
Efficient Type Checking for Path Polymorphism∗

Juan Edi1, Andrés Viso2, and Eduardo Bonelli3

1 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria,
Buenos Aires C1428EGA, Argentina
jedi@dc.uba.ar

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Argentina and
Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria,
Buenos Aires C1428EGA, Argentina
aeviso@gmail.com

3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Argentina and
Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes,
Roque Sáenz Peña 352, Bernal B1876BXD, Argentina
eabonelli@gmail.com

Abstract
A type system combining type application, constants as types, union types (associative, com-
mutative and idempotent) and recursive types has recently been proposed for statically typing
path polymorphism, the ability to define functions that can operate uniformly over recursively
specified applicative data structures. A typical pattern such functions resort to is x y which
decomposes a compound, in other words any applicative tree structure, into its parts. We study
type-checking for this type system in two stages. First we propose algorithms for checking type
equivalence and subtyping based on coinductive characterizations of those relations. We then
formulate a syntax-directed presentation and prove its equivalence with the original one. This
yields a type-checking algorithm which unfortunately has exponential time complexity in the
worst case. A second algorithm is then proposed, based on automata techniques, which yields a
polynomial-time type-checking algorithm.

1998 ACM Subject Classification F.4.1 Mathematical Logic and Formal Languages: Lambda
Calculus and Related Systems; F.3.2 Logics and Meanings of Programs: Semantics of Program-
ming Languages; D.3.3 Programming Languages: Language Constructs and Features

Keywords and phrases λ-calculus, pattern matching, path polymorphism, type checking

Digital Object Identifier 10.4230/LIPIcs.TYPES.2015.6

1 Introduction

The lambda-calculus plays an important role in the study of programming languages (PLs).
Programs are represented as syntactic terms and execution by repeated simplification of
these terms using a reduction rule called β-reduction. The study of the lambda-calculus has
produced deep results in both the theory and the implementation of PLs. Many variants of
the lambda-calculus have been introduced with the purpose of studying specific PL features.

∗ A full version of the paper is available at [9], https://arxiv.org/abs/1704.09026.

© Juan Edi, Andrés Viso, and Eduardo Bonelli;
licensed under Creative Commons License CC-BY

21st International Conference on Types for Proofs and Programs (TYPES 2015).
Editor: Tarmo Uustalu; Article No. 6; pp. 6:1–6:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.TYPES.2015.6
https://arxiv.org/abs/1704.09026
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Efficient Type Checking for Path Polymorphism

One such feature of interest is pattern-matching. Pattern-matching is used extensively in
PLs as a means for writing more succinct and, at the same time, elegant programs. This is
particularly so in the functional programming community, but by no means restricted to
that community.

In the standard lambda-calculus, functions are represented as expressions of the form
λx.t, x being the formal parameter and t the body. Such a function may be applied to any
term, regardless of its form. This is expressed by the above mentioned β-reduction rule:
(λx.t) s→β {s/x} t, where {s/x} t stands for the result of replacing all free occurrences of
x in t with s. Note that, in this rule, no requirement on the form of s is placed. Pattern
calculi are generalizations of the β-reduction rule in which abstractions λx.t are replaced by
λp.t where p is called a pattern. An example is λ〈x, y〉.x for projecting the first component
of a pair, the pattern p being 〈x, y〉. An expression such as (λ〈x, y〉.x) s will only be able to
reduce if s indeed is of the form 〈s1, s2〉; it will otherwise be blocked.

Patterns may be catalogued in at least two dimensions. One is their structure and another
their time of creation. The structure of patterns may be very general. Such is the case of
variables: any term can match a variable, as in the standard lambda-calculus. The structure
of a pattern may also be very specific. Such is the case when arbitrary terms are allowed
to be patterns [13, 17]. Regarding the time of creation, patterns may either be static or
dynamic. Static patterns are those that are created at compile time, such as the pattern 〈x, y〉
mentioned above. Dynamic patterns are those that may be generated at run-time [10,11].
For example, consider the term λx.(λ(x y).y); note that it has an occurrence of a pattern
x y with a free variable, namely the x in x y, that is bound to the outermost lambda. If
this term is applied to a constant c, then one obtains λc y.y. However, if we apply it to the
constant d, then we obtain λd y.y. Both patterns c y and d y are created during execution.
Note that one could also replace the x in the pattern x y with an abstraction. This leads to
computations that evaluate to patterns.

Expressive pattern features may easily break desired properties, such as confluence, and
are not easy to endow with type systems. This work is an attempt at devising type systems
for such expressive pattern calculi. We originally set out to type-check the Pure Pattern
Calculus (PPC) [10, 11]. PPC is a lambda-calculus that embodies the essence of dynamic
patterns by stripping away everything inessential to the reduction and matching process of
dynamic patterns. It admits terms such as λx.(λ(x y).y). We soon realized that typing PPC
was too challenging and noticed that the static fragment of PPC, which we dub Calculus of
Applicative Patterns (CAP), was already challenging in itself. CAP also admits patterns such
as x y however all variables in this pattern are considered bound. Thus, in a term such as
λ(x y).s both occurrences of x and y are bound in s, disallowing reduction inside patterns.
Such patterns, however, allow arguments that are applications to be decomposed, as long as
these applications encode data structures. They are therefore useful for writing functions
that operate on semi-structured data.

The main obstacle for typing CAP is dealing in the type system with a form of polymorph-
ism called path polymorphism [10, 11], that arises from these kinds of patterns. We next
briefly describe path polymorphism and the requirements it places on typing considerations.

Path Polymorphism. In CAP data structures are trees. These trees are built using
application and variable arity constants or constructors. Examples of two such trees follow,
where the first one represents a list and the second a binary tree:

cons (vl 1) (cons (vl 2) nil)
node (vl 3) (node (vl 4) nil nil) (node (vl 5) nil nil)

The constructor vl is used to tag values (1 and 2 in the first case, and 3, 4 and 5 in the

J. Edi, A. Viso, and E. Bonelli 6:3

second). A “map” function for updating the values of any of these two structures by applying
some user-supplied function f follows, where type annotations are omitted for clarity:

upd = f � (vl z � vl (f z)
| x y � (upd f x) (upd f y)
| w � w)

(1)

The expression upd (+1) may thus be applied to any of the two data structures illus-
trated above. For example, we can evaluate upd (+1) cons (vl 1) (cons (vl 2) nil) and also
upd (+1) node (vl 3) (node (vl 4) nil nil) (node (vl 5) nil nil). The expression to the right
of “=” is called an abstraction (or case) and consists of a unique branch; this branch in turn
is formed from a pattern (f), and a body (in this case the body is itself another abstraction
that consists of three branches). An argument to an abstraction is matched against the
patterns, in the order in which they are written, and the appropriate body is selected.

Notice the pattern x y. During evaluation of upd (+1) cons (vl 1) (cons (vl 2) nil) the
variables x and y may be instantiated with different applicative terms in each recursive call
to upd. For example:

x y

upd (+1) s cons (vl 1) cons (vl 2) nil
upd (+1) (cons (vl 1)) cons vl 1
upd (+1) (cons (vl 2) nil) cons (vl 2) nil

The type assigned to x and y should encompass all terms in its respective column.

Singleton Types and Type Application. A further consideration in typing CAP is that
terms such as the ones depicted below should clearly not be typable.

(nil � 0) cons (vlx �{x:Nat} x+ 1) (vl true) (2)

In the first case, cons will never match nil. The type system will resort to singleton types
in order to determine this: cons will be assigned a type of the form cons which will fail
to match nil. The second expression in (2) breaks Subject Reduction (SR): reduction will
produce true + 1. Applicative types of the form vl @ true will allow us to check for these
situations, @ being a new type constructor that applies datatypes to arbitrary types. Also,
note the use of typing environments (the expression {x : Nat}) to declare the types of the
variables of patterns in branches. These are supplied by the programmer.

Union and Recursive Types. On the assumption that the programmer has provided an
exhaustive coverage, the type assigned by CAP to the variable x in the pattern x y in upd is:

µα.(vl @ A)⊕ (α @ α)⊕ (cons⊕ node⊕ nil)

Here µ is the recursive type constructor and ⊕ the union type constructor. vl is the singleton
type used for typing the constant vl and @ denotes type application, as mentioned above.
The union type constructor is used to collect the types of all the branches. The variable y
in the pattern x y will also be assigned the same type as x. Thus variables in applicative
patterns are assigned union types. upd itself is assigned type (A ⊃ B) ⊃ (FA ⊃ FB), where
FX is µα.(vl @ X)⊕ (α @ α)⊕ (cons⊕ node⊕ nil).

TYPES 2015

6:4 Efficient Type Checking for Path Polymorphism

Type-Checking for CAP. Based on these, and other similar considerations, we proposed
typed CAP [18], referred to simply as CAP in the sequel. The system consists of typing rules
that combine singleton types, type application, union types, recursive types and subtyping.
Also it enjoys several properties, the salient one being safety (subject reduction and progress).
Safety relies on a notion of typed pattern compatibility based on subtyping that guarantees
that examples such as (2–right) and the following one do not break safety:

((vlx �{x:Bool} if x then 1 else 0) | (vl y �{y:Nat} y + 1)) (vl 4) (3)

Assumptions on associativity and commutativity of typing operators in [18], make it non-
trivial to deduce a type-checking algorithm from the typing rules. The proposed type system
is, moreover, not syntax-directed. Also, it relies on coinductive notions of type equivalence
and subtyping which in the presence of recursive subtypes are not obviously decidable. A
practical implementation of CAP is instrumental since a robust theoretical analysis without
such an implementation is of little use.

Goal and Summary of Contributions. This paper addresses this implementation. It does
so in two stages:

The first stage presents a naïve but correct, high-level description of a type-checking
algorithm, the principal aim being clarity. We propose an invertible presentation of the
coinductive notions of type-equivalence and subtyping of [18] and also a syntax-directed
variant of the presentation in [18]. This leads to algorithms for checking subtyping
membership and equivalence modulo associative, commutative and idempotent (ACI)
unions, both based on an invertible presentation of the functional generating the associated
coinductive notions.
The second stage builds on ideas from the first algorithm with the aim of improving
efficiency. µ-types are interpreted as infinite n-ary trees and represented using automata,
avoiding having to explicitly handle unfoldings of recursive types, and leading to a
significant improvement in the complexity of the key steps of the type-checking process,
namely equality and subtype checking.

Related work. For literature on (typed) pattern calculi the reader is referred to [18]. The
algorithms for checking equality of recursive types or subtyping of recursive types have been
studied in the 1990s by Amadio and Cardelli [1]; Kozen, Palsberg, and Schwartzbach [14];
Brandt and Henglein [3]; Jim and Palsberg [12] among others. Additionally, Zhao and
Palsberg [15] studied the possibilities of incorporating associative and commutative (AC)
products to the equality check, on an automata-based approach that the authors themselves
claimed was not extensible to subtyping [20]. Later on Di Cosmo, Pottier, and Rémy [6]
presented another automata-based algorithm for subtyping that properly handles AC products
with a complexity cost of O(n2n′2d5/2), where n and n′ are the sizes of the analyzed types,
and d is a bound on the arity of the involved products.

Structure of the paper. Sec. 2 reviews the syntax and operational semantics of CAP, its
type system and the main properties. Further details may be consulted in [18]. Sec. 3 proposes
invertible generating functions for coinductive notions of type-equivalence and subtyping
that lead to inefficient but elegant algorithms for checking these relations. Sec. 4 proposes a
syntax-directed type system for CAP. Sec. 5 studies a more efficient type-checking algorithm
based on automaton. Finally, we conclude in Sec. 6. Full details of all omitted proofs may
be found in an extended report [9]. An implementation of the algorithms described here is
available online [8].

J. Edi, A. Viso, and E. Bonelli 6:5

2 Review of CAP

2.1 Syntax and Operational Semantics

We assume given an infinite set of term variables V and constants C. CAP has four syntactic
categories, namely patterns (p, q, . . .), terms (s, t, . . .), data structures (d, e, . . .) and
matchable forms (m,n, . . .):

p ::= x (matchable)
| c (constant)
| p p (compound)

t ::= x (variable)
| c (constant)
| t t (application)
| p �θ t | . . . | p �θ t (abstraction)

d ::= c (constant)
| d t (compound)

m ::= d (data structure)
| p �θ t | . . . | p �θ t (abstraction)

The set of patterns, terms, data structures and matchable forms are denoted P, T, D
and M, resp. Variables occurring in patterns are called matchables. We often abbreviate
p1 �θ1 s1 | . . . | pn �θn sn with (pi �θi si)i∈1..n. The θi are typing contexts annotating
the type assignments for the variables in pi (cf. Sec. 2.3). The free variables of a term
t (notation fv(t)) are defined as expected; in a pattern p we call them free matchables
(fm(p)). All free matchables in each pi are assumed to be bound in their respective bodies
si. Positions in patterns and terms are defined as expected and denoted π, π′, . . . (ε denotes
the root position). We write pos(s) for the set of positions of s and s|π for the subterm of s
occurring at position π.

A substitution (σ, σi, . . .) is a partial function from term variables to terms. If it assigns
ui to xi, i ∈ 1..n, then we write {u1/x1, . . . , un/xn}. Its domain (dom (σ)) is {x1, . . . , xn}.
Also, {} is the identity substitution. We write σs for the result of applying σ to term s.
We say a pattern p subsumes a pattern q, written pC q if there exists σ such that σp = q.
Matchable forms are required for defining the matching operation, described next.

Given a pattern p and a term s, the matching operation {{s/p}} determines whether s
matches p. It may have one of three outcomes: success, fail (in which case it returns the
special symbol fail) or undetermined (in which case it returns the special symbol wait). We
say {{s/p}} is decided if it is either successful or it fails. In the former it yields a substitution
σ; in this case we write {{s/p}} = σ. The disjoint union of matching outcomes is given as
follows (“,” is used for definitional equality):

fail] o , fail
o] fail , fail
σ1] σ2 , σ

wait] σ , wait
σ] wait , wait

wait] wait , wait

where o denotes any possible output and σ1]σ2 , σ if the domains of σ1 and σ2 are disjoint.
This always holds given that patterns are assumed to be linear (at most one occurrence of
any matchable). The matching operation is defined as follows, where the defining clauses
below are evaluated from top to bottom1:

1 This is simplification to the static patterns case of the matching operation introduced in [10].

TYPES 2015

6:6 Efficient Type Checking for Path Polymorphism

{{u/x}} , {u/x}
{{c/c}} , {}
{{u v/p q}} , {{u/p}}] {{v/q}} if u v is a matchable form
{{u/p}} , fail if u is a matchable form
{{u/p}} , wait

For example: {{x � s/c}} = fail; {{d/c}} = fail; {{x/c}} = wait and {{x d/c c}} = fail.
We now turn to the only reduction axiom of CAP:

{{u/pi}} = fail for all i < j {{u/pj}} = σj j ∈ 1..n
(β)

(pi �θi si)i∈1..n u→ σjsj

It may be applied under any context and states that if the argument u to an abstraction
(pi �θi si)i∈1..n fails to match all patterns pi with i < j and successfully matches pattern pj
(producing a substitution σj), then the term (pi �θi si)i∈1..n u reduces to σjsj .

For instance, consider the function

head = ((nil �{} nothing) | (consx xs �{x:Nat,xs:µα.nil⊕cons@Nat@α} justx))

Then, head nil → nothing with {{nil/nil}} = {}, while head (cons 4 nil) → just 4 since
{{consx nil/nil}} = fail and {{cons 4 nil/consx xs}} = {4/x, nil/xs}.

I Proposition 1. Reduction in CAP is confluent [18].

2.2 Types
In order to ensure that patterns such as x y decompose only data structures rather than
arbitrary terms, we shall introduce two sorts of typing expressions: types and datatypes, the
latter being strictly included in the former. We assume given countably infinite sets VD of
datatype variables (α, β, . . .), VA of type variables (X,Y, . . .) and C of type constants
(c, d, . . .). We define V , VA ∪ VD and use meta-variables V,W, . . . to denote an arbitrary
element in it. Likewise, we write a, b, . . . for elements in V ∪ C. The sets TD of µ-datatypes
and T of µ-types, resp., are inductively defined as follows:

D ::= α (datatype variable)
| c (atom)
| D @ A (compound)
| D ⊕D (union)
| µα.D (recursion)

A ::= X (type variable)
| D (datatype)
| A ⊃ A (type abstraction)
| A⊕A (union)
| µX.A (recursion)

I Remark. A type of the form µα.A is not valid in general since it may produce invalid
unfoldings. For example, µα.α ⊃ α = (µα.α ⊃ α) ⊃ (µα.α ⊃ α), which fails to preserve
sorting. On the other hand, types of the form µX.D are not necessary since they denote
the solution to the equation X = D, hence X is a variable representing a datatype, a role
already fulfilled by α.

We consider ⊕ to bind tighter than ⊃, while @ binds tighter than ⊕. E.g. D @ A⊕A′ ⊃ B
means ((D @ A)⊕A′) ⊃ B. We write A 6= ⊕ to mean that the root symbol of A is different
from ⊕; and similarly with the other type constructors. Expressions such as A1 ⊕ . . .⊕An will
be abbreviated ⊕i∈1..nAi; this is sound since µ-types will be considered modulo associativity
of ⊕. A type of the form ⊕i∈1..nAi where each Ai 6= ⊕, i ∈ 1..n, is called a maximal union.

J. Edi, A. Viso, and E. Bonelli 6:7

(e-refl)
` A 'µ A

` A 'µ B ` B 'µ C
(e-trans)

` A 'µ C

` A 'µ B
(e-symm)

` B 'µ A

` D 'µ D′ ` A 'µ A′
(e-comp)

` D @ A 'µ D′ @ A′

` A 'µ A′ ` B 'µ B′
(e-func)

` A ⊃ B 'µ A′ ⊃ B′

(e-union-idem)
` A⊕A 'µ A

(e-union-comm)
` A⊕B 'µ B ⊕A

(e-union-assoc)
` A⊕ (B ⊕ C) 'µ (A⊕B)⊕ C

` A 'µ A′ ` B 'µ B′
(e-union)

` A⊕B 'µ A′ ⊕B′
` A 'µ B

(e-rec)
` µV.A 'µ µV.B

(e-fold)
` µV.A 'µ {µV.A/V }A

` A 'µ {A/V }B µV.B contractive
(e-contr)

` A 'µ µV.B

Figure 1 Type equivalence for µ-types.

We often write µV.A to mean either µα.D or µX.A. A non-union µ-type A is a µ-type of
one of the following forms: α, c, D @ A′, X, A′ ⊃ A′′ or µV.B with B a non-union µ-type.
We assume µ-types are contractive: µV.A is contractive if V occurs in A only under a type
constructor ⊃ or @, if at all. For instance, µX.X ⊃ c, µX.X ⊃ X and µX.c @ X ⊕X are
contractive while µX.X and µX.X ⊕X are not. We henceforth redefine T to be the set of
contractive µ-types.

µ-types come equipped with a notion of type equivalence 'µ (Fig. 1) and subtyping
�µ (Fig. 2). In Fig. 2 a subtyping context Σ is a set of assumptions over type variables of the
form V �µ W with V,W ∈ V . (e-rec) actually encodes two rules, one for datatypes (µα.D)
and one for arbitrary types (µX.A). Likewise for (e-fold) and (e-contr). Regarding
the subtyping rules, we adopt those for union of [19]. It should be noted that the naïve
variant of (s-rec) in which Σ ` µV.A �µ µV.B is deduced from Σ ` A �µ B, is known to
be unsound [1]. We often abbreviate ` A �µ B as A �µ B.

2.3 Typing and Safety

A typing context Γ (or θ) is a partial function from term variables to µ-types; Γ(x) = A

means that Γ maps x to A. We have two typing judgments, one for patterns θ `p p : A
and one for terms Γ ` s : A. Accordingly, we have two sets of typing rules: Fig. 3, top and
bottom. We write B θ `p p : A to indicate that the typing judgment θ `p p : A is derivable
(likewise for B Γ ` s : A). The typing schemes speak for themselves except for two of them
which we now comment. The first is (t-app). Note that we do not impose any additional
restrictions on Ai, in particular it may be a union-type itself. This implies that the argument
u can have a union type too. Regarding (t-abs) it requests a number of conditions. First
of all, each of the patterns pi must be typable under the typing context θi, i ∈ 1..n. Also,
the set of free matchables in each pi must be exactly the domain of θi. Another condition,
indicated by (Γ, θi ` si : B)i∈1..n, is that the bodies of each of the branches si, i ∈ 1..n, must

TYPES 2015

6:8 Efficient Type Checking for Path Polymorphism

(s-refl)
Σ ` A �µ A

(s-hyp)
Σ, V �µ W ` V �µ W

` A 'µ B
(s-eq)

Σ ` A �µ B

Σ ` A �µ B Σ ` B �µ C
(s-trans)

Σ ` A �µ C
Σ ` D �µ D′ Σ ` A �µ A′

(s-comp)
Σ ` D @ A �µ D′ @ A′

Σ ` A �µ A′ Σ ` B �µ B′
(s-func)

Σ ` A′ ⊃ B �µ A ⊃ B′
Σ ` A �µ C Σ ` B �µ C

(s-union-l)
Σ ` A⊕B �µ C

Σ ` A �µ B
(s-union-r1)

Σ ` A �µ B ⊕ C
Σ ` A �µ C

(s-union-r2)
Σ ` A �µ B ⊕ C

Σ, V �µ W ` A �µ B W /∈ fv(A) V /∈ fv(B)
(s-rec)

Σ ` µV.A �µ µW.B

Figure 2 Strong subtyping for µ-types.

be typable under the context extended with the corresponding θi. More noteworthy is the
condition that the list [pi : Ai]i∈1..n be compatible.

Compatibility is a condition that ensures that Subject Reduction is not violated. We
briefly recall it; see [18] for further details and examples. As already mentioned in example
(3) of the introduction, if pi subsumes pj (i.e. pi C pj) with i < j, then the branch pj �θj sj
will never be evaluated since the argument will already match pi. Thus, in this case, in order
to ensure SR we demand that Aj �µ Ai. If pi does not subsume pj (i.e. pi 6C pj) with i < j

we analyze the cause of failure of subsumption in order to determine whether requirements
on Ai and Aj must be put forward, focusing on those cases where π ∈ pos(pi) ∩ pos(pj) is
an offending position in both patterns. The following table exhaustively lists them:

pi|π pj |π
(a)

c
y restriction required

(b) d no overlapping (pj 6C pi)
(c) q1 q2 no overlapping
(d)

q1 q2

y restriction required
(e) d no overlapping

In cases (b), (c) and (e), no extra condition on the types of pi and pj is necessary, since
their respective sets of possible arguments are disjoint. The cases where Ai and Aj must
be related are (a) and (d): for those we require Aj �µ Ai. In summary, the cases requiring
conditions on their types are: 1) pi C pj ; and 2) pi 6C pj and pj C pi.

I Definition 2. Given a pattern θ `p p : A and π ∈ pos(p), we say A admits a symbol �
(with � ∈ V ∪ C ∪ {⊃,@}) at position π iff � ∈ A‖π, where:

a‖ε , {a}
(A1 ? A2)‖ε , {?} , ? ∈ {⊃,@}

(A1 ? A2)‖iπ , Ai‖π, ? ∈ {⊃,@} , i ∈ {1, 2}
(A1 ⊕A2)‖π , A1‖π ∪A2‖π

(µV.A′)‖π , ({µV.A′/V }A′)‖π

J. Edi, A. Viso, and E. Bonelli 6:9

Patterns

θ(x) = A
(p-match)

θ `p x : A
(p-const)

θ `p c : c
θ `p p : D θ `p q : A

(p-comp)
θ `p p q : D @ A

Terms

Γ(x) = A
(t-var)

Γ ` x : A
(t-const)

Γ ` c : c
Γ ` r : D Γ ` u : A

(t-comp)
Γ ` r u : D @ A

[pi : Ai]i∈1..n compatible
(θi `p pi : Ai)i∈1..n (dom (θi) = fm(pi))i∈1..n (Γ, θi ` si : B)i∈1..n (t-abs)

Γ ` (pi �θi si)i∈1..n : (⊕i∈1..nAi) ⊃ B

Γ ` r :⊕i∈1..nAi ⊃ B Γ ` u : Ak k ∈ 1..n
(t-app)

Γ ` r u : B

Γ ` s : A ` A �µ A′
(t-subs)

Γ ` s : A′

Figure 3 Typing rules for patterns and terms.

Note that B θ `p p : A and contractiveness of A imply A‖π is well-defined for π ∈ pos(p).

I Definition 3. The maximal positions in a set of positions P are:

maxpos(P) , {π ∈ P | @π′ 6= ε.ππ′ ∈ P}

The mismatching positions between two patterns are defined below where, recall from the
introduction, p|π stands for the sub-pattern at position π of p:

mmpos(p, q) , {π | π ∈ maxpos(pos(p) ∩ pos(q)) ∧ p|π 6C q|π}

For instance, given patterns nil and consx xs with set of positions {ε} and {ε, 1, 2, 11, 12}
respectively, we have maxpos(nil) = {ε} and maxpos(consx xs) = {11, 12}, while the only
mismatching position among them is the root, i.e. mmpos(nil, consx xs) = {ε}.

I Definition 4. Define the compatibility predicate as

Pcomp(p : A, q : B) , ∀π ∈ mmpos(p, q) .A‖π ∩B‖π 6= ∅

We say p : A is compatible with q : B, notation p : A≪ q : B, iff

Pcomp(p : A, q : B) =⇒ B �µ A

A list of patterns [pi : Ai]i∈1..n is compatible if ∀i, j ∈ 1..n.i < j =⇒ pi : Ai≪ pj : Aj .

Following the example, consider types nil and
cons @ Nat @ (µα.nil⊕ cons @ Nat @ α) for patterns nil and consxxs respectively. Com-
patibility requires no further restriction in this case since mmpos(nil, consxxs) = {ε}
and

nil‖ε = {nil} (cons @ Nat @ (µα.nil⊕ cons @ Nat @ α))‖ε = {@}

TYPES 2015

6:10 Efficient Type Checking for Path Polymorphism

hence Pcomp is false and the property gets validated trivially.
On the contrary, recall example (3) on Sec. 1. vlx : vl @ Bool≪ vl y : vl @ Nat requires

vl @ Nat �µ vl @ Bool since mmpos(vlx, vl y) = ∅ (i.e. Pcomp is trivially true). This actually
fails because Nat 6�µ Bool. Thus, this pattern combination is rejected by rule (t-abs).

Types are preserved along reduction. The proof relies crucially on compatibility.

I Proposition 5 (Subject Reduction). If B Γ ` s : A and s→ s′, then B Γ ` s′ : A.

Let the set of values be defined as v ::= x v1 . . . vn | c v1 . . . vn | (pi �θi si)i∈1..n. The
following property guarantees that no functional application gets stuck. Essentially this
means that, in a well-typed closed term, a function which is applied to an argument has at
least one branch that is capable of handling it.

I Proposition 6 (Progress). If B ` s : A and s is not a value, then ∃s′ such that s→ s′.

3 Checking Equivalence and Subtyping

As mentioned in the related work, there are roughly two approaches to implementing
equivalence and subtype checking in the presence of recursive types, one based on automata
theory and another based on coinductive characterizations of the associated relations. The
former leads to efficient algorithms [15] while the latter is more abstract in nature and hence
closer to the formalism itself although they may not be as efficient. In the particular case
of subtyping for recursive types in the presence of ACI operators, the automata approach
of [15] is known not to be applicable [20] while the coinductive approach, developed in this
section, yields a correct algorithm. In Sec. 5 we explore an alternative approach for subtyping
based on automata inspired from [6]. We next further describe the reasoning behind the
coinductive approach.

Preliminaries. Coinductive characterizations of subsets of T ×T whose generating function
Φ is invertible admit a simple (although not necessarily efficient) algorithm for subtype
membership checking and consists in “running Φ backwards” [16, Sec. 21.5]. This strategy
is supported by the fact that contractiveness of µ-types guarantees a finite state space to
explore (i.e. unfolding these types results in regular trees); invertibility further guarantees
that there is at most one way in which a member of νΦ, the greatest fixed-point of Φ, can be
generated. Invertibility of Φ : ℘ (T × T)→ ℘ (T × T) means that for any 〈A,B〉 ∈ T , the
set {X ∈ ℘ (T × T) | 〈A,B〉 ∈ Φ(X)} is either empty or contains a unique member.

3.1 Equivalence Checking
Fig. 4 presents a coinductive definition of type equality over µ-types. This relation '~µ is
defined by means of rules that are interpreted coinductively (indicated by the double lines).
The rule (e-union-al) makes use of functions f and g to encode the ACI nature of ⊕.
Letters C,D, used in rules (e-rec-l-al) and (e-rec-r-al), denote contexts of the form:

A1 ⊕ . . . Ai−1 ⊕�⊕Ai+1 ⊕ . . .⊕An

where � denotes the hole of the context, Aj 6= ⊕ for all j ∈ 1..n \ i and Al 6= µ for all
l ∈ 1..i− 1. Note that, in particular, C may take the form �. These contexts help identify
the first occurrence of a µ constructor within a maximal union. In turn, this allows us to
guarantee the invertibility of the generating function associated to these rules.

J. Edi, A. Viso, and E. Bonelli 6:11

===== (e-refl-al)
a '~µ a

D '~µ D′ A '~µ A′
=============== (e-comp-al)
D @ A '~µ D′ @ A′

A '~µ A′ B '~µ B′
=============== (e-func-al)
A ⊃ B '~µ A′ ⊃ B′

C[{µV.A/V }A] '~µ B
================== (e-rec-l-al)

C[µV.A] '~µ B

A '~µ D[{µW.B/W}B] A 6= C[µV.C]
============================== (e-rec-r-al)

A '~µ D[µW.B]

Ai '~µ Bf(i) f : 1..n→ 1..m
Ag(j) '~µ Bj g : 1..m→ 1..n Ai, Bj 6= µ,⊕ n+m > 2

=== (e-union-al)⊕i∈1..nAi '~µ⊕j∈1..mBj

Figure 4 Coinductive axiomatization of type equality for contractive µ-types.

I Proposition 7. The generating function associated with the rules of Fig. 4 is invertible.

Moreover, '~µ coincides with 'µ:

I Proposition 8. A '~µ B iff A 'µ B.

The proof of Prop. 8 relies on an intermediate relation 'T over the possibly infinite trees
resulting from the complete unfolding of µ-types. This relation is defined using the same
rules as in Fig. 4 except for two important differences: 1) the relation is defined over regular
trees in T, and 2) rules (e-rec-l-al) and (e-rec-r-al) are dropped.

Thus we can resort to invertibility of the generating function to check for '~µ. Fig. 5
presents the algorithm. It uses seq e1 . . . en which sequentially evaluates each of its arguments,
returning the value of the first of these that does not fail. Evaluation of eqtype(∅, A,B) can
have one of two outcomes: fail, meaning that A 6'~µ B, or a set S ∈ ℘ (T × T) that is
Φ-dense with (A,B) ∈ S, proving that A '~µ B.

3.2 Subtype Checking
The approach to subtype checking is similar to that of type equivalence. First consider the
relation �~µ over µ-types defined in Fig. 6. It captures �µ:

I Proposition 9. A �~µ B iff A �µ B.

The proof strategy is similar to that of Prop. 8. In this case we resort to a proper
subtyping relation for infinite trees that essentially results from dropping rules (s-rec-l-al)
and (s-rec-r-al) in Fig. 6.

Unfortunately, the generating function determined by the rules in Fig. 6, let us call
it Φ�~µ , is not invertible. Notice that (s-union-r-al) overlaps with itself. For example,
c �~µ (c⊕ d)⊕ (e⊕ c) belongs to two Φ�~µ -saturated sets (i.e. sets X such that X ⊆ Φ�~µ(X)):

X1 = {〈c, (c⊕ d)⊕ (e⊕ c)〉, 〈c, (c⊕ d)〉, 〈c, c〉}
X2 = {〈c, (c⊕ d)⊕ (e⊕ c)〉, 〈c, (e⊕ c)〉, 〈c, c〉}

TYPES 2015

6:12 Efficient Type Checking for Path Polymorphism

eqtype(S,A,B) ,
if 〈A,B〉 ∈ S

then S
else let S0 = S ∪ {〈A,B〉} in

case 〈A,B〉 of
〈a, a〉 →
S0

〈A′ @ A′′, B′ @ B′′〉 →
if A′, B′ are datatypes

then let S1 = eqtype(S0, A
′, B′) in

eqtype(S1, A
′′, B′′)

else fail
〈A′ ⊃ A′′, B′ ⊃ B′′〉 →

let S1 = eqtype(S0, A
′, B′) in

eqtype(S1, A
′′, B′′)

〈C[µV.A′], B〉 →
eqtype(S0,C[{µV.A′/V }A′], B)

〈A,D[µW.B′]〉 →
eqtype(S0, A,D[{µW.B′/W}B′])

〈⊕i∈1..nAi,⊕j∈1..mBj〉 →
let S1 = (seq eqtype(S0, A1, B1), . . . , eqtype(S0, A1, Bm)) in
. . .

let Sn = (seq eqtype(Sn−1, An, B1), . . . , eqtype(Sn−1, An, Bm)) in
let Sn+1 = (seq eqtype(Sn, A1, B1), . . . , eqtype(Sn, An, B1)) in
. . .

let Sn+m−1 = (seq eqtype(Sn+m−2, A1, Bm−1), . . . , eqtype(Sn+m−2, An, Bm−1))
in seq eqtype(Sn+m−1, A1, Bm), . . . , eqtype(Sn+m−1, An, Bm)

otherwise→
fail

Figure 5 Equivalence checking algorithm.

===== (s-refl-al)
a �~µ a

D �~µ D′ A �~µ A′
=============== (s-comp-al)
D @ A �~µ D′ @ A′

A′ �~µ A B �~µ B′
=============== (s-func-al)
A ⊃ B �~µ A′ ⊃ B′

{µV.A/V }A �~µ B
=============== (s-rec-l-al)

µV.A �~µ B

A �~µ {µW.B/W}B A 6= µ
====================== (s-rec-r-al)

A �~µ µW.B

Ai �~µ B for all i ∈ 1..n n > 1 B 6= µ Ai 6= ⊕
======================================= (s-union-l-al)

⊕i∈1..nAi �~µ B

A �~µ Bk for some k ∈ 1..m m > 1 A 6= µ,⊕ Bj 6= ⊕
=== (s-union-r-al)

A �~µ ⊕j∈1..mBj

Figure 6 Coinductive axiomatization of subtyping for contractive µ-types.

J. Edi, A. Viso, and E. Bonelli 6:13

subtype(S,A,B) ,
if 〈A,B〉 ∈ S

then S
else let S0 = S ∪ {〈A,B〉} in

case 〈A,B〉 of
〈a, a〉 →
S0

〈A′ @ A′′, B′ @ B′′〉 →
if A′, B′ are datatypes

then let S1 = subtype(S0, A
′, A′′) in

subtype(S1, B
′, B′′)

else fail
〈A′ ⊃ A′′, B′ ⊃ B′′〉 →

let S1 = subtype(S0, B
′, A′) in

subtype(S1, A
′′, B′′)

〈µV.A′, B〉 →
subtype(S0, {µV.A′/V }A′, B)

〈A,µW.B′〉 →
subtype(S0, A, {µW.B′/W}B′)

〈⊕i∈1..nAi, B〉 →
let S1 = subtype(S0, A1, B) in
let S2 = subtype(S1, A2, B) in
. . .

let Sn−1 = subtype(Sn−2, An−1, B) in
subtype(Sn−1, An, B)

〈A,⊕j∈1..mBj〉 →
seq subtype(S0, A,B1), . . . , subtype(S0, A,Bm)

otherwise→
fail

Figure 7 Subtype checking algorithm.

However, since this is the only source of non-invertibility we easily derive a subtype
membership checking function subtype(•, •, •) that, in the case of (s-union-r-al), simply
checks all cases (Fig. 7).

4 Type Checking

A syntax-directed presentation for typing in CAP, inferring judgments of the form Γ s : A,
may be obtained from the rules of Fig. 3 by dropping subsumption. This requires “hard-wiring”
it back in into (t-app). Unfortunately, the naïve syntax-directed variant:

Γ r : (⊕i∈1..nAi) ⊃ B Γ u : A′ A′ �µ Ak, for some k ∈ 1..n
(t-app-al)′

Γ r u : B
fails to capture all the required terms. In other words, there are Γ, s and A such that Γ ` s : A
but no A′ �µ A such that Γ s : A′. For example, take Γ(x) , (c⊕ e ⊃ d) ⊕ (c⊕ f ⊃ d),
s , x c and A , d. More generally, from Γ r : A and A �µ ⊕i∈1..nAi ⊃ B we cannot infer

TYPES 2015

6:14 Efficient Type Checking for Path Polymorphism

Γ(x) = A
(t-var-al)

Γ x : A
(t-const-al)

Γ c : c
Γ r : D Γ u : A

(t-comp-al)
Γ r u : D @ A

[pi : Ai]i∈1..n compatible
(θi `p pi : Ai)i∈1..n (dom (θi) = fm(pi))i∈1..n (Γ, θi si : Bi)i∈1..n (t-abs-al)

Γ (pi �θi si)i∈1..n :⊕i∈1..nAi ⊃⊕i∈1..nBi

Γ r : A A 'µ ⊕i∈1..n(Ai ⊃ Bi) Ai 6= ⊕
Γ u : C (` C �µ Ai)i∈1..n (t-app-al)

Γ r u :⊕i∈1..nBi

Figure 8 Syntax-directed typing rules for terms.

that A is a functional type due to the presence of union types. A complete (Prop. 10) syntax
directed presentation is obtained by dropping (t-subs) from Fig. 3 and replacing (t-abs)
and (t-app) by (t-abs-al) and (t-app-al), resp., of Fig. 8.

I Proposition 10.
1. If Γ s : A, then Γ ` s : A.
2. If Γ ` s : A, then ∃A′ such that A′ �µ A and Γ s : A′.

From this we may obtain a simple type-checking function tc(Γ, s) (Fig. 9-top) such that
tc(Γ, s) = A iff Γ s : A′, for some A′ 'µ A. The interesting clause is that of application,
where the decision of whether (t-comp-al) or (t-app-al) may be applied depends on the
result of the recursive call. If the term r is assigned a datatype, then a new compound datatype
is built; if its type can be rewritten as a union of functional types, then a proper type is
constructed with each of the co-domains of the latter, as established in rule (t-app-al). The
expression unfold(A), in the clause defining tc(Γ, r u), is the result of unfolding type A using
rules (e-rec-l-al) and (e-rec-r-al) until the result is an equivalent type A′ =⊕i∈1..nA

′
i

with A′i 6= µ,⊕, and then simply verifying that A′i = ⊃ for all i ∈ 1..n.

unfold(A) , if A = A′ ⊃ A′′ then A
else if A =⊕i∈1..nAi and n > 1 andAi 6= ⊕ then

let⊕j∈1..mi(Aij ⊃ Bij) = unfold(Ai) foreach i ∈ 1..n in
⊕ i∈1..n
j∈1..mi

(Aij ⊃ Bij)

else if A = µV.A′ then unfold({µV.A/V }A)
else fail

Termination is guaranteed by contractiveness of µ-types. In the worst case it requires
exponential time due to the need to unfold types until the desired equivalent form is obtained
(e.g. µX1.. . . µXn.X1 ⊃ . . . Xn ⊃ c).

Compatibility between branches is verified by checking if Pcomp(p : A, q : B) holds:

compatible(p : A, q : B) , (not pcomp(p : A, q : B)) or subtype(∅, B,A)

In pcomp we may assume that it has already been checked that p has type A and q has type
B. Therefore, if these are compound patterns they can only be assigned application types,
and union types may only appear at leaf positions of a pattern. We use this correspondence

J. Edi, A. Viso, and E. Bonelli 6:15

tc(Γ, x) , Γ(x)
tc(Γ, c) , c

tc(Γ, (pi �θi si)i∈1..n) , let Ai = tcp(θi, pi), Bi = tc(Γ, θi, si) in
if ∀i ∈ 1..n.∀j ∈ i+ 1..n.compatible(pi : Ai, pj : Aj)

then⊕i∈1..nAi ⊃⊕i∈1..nBi
else fail

tc(Γ, r u) , let A = tc(Γ, r), C = tc(Γ, u) in
if A is a datatype

then A @ C

else let⊕i∈1..n(Ai ⊃ Bi) = unfold(A) in
if ∀i ∈ 1..n.subtype(∅, C,Ai)
then⊕i∈1..nBi
else fail

tcp(Γ, x) , Γ(x)
tcp(Γ, c) , c

tcp(Γ, p q) , let A = tcp(Γ, p), B = tcp(Γ, q) in
if A is a datatype

then A @ B

else fail

Figure 9 Type-checking CAP.

to traverse both pattern and type simultaneously in linear time, which means the worst-case
execution time of the compatibility check is governed by the complexity of subtyping.

pcomp(p : A, q : B) , if p = p1 p2 and q = q1 q2 then
let A = A1 @ A2, B = B1 @ B2 in

pcomp(p1 : A1, q1 : B1) and pcomp(p2 : A2, q2 : B2)
else

(p = x) or (p = q = c) or (A‖ε ∩B‖ε 6= ∅)

5 Towards Efficient Type-Checking

The algorithms presented so far are clear but inefficient. The number of recursive calls in
eqtype and subtype is not bounded (it depends on the size of the type) and unfolding recursive
types may increment their size exponentially. This section draws from ideas in [6, 12, 15]
and adopts a dag-representation of recursive types which are encoded as term automata
(described below). Associativity is handled by resorting to n-ary unions, commutativity and
idempotence of ⊕ is handled by how types are decomposed in their automaton representation
(cf. check in Fig. 13). The algorithm itself is tc of Fig. 9 except that:
1. The representation of µ-types are now term automata. This renders unfold linear.
2. The subtyping algorithm is optimized, based on the new representation and following

ideas from [6,15].
The end product is an algorithm with complexity O(n7d) where n is the size of the input
(i.e. that of Γ plus t) and d is the maximum arity of the n-unions occurring in Γ and t. Note
that all the information needed to type t is either in the context or annotated within the

TYPES 2015

6:16 Efficient Type Checking for Path Polymorphism

⊕2

@

⊕2

@

...@

Acons

nil

@

Acons

nil
⊕2

nil @

@

cons MA

1

2

1

2

1 2

Figure 10 The type ListA represented as an infinite tree and as a term automaton.

term itself. Thus, a linear relation can be established between the size of the input and the
size of the resulting type; and we can think of n as the size of the latter.

5.1 Term Automata
µ-types may be understood as finite dags since their infinite unfolding produce a reg-
ular (infinite) trees. We further simplify the types whose dags we consider by flatten-
ing the union type constructor and switching to an alphabet where unions are n-ary:
Ln ,

{
a0 | a ∈ V ∪ C

}
∪
{

@2,⊃2} ∪ {⊕n | n > 1} and we let Tn stand for possibly infinite
trees whose nodes are symbols in Ln. µ-types may be interpreted in Tn simply by unfolding
and then considering maximal union types as their underlying n-ary union types. We write
J•Kn for this function and use meta-variables A,B, . . . when referring to elements of Tn.
Types in Tn may be represented as term automata [1].

I Definition 11. A term automaton is a tupleM = 〈Q,Σ, q0, δ, `〉 where:
1. Q is a finite set of states.
2. Σ is an alphabet where each symbol has an associated arity.
3. q0 is the initial state.
4. δ : Q× N→ Q is a partial transition function between states, defined over 1..k, where k

is the arity of the symbol associated by ` to the origin state.
5. ` : Q→ Σ is a total function that associates a symbol in Σ to each state.

We writeMA for the automaton associated to type A. MA recognizes all paths from
the root of A to any of its sub-expressions. Fig. 10 illustrates an example type, namely
ListA = µα.nil⊕ (cons @ A @ α), represented as an infinite tree and as a term automaton
MListA . If q0 is the initial state of MListA and δ̂ denotes the natural extension of δ to
sequences of symbols, then `(δ̂(q0, 211)) = cons. As mentioned, the regular structure of trees
arising from types yields automata with a finite number of states.

5.2 Subtyping and Subtype Checking
We next present a coinductive notion of subtyping over Tn. It is a binary relation �RTn up-to
a set of hypothesis R (Fig. 11). For R = ∅, �RTn coincides with �µ, modulo application of
our translation J•Kn.

J. Edi, A. Viso, and E. Bonelli 6:17

====== (s-refl-up)
a �RTn a

D (�RTn ∪ R) D′ A (�RTn ∪ R) A′
=========================== (s-comp-up)

D @ A �RTn D′ @ A′

A′ (�RTn ∪ R) A B (�RTn ∪ R) B′
=========================== (s-func-up)

A ⊃ B �RTn A′ ⊃ B′

Ai (�RTn ∪ R) Bf(i) f : 1..n→ 1..m Ai,Bj 6= ⊕
======================================= (s-union-up)⊕n

i Ai �
R
Tn ⊕m

j Bj

Ai (�RTn ∪ R) B for all i ∈ 1..n Ai 6= ⊕ B 6= ⊕
======================================= (s-union-l-up)⊕n

i Ai �
R
Tn B

A (�RTn ∪ R) Bk for some k ∈ 1..m A 6= ⊕ Bj 6= ⊕
== (s-union-r-up)

A �RTn ⊕m
j Bj

Figure 11 Subtyping relation up-to R over Tn.

I Proposition 12. A �µ B iff JAKn �∅
Tn JBKn.

So we can use �∅
Tn to determine whether types are related via �µ: take two types,

construct their automaton representation and check whether these are related via �∅
Tn .

Moreover, our formulation of �RTn will prove convenient for proving correctness of our
subtyping algorithm.

5.2.1 Algorithm Description
The algorithm that checks whether types are related by the new subtyping relation builds on
ideas from [6]. Our presentation is more general than required for subtyping; this general
scheme will also be applicable to type equivalence, as we shall later see. Call p ∈ Tn×Tn valid
if p ∈ �∅

Tn . The algorithm consists of two phases. The aim of the first one is to construct
a set U ⊆ Tn × Tn that delimits the universe of pairs of types that will later be refined to
obtain a set of only valid pairs. It starts off with an initial pair (cf. Fig. 12, buildUniverse)
and then explores pairs of sub-terms of both types in this pair by decomposing the type
constructors (cf. Fig. 12, children). Note that, given p, the algorithm may add invalid pairs
in order to prove the validity of p. The second phase shall be in charge of eliminating these
invalid pairs. Note that the first phase can easily be adapted to other relations by simply
redefining function children.

U may be interpreted as a directed graph where an edge from pair p to q means that q
might belong to the support set of p in the final relation �∅

Tn . In this case we say that p
is a parent of q. Since types could have cycles, a pair may be added to U more than once
and hence have more than one parent. Set u(p) to be the incoming degree of p, i.e. the
number of parents.

During the second phase (Fig. 13, gfp) the following sets are maintained, all of which
conform a partition of U :

TYPES 2015

6:18 Efficient Type Checking for Path Polymorphism

buildUniverse(p0) :
U = ∅
W = {p0}
while W 6= ∅ :
p := takeOne(W)
if p /∈ U

insert(p, U)
foreach q ∈ children(p)

insert(q, W)
return U

children(p) :
case p of
〈D @ A,D′ @ B〉 →

{〈D,D′〉, 〈A,B〉}
〈A′ ⊃ A′′,B′ ⊃ B′′〉 →

{〈B′,A′〉, 〈A′′,B′′〉}
〈⊕ni Ai,⊕mj Bj〉 →
{〈Ai,Bj〉 | i ∈ 1..n, j ∈ 1..m}

〈⊕ni Ai,B〉, B 6= ⊕ →
{〈Ai,B〉 | i ∈ 1..n}

〈A,⊕mj Bj〉, A 6= ⊕ →
{〈A,Bj〉 | j ∈ 1..m}

otherwise→
∅

Figure 12 Pseudo-code of the first phase of the algorithm (construction of the universe U).

W : pairs whose validity has yet to be determined
S: pairs considered conditionally valid
F : invalid pairs

The algorithm repeatedly takes elements in W and, in each iteration, transfers to S the
selected pair p if its validity can be proved assuming valid only those pairs which have not
been discarded up until now (i.e. those in W ∪ S). Otherwise, p is transferred to F and all
of its parents in S need to be reconsidered (their validity up-to W may have changed). Thus
these parents are moved back to W (cf. Fig. 13, invalidate). Intuitively, S contains elements
in �WTn . The process ends when W is empty. The only aspect of this second phase specific to
�WTn is function check, which may be redefined to be other suitable up-to relations.

5.2.2 Correctness
It is based on the fact that S may be considered a set of valid pairs assuming the validity of
those in W . More generally, the following holds:

I Proposition 13. The algorithm preserves the following invariant:
〈W,S, F 〉 is a partition of U
F is composed solely of invalid pairs
S ⊆ Φ�W

Tn
(S)

When the main cycle ends we know that W is empty, and therefore that S ⊆ Φ�∅
Tn

(S).
The coinduction principle then yields S ⊆ �∅

Tn (i.e. every pair in S is valid) and therefore
we are left to verify whether the original pair of types is in S or F .

5.2.3 Complexity
The first phase consists of identifying relevant pairs of sub-terms in both types being
evaluated. If we call N and N ′ the size of such types (considering nodes and edges in their
representations) we have that the size and cost of building the universe U can be bounded

J. Edi, A. Viso, and E. Bonelli 6:19

gfp(A,B) :
W = buildUniverse(〈A,B〉)
S = ∅
F = ∅
while W 6= ∅ :
p := takeOne(W)
if check(p, F)

then insert(p, S)
else invalidate(p, S, F,W)

return p ∈ S

invalidate(p, S, F,W) :
insert(p, F)
foreach q ∈ parents(p) ∩ S

move(q, S, W)

check(p, F) :
case p of
〈a, a〉 →

true
〈D @ A,D′ @ B〉 →
〈D,D′〉 /∈ F and 〈A,B〉 /∈ F

〈A′ ⊃ A′′,B′ ⊃ B′′〉 →
〈B′,A′〉 /∈ F and 〈A′′,B′′〉 /∈ F

〈⊕ni Ai,⊕mj Bj〉 →
∀i.∃j. 〈Ai,Bj〉 /∈ F

〈⊕ni Ai,B〉, B 6= ⊕ →
∀i. 〈Ai,B〉 /∈ F

〈A,⊕mj Bj〉, A 6= ⊕ →
∃m. 〈A,Bm〉 /∈ F

Figure 13 Pseudo-code of the second phase (relation refinement).

〈A1 ⊕A2, B1 ⊕B2 ⊕B3〉

〈A1, B1〉 . . . 〈A2, B3〉

A1 : 3
A2 : 3

Figure 14 Verification of invalidated descendants.

by O(NN ′). As we shall see, the total cost of the algorithm is governed by the amount of
operations in the second phase.

As stated in [6], since any pair can be invalidated at most once (in which case u(p) nodes
are transferred back to W for reconsideration) the amount of iterations in the refinement
stage can be bounded by∑

p∈U 1 +
∑
p∈U u(p) =

∑
p∈U (1 + u(p)) = size(U)

Assuming that set operations can be performed in constant time, the cost of evaluating
each node in the main loop is that of deciding whether to suspend or invalidate the pair
and, in the later case, the cost of the invalidation process. The decision of where to transfer
the node is computed in the function check, which always performs a constant amount
of operations for pairs of non-union types. The worst case involves checking pairs of the
form 〈⊕ni Ai,⊕mj Bi〉, which can be resolved by maintaining in each node a table indicating,
for every Ai, the amount of pairs 〈Ai, Bj〉 that have not yet been invalidated. Using this
approach, this check can be performed in O(d) operations, where d is a bound on the size of
both unions. Whenever a pair is invalidated, all tables present in its immediate parents are
updated as necessary.

Finally we resort to an argument introduced in [6] to argue that the cost of invalidating
an element can be seen as O(1): a new iteration will be performed for each of the u(p) pairs
added to W when invalidating p. Because of this, a more precise bound for the cost of the

TYPES 2015

6:20 Efficient Type Checking for Path Polymorphism

====== (e-refl-up)
a 'RTn a

D ('RTn ∪ R) D′ A ('RTn ∪ R) A′
=========================== (e-comp-up)

D @ A 'RTn D′ @ A′

A′ ('RTn ∪ R) A B ('RTn ∪ R) B′
=========================== (e-func-up)

A ⊃ B 'RTn A′ ⊃ B′

Ai ('RTn ∪ R) Bf(i) f : 1..n→ 1..m
Ag(j) ('RTn ∪ R) Bj g : 1..m→ 1..n Ai,Bj 6= ⊕

=== (e-union-up)⊕n
i Ai '

R
Tn ⊕m

j Bj

Ai ('RTn ∪ R) B for all i ∈ 1..n Ai 6= ⊕ B 6= ⊕
======================================= (e-union-l-up)⊕n

i Ai '
R
Tn B

A ('RTn ∪ R) Bj for all j ∈ 1..m A 6= ⊕ Bj 6= ⊕
== (e-union-r-up)

A 'RTn ⊕m
j Bj

Figure 15 Equivalence relation up-to R over Tn.

complete execution of the algorithm can be obtained if we consider the cost of adding each
of these elements to W as part of the iteration itself, yielding an amortized cost of O(d)
operations for each iteration. This leaves a total cost of O(size(U)d) for the subtyping check,
expressed as O(NN ′d) in terms of the size of the input automata.

Let us call n and n′ the amount of constructors in types A and B, respectively. N and
N ′ are the sizes of automata representing these types, and can consequently be bounded by
O(n2) and O(n′2). Therefore, the complexity of the algorithm can be expressed as O(n2n′2d).

5.3 Equivalence Checking

In this section we adapt the previous algorithm to obtain one proper of equivalence checking
with the same complexity cost. Fig. 15 introduces an equivalence relation up-to R over Tn

which can be used to compute 'µ via the translation J•Kn.

I Lemma 14. A 'µ B iff JAKn '∅
Tn JBKn.

The algorithm is the result of adapting the scheme presented for subtyping to the new
relation 'RTn . This is done by redefining functions children and check from the first and second
phase respectively (cf. Fig. 16). For the former the only difference is on rule (e-func-up),
where we need to add pair 〈A′,B′〉 instead of 〈B′,A′〉, added for subtyping. We could have
omitted this by using the same rule for functional types as before and resorting to the
symmetry of the resulting relation (which does not depend on this rule), but we wanted to
emphasize the fact that phase one can easily be adapted if needed. For the refinement phase
we need to properly check the premises of rules (e-union-up) and (e-union-r-up), while
the others remain the same.

J. Edi, A. Viso, and E. Bonelli 6:21

children(p) :
case p of
〈D @ A,D′ @ B〉 →
{〈D,D′〉, 〈A,B〉}

〈A′ ⊃ A′′,B′ ⊃ B′′〉 →
{〈A′,B′〉, 〈A′′,B′′〉}

〈⊕ni Ai,⊕mj Bj〉 →
{〈Ai,Bj〉 | i ∈ 1..n, j ∈ 1..m}

〈⊕ni Ai,B〉, B 6= ⊕ →
{〈Ai,B〉 | i ∈ 1..n}

〈A,⊕mj Bj〉, A 6= ⊕ →
{〈A,Bj〉 | j ∈ 1..m}

otherwise→
∅

check(p, F) :
case p of
〈a, a〉 →

true
〈D @ A,D′ @ B〉 →
〈D,D′〉 /∈ F and 〈A,B〉 /∈ F

〈A′ ⊃ A′′,B′ ⊃ B′′〉 →
〈A′,B′〉 /∈ F and 〈A′′,B′′〉 /∈ F

〈⊕ni Ai,⊕mj Bj〉 →
∀i.∃j. 〈Ai,Bj〉 /∈ F and ∀j.∃i. 〈Ai,Bj〉 /∈ F

〈⊕ni Ai,B〉, B 6= ⊕ →
∀i. 〈Ai,B〉 /∈ F

〈A,⊕mj Bj〉, A 6= ⊕ →
∀j. 〈A,Bj〉 /∈ F

Figure 16 Pseudo-code of first (left) and second (right) phase for equivalence checking.

With these considerations is easy to see that, in each iteration, S consists of pairs in the
relation 'WTn , getting S ⊆ '∅

Tn at the end of the process.

I Proposition 15. The algorithm preserves the following invariant:
〈W,S, F 〉 is a partition of U
F is composed solely of invalid pairs
S ⊆ Φ'W

Tn
(S)

For the complexity analysis, notice that the size of the built universe is the same as
before and phase one is governed by phase two, which has at most O(NN ′) iterations. For
the cost of each iteration it is enough to analyze the complexity of check, since the rest of
the scheme remains the same. As we remarked before, the only difference in check between
subtyping and equality is in the cases involving unions. Here the worst case is when checking
rule (e-union-up) that requires the existence of two functions f and g relating elements
of each type. This can be done in linear time by maintaining tables with the count of
non-invalidated pairs of descendants, as indicated in Sec. 5.2.3. Thus, the cost of an iteration
is O(d), resulting in an overall cost of O(NN ′d) as before.

5.4 Type Checking
Let us revisit type-checking (tc). As already discussed, it linearly traverses the input term,
the most costly operations being those that deal with application and abstraction. These
cases involve calling subtype. Notice that these calls do not depend directly on the input to
tc. However, a linear correspondence can be established between the size of the types being
considered in subtype and the input to the algorithm, since such expressions are built from
elements of Γ (the input context) or from annotations in the input term itself. Consider
for instance subtype(∅, A,B) with a and b the size of each type resp. This has complexity
O(a2b2d) and, from the discussion above, we can refer to it as O(n4d), where n is the size of
the input to tc (i.e. that of Γ plus t). Similarly, we may say that unfold is linear in n.

We now analyze the application and abstraction cases of the algorithm in detail:

Application First it performs a linear check on the type to verify if it is a datatype. If so it
returns. Otherwise, a second linear check is required (unfold) in order to then perform as

TYPES 2015

6:22 Efficient Type Checking for Path Polymorphism

many calls to subtype as elements there are in the union of the functional types. This
yields a local complexity of O(n4d2).

Abstraction First there are as many calls to tcp (the algorithm for type-checking patterns) as
branches the abstraction has. Note that tcp has linear complexity in the size of its input
and this call is instantiated with arguments pi and θi which occur in the original term.
All these calls, taken together, may thus be considered to have linear time complexity
with respect to the input of tcp. Then it is necessary to perform a quadratic number
(in the number of branches) of checks on compatibility. We have already analyzed that
compatibility in the worst case involves checking subtyping. If we assume a linear number
of branches w.r.t. the input, we obtain a total complexity of O(n6d) for this case.

Finally, the total complexity of tc is governed by the case of the abstraction, and is
therefore O(n7d).

5.5 Prototype implementation
A prototype in Scala is available [8]. It implements tc but resorts to the efficient algorithm
for subtyping and type equivalence described above. It also includes further optimizations.
For example, following a suggestion in [6], the order in which elements in W are selected for
evaluation relies on detecting strongly connected components, using Tarjan’s [7] algorithm
of linear cost and topologically sorting them in reverse order. In the absence of cycles this
results in evaluating every pair only after all its children have already been considered. For
cyclic types pairs for which no order can be determined are encapsulated within the same
strongly connected component.

6 Conclusions

We address efficient type-checking for path polymorphism. We start off with the type system
of [18] which includes singleton types, union types, type application and recursive types.
The union type constructor is assumed associative, commutative and idempotent. First we
formulate a syntax-directed presentation. Then we devise invertible coinductive presentations
of type-equivalence and subtyping. This yields a naïve but correct type-checking algorithm.
However, it proves to be inefficient (exponential in the size of the type). This prompts us to
change the representation of type expressions and use automata techniques to considerably
improve the efficiency. Indeed, the final algorithm has complexity O(n7d) where n is the size
of the input and d is the maximum arity of the unions occurring in it.

Regarding future work an outline of possible avenues follows. These are aimed at enhancing
the expressiveness of CAP itself and then adapting the techniques presented here to obtain
efficient type checking algorithms.

Addition of parametric polymorphism (presumably in the style of F<: [4, 5, 16]). We
believe this should not present major difficulties.
Strong normalization requires devising a notion of positive/negative occurrence in the
presence of strong µ-type equality, which is known not to be obvious [2, page 515].
A more ambitious extension is that of dynamic patterns, namely patterns that may be
computed at run-time, PPC being the prime example of a calculus supporting this feature.

References
1 Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans. Program.

Lang. Syst., 15(4):575–631, 1993. doi:10.1145/155183.155231.

http://dx.doi.org/10.1145/155183.155231

J. Edi, A. Viso, and E. Bonelli 6:23

2 H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Perspectives
in Logic. Cambridge University Press, 2013. doi:10.1017/cbo9781139032636.

3 M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality and
subtyping. Fundam. Inf., 33(4):309–338, 1998. doi:10.3233/fi-1998-33401.

4 Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of
system F with subtyping. In Takayasu Ito and Albert R. Meyer, editors, Theoretical Aspects
of Computer Software, International Conference TACS ’91, Sendai, Japan, September 24-
27, 1991, Proceedings, volume 526 of Lecture Notes in Computer Science, pages 750–770.
Springer, 1991. doi:10.1007/3-540-54415-1_73.

5 Dario Colazzo and Giorgio Ghelli. Subtyping recursion and parametric polymorphism in
kernel Fun. Inf. Comput., 198(2):71–147, 2005. doi:10.1016/j.ic.2004.11.003.

6 Roberto Di Cosmo, François Pottier, and Didier Rémy. Subtyping recursive types modulo
associative commutative products. In Pawel Urzyczyn, editor, Typed Lambda Calculi and
Applications, 7th International Conference, TLCA 2005, Nara, Japan, April 21-23, 2005,
Proceedings, volume 3461 of Lecture Notes in Computer Science, pages 179–193. Springer,
2005. doi:10.1007/11417170_14.

7 Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subex-
pression problem. J. ACM, 27(4):758–771, 1980. doi:10.1145/322217.322228.

8 J. Edi and A. Viso. Prototype implementation of efficient type-checker in Scala. URL:
https://github.com/juanedi/cap-typechecking.

9 J. Edi, A. Viso, and E. Bonelli. Efficient type checking for path polymorphism, 2017. arXiv
preprint 1704.09026. URL: http://arxiv.org/abs/1704.09026.

10 B. Jay and D. Kesner. First-class patterns. J. Funct. Program., 19(2):191–225, 2009.
doi:10.1017/s0956796808007144.

11 Barry Jay. Pattern Calculus - Computing with Functions and Structures. Springer, 2009.
doi:10.1007/978-3-540-89185-7.

12 T. Jim and J. Palsberg. Type inference in systems of recursive types with subtyping, 1999.
Draft. URL: http://web.cs.ucla.edu/~palsberg/draft/jim-palsberg99.pdf.

13 Jan Willem Klop, Vincent van Oostrom, and Roel C. de Vrijer. Lambda calculus with
patterns. Theor. Comput. Sci., 398(1-3):16–31, 2008. doi:10.1016/j.tcs.2008.01.019.

14 D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient recursive subtyping. Math. Struct.
Comput. Sci., 5(1):113–125, 1995. doi:10.1017/s0960129500000657.

15 Jens Palsberg and Tian Zhao. Efficient and flexible matching of recursive types. Inf.
Comput., 171(2):364–387, 2001. doi:10.1006/inco.2001.3090.

16 B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
17 V. van Oostrom. Lambda calculus with patterns. Technical Report IR-228, Vrije Uni-

versiteit Amsterdam, 1990. URL: http://www.phil.uu.nl/~oostrom/publication/pdf/
IR-228.pdf.

18 Andrés Viso, Eduardo Bonelli, and Mauricio Ayala-Rincón. Type soundness for path poly-
morphism. Electr. Notes Theor. Comput. Sci., 323:235–251, 2016. doi:10.1016/j.entcs.
2016.06.015.

19 Jerome Vouillon. Subtyping union types. In Jerzy Marcinkowski and Andrzej Tarlecki,
editors, Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual
Conference of the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume
3210 of Lecture Notes in Computer Science, pages 415–429. Springer, 2004. doi:10.1007/
978-3-540-30124-0_32.

20 T. Zhao. Type Matching and Type Inference for Object-Oriented Systems. PhD
thesis, Purdue University, 2002. URL: http://docs.lib.purdue.edu/dissertations/
AAI3099873/.

TYPES 2015

http://dx.doi.org/10.1017/cbo9781139032636
http://dx.doi.org/10.3233/fi-1998-33401
http://dx.doi.org/10.1007/3-540-54415-1_73
http://dx.doi.org/10.1016/j.ic.2004.11.003
http://dx.doi.org/10.1007/11417170_14
http://dx.doi.org/10.1145/322217.322228
https://github.com/juanedi/cap-typechecking
http://arxiv.org/abs/1704.09026
http://dx.doi.org/10.1017/s0956796808007144
http://dx.doi.org/10.1007/978-3-540-89185-7
http://web.cs.ucla.edu/~palsberg/draft/jim-palsberg99.pdf
http://dx.doi.org/10.1016/j.tcs.2008.01.019
http://dx.doi.org/10.1017/s0960129500000657
http://dx.doi.org/10.1006/inco.2001.3090
http://www.phil.uu.nl/~oostrom/publication/pdf/IR-228.pdf
http://www.phil.uu.nl/~oostrom/publication/pdf/IR-228.pdf
http://dx.doi.org/10.1016/j.entcs.2016.06.015
http://dx.doi.org/10.1016/j.entcs.2016.06.015
http://dx.doi.org/10.1007/978-3-540-30124-0_32
http://dx.doi.org/10.1007/978-3-540-30124-0_32
http://docs.lib.purdue.edu/dissertations/AAI3099873/
http://docs.lib.purdue.edu/dissertations/AAI3099873/

Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of TYPES
2015 (LIPIcs, volume 69, http://www.dagstuhl.de/dagpub/978-3-95977-030-9 published
in March, 2019). This version fixes a character set problem that caused some symbols to be
displayed incorrectly.

Dagstuhl Publishing – March 17, 2019.

http://www.dagstuhl.de/dagpub/978-3-95977-030-9

	Introduction
	Review of CAP
	Syntax and Operational Semantics
	Types
	Typing and Safety

	Checking Equivalence and Subtyping
	Equivalence Checking
	Subtype Checking

	Type Checking
	Towards Efficient Type-Checking
	Term Automata
	Subtyping and Subtype Checking
	Algorithm Description
	Correctness
	Complexity

	Equivalence Checking
	Type Checking
	Prototype implementation

	Conclusions

