyping (the dual of subtyping). Using the mode it is possible to generalize the usual rules of subtyping to account not only for the intended behaviour of one particular language construct, but also of its dual. Duotyping brings multiple benefits, including: shorter specifications and implementations, dual features that come essentially for free, as well as new proof techniques for various properties of subtyping. To evaluate a design based on Duotyping against traditional designs, we formalized various calculi with common OOP features (including union types, intersection types and bounded quantification) in Coq in both styles. Our results show that the metatheory when using Duotyping does not come at a significant cost: the metatheory with Duotyping has similar complexity and size compared to the metatheory for traditional designs. However, we discover new features as duals to well-known features. Furthermore, we also show that Duotyping can significantly simplify transitivity proofs for many of the calculi studied by us

    Semantic Subtyping for Non-Strict Languages

    Get PDF
    Semantic subtyping is an approach to define subtyping relations for type systems featuring union and intersection type connectives. It has been studied only for strict languages, and it is unsound for non-strict semantics. In this work, we study how to adapt this approach to non-strict languages: in particular, we define a type system using semantic subtyping for a functional language with a call-by-need semantics. We do so by introducing an explicit representation for divergence in the types, so that the type system distinguishes expressions that are results from those which are computations that might diverge

    Semi-continuous Sized Types and Termination

    Full text link
    Some type-based approaches to termination use sized types: an ordinal bound for the size of a data structure is stored in its type. A recursive function over a sized type is accepted if it is visible in the type system that recursive calls occur just at a smaller size. This approach is only sound if the type of the recursive function is admissible, i.e., depends on the size index in a certain way. To explore the space of admissible functions in the presence of higher-kinded data types and impredicative polymorphism, a semantics is developed where sized types are interpreted as functions from ordinals into sets of strongly normalizing terms. It is shown that upper semi-continuity of such functions is a sufficient semantic criterion for admissibility. To provide a syntactical criterion, a calculus for semi-continuous functions is developed.Comment: 33 pages, extended version of CSL'0
    corecore