Denotational and Operational Preciseness of Subtyping:
A Roadmap

Dedicated to Frank de Boer on the Occasion of His 60th Birthday *

Mariangiola Dezani-Ciancaglinil**, Silvia Ghilezan>***, Svetlana Jakgi¢2***,

Jovanka Pantovié?***, and Nobuko Yoshida3'

! Universita di Torino, Ttaly
2 Univerzitet u Novom Sadu, Serbia
3 Imperial College London, England

Abstract. The notion of subtyping has gained an important role both in theo-
retical and applicative domains: in lambda and concurrent calculi as well as in
object-oriented programming languages. The soundness and the completeness,
together referred to as the preciseness of subtyping, can be considered from two
different points of view: denotational and operational. The former preciseness is
based on the denotation of a type, which is a mathematical object describing the
meaning of the type in accordance with the denotations of other expressions from
the language. The latter preciseness has been recently developed with respect to
type safety, i.e. the safe replacement of a term of a smaller type when a term of a
bigger type is expected.

The present paper shows that standard proofs of operational preciseness imply
denotational preciseness and gives an overview on this subject.

1 Introduction

A subtyping relation is a pre-order (reflexive and transitive relation) on types that vali-
dates the principle: if o is a subtype of 7 (notation ¢ < 7), then a term of type ¢ may
be provided whenever a term of type 7 is needed; see Pierce [35] (Chapter 15) and
Harper [20] (Chapter 23).

In this paper we will discuss key properties of subtyping, i.e. denotational and op-
erational preciseness. We will introduce these notions in the next two paragraphs.

* Partly supported by COST IC1201 BETTY and DART bilateral project between Italy and
Serbia.
** Partly supported by EU H2020-644235 Rephrase project, EU H2020-644298 Hy Var project,
ICT COST Actions IC1402 ARVI and Ateneo/CSP project RunVar.
*** Partly supported by ON 174026 and IIT 44006 projects of the Ministry of Education, Science
and Technological Development, Republic of Serbia.
T Partly supported by EPSRC EP/K011715/1, EP/K034413/1, and EP/L00058X/1, and EU
Project FP7-612985 UpScale.

Denotational preciseness A usual approach to preciseness of subtyping for a calculus
is to consider the interpretation of a type o (notation [o])) to be a set that describes the
meaning of the type in accordance with the denotations of the terms of the calculus, in
general a subset of the domain of a model of the calculus.

A subtyping relation is denotationally sound when ¢ < 7 implies o] C [7]] and
denotationally complete when [[o] C [[t]) implies o < 7.
A subtyping relation is denotationally precise if it is both denotationally sound and
denotationally complete.

This well-established powerful technique is applied to the pure A-calculus with arrow
and intersection types by Barendregt et al. [4]], to a call-by-value A-calculus with arrow,
intersection and union types by van Bakel et al. [2] and by Ishihara and Kurata [25], to a
wide class of calculi with arrow, union and pair types by Vouillon [38]], and to a concur-
rent A-calculus by Dezani and Ghilezan [15]. More recently denotational preciseness
was studied for binary sessions [11] and synchronous multiparty sessions [16].

Operational preciseness Operational soundness is just the key principle mentioned at
the beginning of this section: if ¢ < 7, then a term of type o may be provided whenever
a term of type 7 is needed. As a simple example nat < real and a natural number can
always play the role of a real number. Operational completeness requires that, if 6 £ 7,
then there are

— a context expecting a term of type T and
— aterm of type ¢

such that this context filled with this term behaves badly. As a simple example nat <
bool, the negation — requires a boolean argument and the term —5 is stuck.

To define formally operational soundness and completeness we need a boolean
predicate bad on terms, standard typing judgements I - M : o (where I is a mapping
from variables to types and M is a term) and evaluation contexts C.

A subtyping relation is operationally sound when ¢ < 7 implies that if (for some p)
x:THCl[x]: p and - M : o, then bad(C[M]) is false, for all C and M.
A subtyping relation is operationally complete when o € T implies that x : T+ Clx] : p
and - M : o and bad(C[M)]), for some p, C and M.
A subtyping relation is operationally precise if it is both operationally sound and
operationally complete.

Operational soundness immediately follows from the subject reduction theorem,
when the subtyping is used in a subsumption rule. A general methodology to prove
operational completeness is the following one:

— [Step 1] Characterise the negation of the subtyping relation by inductive rules.
— [Step 2] For each type o define a characteristic context Cs, which behaves well
when filled with terms of type ©.

— [Step 3] For each type ¢ define a characteristic term Mg, which has only the types
greater than or equal to ©.
— [Step 4] Show that if o £ 7, then bad(C;[Ms]).

These four steps are the guideline of the proofs in the literature, as we will illustrate in
this paper.

Background and related work Ligatti et al. [27] first define operational precise-
ness of subtyping and apply it to subtyping iso-recursive types. They consider a typed
A-calculus enriched with naturals, reals, pair and case constructors/destructors, and
roll/unroll. The predicate bad(M) holds when M reduces to a stuck term, i.e. to an ir-
reducible term which is not a value. They propose new algorithmic rules for subtyping
iso-recursive types and show that they are operationally precise.

Dezani and Ghilezan [15]] adapt the ideas of Ligatti et al. [27] to the setting of the
concurrent A-calculus with intersection and union types of [14]]. For the operational
preciseness they take the view that evaluation of well-typed terms always terminates.
This means that the predicate bad coincides with non termination. In this calculus ap-
plicative contexts are enough. Notably, soundness and completeness are made more
operational by asking that some applications converge instead of being typable. To sum
up, the definition of operational preciseness becomes:

A subtyping < is operationally precise when ¢ < 7 if and only if there are no closed
terms M, N such that ML converges for all closed terms L of type 7 and N has type ¢
and MN diverges.

The main result of this paper is the operational preciseness of the subtyping induced by
the standard set theoretic interpretation of arrow, intersection and union types.

Chen et al. [11] first give a general formulation of preciseness for session calculi,
where processes are typed by sets of pairs (channels, session types) [22]. The session
types prescribe how the channels can be used for communications. The calculus of
processes includes an error process and bad(P) holds when process P reduces to error.
The typing judgements for closed processes are of the form - P> {a : T}, assuring that
the process P has a single free channel a whose type is 7. The judgement - Cla : T|>0
means that filling the hole of C with any process P typed by a : T produces a well-typed
closed process. We get:

A subtyping < is precise when, for all session types T and S:

T<S (there do not exist C and P such that:)

FCla:S]>0andt P>{a: T} and C[P] —* error

When the only-if direction (=) of this formula holds, we say that the subtyping is
sound; when the if direction (<) holds, we say that the subtyping is complete. The
first result of [[L1]] is that the well-known session subtyping, the branching-selection
subtyping [13]], is sound and complete for the synchronous dyadic calculus. Next, the

authors show that in the asynchronous calculus, this subtyping is incomplete for type-
safety: that is, there exist session types 7" and S such that T can safely be considered as a
subtype of S, but T < §'is not derivable by the subtyping. They propose an asynchronous
subtyping system (inspired by [32]) which is sound and complete for the asynchronous
dyadic calculus. The method gives a general guidance to design rigorous channel-based
subtypings respecting desired safety properties.

Dezani et al. [16] consider the synchronous version [26] of the multiparty session
calculus in [23[12]]. For the operational preciseness they take the view that well-typed
sessions never get stuck. Therefore the predicate bad is true for processes which can-
not reduce, but contain pending communications. The preciseness of the branching-
selection subtyping [[13]] is shown using a novel notion of characteristic global type.

A framework which is closely related to the above described works is semantic
subtyping. In semantic subtyping, each type is interpreted as the set of values having
that type and subtyping is subset inclusion between type interpretations [10]. This gives
a precise subtyping as soon as the calculus allows to distinguish operationally values of
different types.

Semantic subtyping was first proposed by Castagna and Benzaken through the de-
velopment of the CDuce project [[17]. CDuce is a modern XML-oriented functional
language. Distinctive features of CDuce are a powerful pattern matching, first class
functions, over-loaded functions, a very rich type system (with arrow, sequence, pair,
record, intersection, union, difference type constructs), precise type inference for pat-
terns and error localisation, and a natural interpretation of types as sets of values. It
is enriched also with some important implementation aspects: in particular, a dispatch
algorithm that demonstrates how static type information can be used to obtain very
efficient compilation schemas.

Semantic subtyping has been also studied in [§] for a 7-calculus with a patterned
input and in [9]] for a session calculus with internal and external choices and typed input.
Types are built using a rich set of type constructors including union, intersection and
negation: they extend IO-types in [8]] and session types in [9]. Semantic subtyping is
precise for the calculi of [8l9/17], thanks to the type case constructor in [[17], and to the
blocking of inputs for values of “wrong” types in [8l9].

Bonsangue et al. [6] recently have developed an elegant coalgebraic foundation for
coinductive types, which gives a sound and complete characterisation of semantic sub-
typing in terms of inclusion of maximal traces.

Outline Sections [2] and [3| deal with typed extensions of A-calculus, and discuss pre-
ciseness of iso-recursive and intersection/union types, respectively. Session calculi are
considered in Sections 4] and [5} Section [d]is devoted to synchronous and asynchronous
binary types, Section [5instead to synchronous multiparty types. Section [6| shows how
the existence of characteristic terms as defined in [Step 3] implies denotational precise-
ness. Section[7] concludes with some directions for further work.

2 Iso-recursive Types

In [27]] the authors consider a typed A-calculus enriched with naturals, reals, pair and
case constructors/destructors, and roll/unroll. The syntax of types, terms and values of
this calculus (dubbed L:f) is given in Figure

cu=nat|real|c > 1T|oxT|o+7|uto|t
M :=n|r|succ(M)|neg(M) |fun f(x:0):T = M |MM | x| (M,M) | M.fst| M.snd |
inlg(M) | inrg(M) | case M of inl x = M else inry = M, | roll(M) | unroll(M)
Vao=nlr|fun f(x:0):1 = M| (V,V)|inlg(V) |inrg(V) | roll(V)

Fig. 1. Types, terms and values of L:f .

The operational semantics of Lff is call-by-value. The operator succ reduces only
when the argument is a natural and unroll is the left inverse of roll. The remaining
reduction rules are standard.

The most interesting subtyping rule tells that ut.c is a subtype of ut.7 if we can
derive from ut.c < ut.7 that their unfolded versions are in the subtype relation. More
precisely:

Z,ut.o < utthk ofut.o/t] < tjut.t/t|
X+uto<utzc

where X is a set of subtyping judgments. The type system is as expected, in particular
roll and unroll correspond to fold and unfold of recursive types.

The core of the completeness proof is the construction of characteristic contexts
and terms for closed types, as discussed in the Introduction. This construction is del-
icate since some types (for example ut.t) are not inhabited. The type inhabitation is
decidable and every non inhabited type is subtype of all types. Figure [2] shows some of
the characteristic contexts and terms for the types of [27]. Notice that in that paper they
are used in the proof without grouping them in a unique definition. We omit the case of
the sum type being similar to that of the product type. Also, the characteristic contexts
and terms for recursive types are missing, since they are quite tricky depending on the
external constructor obtained by unfolding the types.

For example nat — nat « real — nat. The characteristic context of real — nat is
Chat[[IMyeal] = succ([]2.5). The characteristic term of nat — nat is

fun f(x:nat):nat = (fun g(y: nat) : nat = Mpat)(Cnatl2]),

ie.
fun f(x:nat):nat = (fun g(y: nat) : nat = 5)(succ x).

The term Crealﬂnat [Mnat%nat] is then

succ((fun f(x:nat):nat = (fun g(y: nat) : nat = 5)(succ x))2.5).

type o characteristic context Cs characteristic term My

nat succ] | 5

real neg| | 2.5
T — T Co, [1My,] fun f(x:7):ma = M
T X T (C, ([]-fst],Cx, [[]-snd]) (Mz,,Mz,)

Fig. 2. Characteristic contexts and terms, where M = (fun g(y: 7) : &» = My,)(Cr, [x]) and 7 is
the type of Cr, [x] when x has type 7.

This term reduces to
succ((fun g(y : nat) : nat = 5)(succ 2.5))

which is stuck, since succ 2.5 is stuck.

The main result of [27] is:

Theorem 1. The subtyping of L:f is operationally precise.

3 Intersection and Union Types

In this section, we present and discuss the results from [15] on denotational and oper-
ational preciseness of the subtyping relation in the setting of the concurrent A-calculus
with intersection and union types (dubbed)L@”) introduced in [[14]. The syntax of types,
terms, values, and total values of this calculus is given in Figure[3] The only atomic type
is the universal type . There are both call-by-name variables (ranged over by x) and
call-by-value variables (ranged over by v). The constructor & is the non-deterministic
choice and the constructor || is the parallel operator.

ci=w|oc—0|ocAG|OVO
M:o=x|v|AxM)| (Av.M) | (MM) | (M&M) | (M||M)
Vi=v|AxM|Av.M|V|M|M|V
Wo=v|AxM|Av.M|W|W

Fig. 3. Types, terms, values, and total values of A

The reduction relation formalises the behaviour of a machine which evaluates in a
synchronous way parallel compositions, until a value is produced. Partial values, i.e.
values which are not total, can be further evaluated, and this is essential for applica-
tions of a call-by-value abstraction (rule (f3,|)). The reduction rules which enable this
behaviour are the following

N—N' N¢Val V—V' VeVal
N — oy P Gy S v Ay

According to [14] a term is convergent if all reduction paths reach values.

() (

The type system with intersection and union types is dually reflecting the conjunc-
tive and disjunctive operational semantics of || and @. The subtyping relation on Type,
the set of all types, is the smallest pre-order such that

1. (Type,<) is a distributive lattice, where A is the meet, V is the join, @ is the top;
2. the arrow satisfies

@o—-o0<n— o

b) (c—=p)AN(c—=1T)<0—=pAT

©o>0c,t<t=>0—-1<0 —17.

Notice that the standard axiom (o — p) A (7 — p) < oV T — p [2I25] is unsound
for A, as proven in [14].

Regarding operational preciseness, divergent terms are the ones that are not conver-
gent and the predicate bad coincides with divergence. Closed convergent and divergent
terms are completely characterised by the types @ — ® and o, respectively [14].

As said in the Introduction, it is enough to consider applicative context, that we
call zest tems. Figure {] gives test and characteristic terms, where I = Ax.x and Q =
(Ax.xx)(Ax.xx). For example My, = Ax.Q and Ny, = AvI. More interestingly
Mo 0)=o—so = Ax.((Av.I)x)(Ay.Q) applied to a term returns Ay.Q only if the term
reduces to a value. Similarly N 0)»0—o = Av-(AV I)(v(Ax.Q2)) applied to a term
which reduces to a value, first applies this term to Ax.Q, and then reduces to I only if
the result of this application reduces to a value too.

The key property of test terms is:
if M is a closed term, then NocM converges if and only if M has type ©.

As a consequence ¢ £ T implies the divergence of N;Mg, i.e. bad(N:My).

type o test term Ng characteristic term Mg
(0] AxI Q

T =T AV.Ny, (vMy,) Ax.(Ng, x) My,

T AT Ax.(Ng, x® Ny, x) My, || My,

TIV1D Av.(Ng, v|| Ny, v) where T V 7 # @ My &M,

Fig. 4. Test and characteristic terms.

The denotational preciseness of this subtyping is obtained for the standard set-
theoretic interpretation of arrow, intersection and union types. The key tool is the exis-
tence of characteristic terms, as shown in Section [6]

To sum up, the main result in [[15] is:
Theorem 2 (Denotational and Operational Preciseness).

1. The subtyping of the)‘@H -calculus is operationally precise.
2. The subtyping of the leH -calculus is denotationally precise.

4 Binary session types

This section presents results from [[11]] stating that the well-known branching-selection
subtyping (defined in Figure [7)) is precise for the synchronous session calculus. As it
happens that this subtyping is incomplete for type-safety for the asynchronous session
calculus, the authors propose an asynchronous subtyping relation and prove that it is
precise for the asynchronous session calculus.

4.1 Synchronous session calculus

A binary session is a series of interactions between two parties, possibly with branch-
ing and recursion, and serves as a unit of abstraction for describing communication
protocols. The syntax of the synchronous session calculus is given in Figure [5] The

P:=0| X{@) | Yuli(x;).P | ul{W).P | PP | P|P | def Din P | (vab)P | error

iel

u=alx D:= XX =P

Fig.5. Syntax of synchronous processes.

input process Y u?l;(x;).P; waits on channel u for a label /; and a channel to replace
i€l

x; inside P; (i € I). The output process sends on channel u the label [and the channel
u'. The process def D in P is a recursive agent and X (i) is a recursive variable. The
process (vab)P is a restriction which binds two channels, a and b in P, making them
co-channels, i.e. allowing them to communicate.

Operational semantics is given by a reduction relation between the synchronous
processes. The main rule is

[R-COM-SYNC]
kel
(vab)(all(c).P| Y b2i(x;).Qi) — (vab)(P|Qi{c/x})’

iel

session type T characteristic process P(u,T')

end 0
t Xt(u)
&,'e]?l,'(S,').Ti Ziel u?li(x).(P(u, Tl) | P(X7Si))7
Dics (50T, Dics (vab) (1 (a) P (u,) | P(5,5)
ut.s def X¢(x) = P(x,S) in X¢(u)

Fig. 6. Types and characteristic synchronous processes.

[SUB-BRA] [SUB-SEL]
[SUB-END] Viel:$;<S, T<T/ Viel:S|<S; T<T/
end < end
/ !
&ieruyMi(Si).T; < &ier2i(S;). T} Pi(s).T; < P 1:(S).T;
icl ielus

Fig.7. Synchronous subtyping.

It describes the communication between an output (a!l (c).P) and an input (¥;c; b?/;(x;).Q;)
at two co-channels a and b, where the label /;, is selected and channel c replaces x; into
the k-th input branch (Qy). Other rules are standard.

The synchronous session calculus includes an error process and bad(P) holds when
process P reduces to error. There are four kinds of processes which generate error: a
session with mismatch between corresponding output and input labels, a session where
one of two co-channels is missing, a session where two co-channels are both subjects
of outputs, and a session where two co-channels are both subjects of inputs.

The syntax of synchronous session types is given in Figure [6] As usual session
duality [22]] plays an important role for session types. The function 7, defined below,
yields the dual of the session type 7.

&ictMi(Si).Ti = @ics 1i(Si) . T; Bie '1i(Si). Ti = &icr2i(Si). T;
t=t utT = ut.T end = end

The type system is the standard one for session calculi, see e.g. [13]]. The subtyping
relation is given in Figure [/| where the double line in rules indicates that the rules are
interpreted coinductively [35] (Chapter 21). The type system enjoys the property of
subject reduction, which implies operational soundness of the synchronous subtyping.

It can be verified that the relation €, presented in Figure [§] is the negation of the
synchronous subtyping.

The characteristic process offering communication 7 on identifier # for the syn-
chronous calculus, denoted by P(u,T), is given in Figure[6]

For type S and channel b, the characteristic context is defined as

Csp=[]|P(b,S).
Finally, it can be proven that T £ S implies

bad((vab)Cs ,[P(a,T)]) = bad((vab)(P(a,T)|P(b,S))).

[N-END R] [N-END L] [N_BRASEL] [N-SELBRA-SYNC]
T7end T7end goy(s) 12 @ (ST @ W(S)).T] A &U(Si).T,
end 47 T Hend ¢ jes et iel

[N-LABEL BRA] [N-LABEL SEL] [N-EXCH BRA]
Jjedviel i #1; ielvjel: i #1; Jiel3jel:li=1; Si4S]
(S T, /(<! ! ASN\ T 1/l ! QN T 7ol 7
%?l,(s,).T, A J%?IJ-(SJ-).TJ- gu,(s,ﬂ, A Jgeajzlj<sj>.Tj l%?l,(S,).T, A jgj?lj(sj).Tj

[N-EXCH SEL] [N-CONT BRA] [N-CONT SEL]
dieldjel:i=1; S48 Jieldjel:;=1; TAT, 3icl3jel:=1; TAT]

AN ATAN 4 AT AW
QUS)T A QUS)T] &US)ITE EUE)T] SUE)TA (ST,

Fig. 8. Negation of synchronous subtyping.

For example (omitting 0 and final end) let 7 =!/; (end).?/>(end) and S =?/»(end).!/; (end),
then 7' £ S. By definition

P(a,T) = (veidy)(alli{ci).P(a,?,(end)) | P(d;,end))
= (veidy)(alli{cy).a?(x).(P(a,end) | P(x,end)))
= (VC]d])(a!l] <c1>.a?lz(x))

We get S =!l;(end).?; (end) and

P(b,E) = (veads) (b2 (c2).P(b,?(end)) | P(d2,end))
= (veady) (bl ()b (y).(P(b,end) | P(y,end)))
= (VCzdg)(b!lz<C2>.b?l1 (y))

Then

(vab)Csp[P(a,T)] = (vab)(P(a,T)|P(b,S))
= (vab)((verdy)(a'li{c1).a?r(x)) | (veads) (D1 {c2).b21(¥)))

and this last process reduces to error, since the two co-channels are both subjects of
outputs.

In [[L1], the main result for synchronous subtyping is:
Theorem 3 (Preciseness for synchronous session calculus). The synchronous subtyp-
ing relation is operationally precise for the synchronous session calculus.
4.2 Asynchronous session calculus

The asynchronous session calculus is obtained from the rules for the synchronous ones
by extending the synchronous calculus of Table 5] with queues:

P:u=...|abwh ho=@|la)|h-h.

10

[N-LABEL-ASYNC] [N-EXCH-ASYNC]
Jip € I 3ng eNVj € Jy, :l;’o # 1, Jig € I 3ng € N Fjo € Jy, :l;’(? =1, S;Zg A8,

Bicr 1i(Si). Ti A A jey, WHSH TN @igg Ui(Si).Ti A A jey, WS TIN

[N-CONT-ASYNC] N [N-BRA-ASYNC] [N-SEL-ASYNC]
Jig € 13ng €N Jjo € Jn, : 1) =1, T, 4 < (Th]" &&T DLT
Bics 1i(Si) T A A B jey, (ST TN T A &ier?2i(S). T, Dy (S Th

Fig. 9. Negation of asynchronous subtyping.

A queue abw h is used by channel a to enqueue messages in - and by channel b to
dequeue messages from h.

Reduction rules for asynchronous processes are obtained from the rules for the syn-
chronous processes by replacing [R-coM-sYNC] with the following two rules:

[R-RECEIVE-ASYNC]
[R-SEND-ASYNC] kel

abwh|all{c).P — abw h-1{c)|P

abw i (c) - h|Lic; bi(xi).B —> abw h| P {c/xi}

In presence of queues, reduction to error includes deadlocks, that are sessions with
inputs waiting to dequeue messages from queues that will stay empty, and orphan mes-
sages, that are messages in queues that will never be received.

To define asynchronous subtyping, the notion of asynchronous context is intro-
duced, that is a sequence of branchings containing indexed holes:

o = Hn | &iel?l,‘(si).ﬁfi.

The asynchronous subtyping relation is obtained by extending synchronous subtyping
relation by the rule:

[SUB-PERM-ASYNC]
VicIVneN: S'<S; T<ATNN &cod &eT

Dic; (i) T; < A [Bieqy, (S TN

Using this rule we get for example !/;(end).?(end) <?l;(end).!/; (end), which
does not hold in the synchronous subtyping, as shown in previous subsection.

The negation rules of asynchronous subtyping are the rules of Figure [8| excluding
rule [N-SELBRA-SYNC], extended by the rules of Figure 9]

The characteristic process offering communication 7 on identifier u for the asyn-
chronous calculus, denoted by P(u,T), is defined as in Figure @ but for the case of T'
being @P;; 1i(Si).T;, which becomes:

P (vab)(ulli{a).P(u,T;) | P(b,5;) | baw & | abw).

iel

11

For type S and channel b, the characteristic context is defined as
Csp=1[]|P(b,S)|baw @ |abw» 2.
For T £ S, we can prove that there are T’ < T and S’ > § such that
bad((vab)(Cy 4[P(a,T’]) = bad((vab)(P(a,T") |P(b,S") | baw & | ab» 2)).
Notice that &' > S if and only if §" < §.
For example let T =!/; (end)®!/»(end) and S =!/; (end), then T £ S. By definition

veydy) (alli{cy

P(a,T) = (verdi)(alli(c).
(VCzdz)(a!lz<6‘2>.
= (veidi)(alli(c)
(veads)(ally(ca)

P(a,end) |P(d;,end) |dici » @ |c1d»D)D
P(a,end) | P(da,end) |daco» & | cada» D)
|d1€1 | 3% | c1dq P@)EB

|

drcow O | C2d2>®)

veidy)(alli{cq
VC2d2 a!lz (&)

We get S =2/, (end) and
P(b,S) = b2 (y).(P(b,end) | P(y,end)) = b2 (y).
Then

(Vab)Cs[P(a,T)] = (vab)(P(a,T)|P(b.5)|bawr & | abr o)
(vab)((veirdy)(alli{cy) |diciw @ | c1dy» D)D
(VCzdg)(a!lz<C2> |d2C2 » J | cody FQ) |
by (y) | baw & |abw &)

— (Vab)((VCde)(a!lz<C2> |d2€2>®|€2d2>®) |

by (y) |baw & | abw &)
— (Vab)(VCzdz)(dzCzb %] | codp» & |

by (y) | baw & |abw 1 {(c2))
— error

where the reduction to error is due to the mismatch between the input label /; and the
label I, of the message.

In [[L1], the main result for asynchronous subtyping is:

Theorem 4 (Preciseness for asynchronous subtyping). The asynchronous subtyping
relation is operationally precise for the asynchronous session calculus.

5 Multiparty session types

In [16]] the authors show operational and denotational preciseness of the subtyping in-
troduced in [13] for a simplification of the synchronous multiparty session calculus
in [26]. The calculus is obtained by eliminating both shared channels for session initia-
tions and session channels for communications inside sessions.

12

P:=0| X | p2(x).P | p¥(e).P | P+P | ifethenPelseP | uX.P
M =pAP | M| M

Fig. 10. Processes and multiparty sessions.

S :=nat | int | bool
Gu=p—q:{l(Si).Gi}ier | ut.G | t | end
T = Nier p?L’,»(S,-).T,» | V,-E,qlé,-(S,-).T,» | ut.T ” t H end

Fig. 11. Sorts, global types and multiparty session types.

A multiparty session is a series of interactions between a fixed number of partic-
ipants, possibly with branching and recursion, and serves as a unit of abstraction for
describing communication protocols. The syntax of processes and multiparty sessions
is given in Figure@} The values are natural numbers n, integers i, and boolean val-
ues true and false. The expressions e are variables or values or expressions built from
expressions by applying the operators succ,neg,—,®, or the relation > . The input
process p?¢(x).P waits for an expression with label ¢ from participant p and the out-
put process q!¢(e).Q sends the value of expression e with label ¢ to participant q. The
external choice P+ Q offers to choose either P or Q. The process uX.P is a recursive
process. An equi-recursive view is taken, not distinguishing between a process uX.P
and its unfolding P{uX.P/X}. If p<P is well typed (see typing rules in [16]), then
participant p does not occur in process P, since we do not allow self-communications.

The computational rules of multiparty sessions are closed with respect to the struc-
tural congruence (defined as expected) and reduction contexts (empty and parallel com-
position). Here we recall only the main rule [R-comM] which states that participant q
sends the value v choosing label /; to participant p which offers inputs on all labels ¢;
withie€l.

[R-COMM]
jel elv
p<aY a2i(x).P; | q<plé;(e).0 — p<Pi{v/x} | q<Q
iel

The value v of expression e (notation e | v) is as expected, see [16]. The successor
operation succ is defined only on natural numbers, the negation neg is defined on
integers (and then also on natural numbers), and — is defined only on boolean values.
The internal choice e| & e, evaluates either to the value of e; or to the value of e,.

In order to define the operational preciseness of subtyping it is crucial to formalise
when a multiparty session contains communications that will never be executed.

Definition 1. A multiparty session # is stuck if .# % p<0 and there is no multi-
party session M' such that M — A'. A multiparty session .# gets stuck, notation
stuck (), if it reduces to a stuck multiparty session.

A stuck multiparty session is a bad multiparty session, i.e. bad(.#) = stuck(.#).

13

[SUB-IN] [SUB-OUT]

[SUB-END] Viel: Si<:S; T,;<T! Viel: S;<:Si T,<T!
end < end
A\ P2i(Si).Ti < \p2i(S).T; \/pi(Si). Ti< \/ pli(S)).T;
ieluJ icl il ieluJ

Fig. 12. Subtyping of multiparty session types.

The type system is the simplification of that in [26]] due to the new formulation of
the calculus. Figure[IT]contains syntax of sorts, global types and session types.

Global types describe the whole conversation scenarios of multiparty sessions. Ses-
sion types correspond to projections of global types on the individual participants.

Subsorting <: on sorts is the minimal reflexive and transitive closure of the relation
induced by the rule: nat <: int. Subtyping < on session types takes into account the
contra-variance of inputs, the covariance of outputs, and the standard rules for intersec-
tion and union. Figure[12] gives the coinductive subtyping rules.

[NSUB-ENDL] [NSUB-ENDR] [NSUB-DIFF-PART]

T # end T # end p#q t,ie {1}
T Aend end AT PTL1(S1)-T1 Aq2(S2). T2
[NSUB-OUT-IN] [NSUB-IN-OUT]

PU1(S1).T1 dp2a(S2). To p2i(S1).T1 L pa(S2). T2

[NSUB-IN-IN] [NSUB-OUT-OUT]

51#52 or52$151 OrTlﬁTz f175€2 0r51$:52 OrTlﬂTz
p?((S1).T1 4 p2(S2). T p!l1(S1).T1 A p!fa(S2). Ty
[NSUB-INTR] [NSUB-UNIL] [NSUB-INTL-UNIR]
TATiorTAT, T LdTorTr, 4T VieIVjEJTiﬂT;

TATI AT, TIVTL, 4T ATig\V T,
icl jeJ

Fig. 13. Negation of subtyping of multiparty session types.
The proof of operational soundness of subtyping follows from the subsumption rule
and the safety theorem of the type system.
The proof of operational completeness comes in four steps as stated in Introduction.
The characterisation of the negation of the subtyping is given in Figure[I3]
The characteristic process ?(T) of type T is defined in Figure [14] by using the
operators succ, neg, and — to check if the received values are of the right sort and

exploiting the correspondence between external choices and intersections, conditionals
and unions.

14

session type T

characteristic process Z(T)

end 0
t Xt
p(nat).T’ p24(x).if succ(x) > 0 then Z(T') else 22(T')
p?(int). T’ p?¢(x).if neg(x) > 0 then 2(T’) else 22(T')
p?{(bool). T’ p24(x).if ~x then 2(T') else 2(T’)
p!4(nat). T pl(5).2(T)
plé(int). T’ pl(=5).2(T)
p!¢(bool). T’ p!l(true). 2 (T")
TIAT, P(T1)+2(T)
TiVvT, if true @ false then P (T) else £(T,)
ut.T’ uxe. 2(T)

Fig. 14. Characteristic processes.

The authors define the characteristic global type 4 (T, p) of type T for participant p,
that describes the communications between p and all participants which occur inT (no-
tation pt{T}). Moreover, after each communication involving p and some q € pt{T},
participant q starts a cyclic communication involving all participants in pt{T} both as
receivers and senders. The characteristic context for p<.2?(T) is built using the charac-
teristic global type of type T for participant p.

We do not give here the definitions of characteristic global types and character-
istic contexts, we only show an example. Let T = p;!¢;(nat).p2!{3(nat) and T' =
p2!z(nat).p;) (nat). Clearly T £ T and Z(T) = p1 141 (5).p2!42(5). The character-
istic context for p<a. 2(T) is [] | p1<p2?€2(x)... | p2<p?€2(x)... and the process

p<p1!f1(5).p2!€2(5) | p1<1p2?f2(x)... | p2<1p?€2(x)...

is stuck, since participant p want to send a message to participant p;, who instead is
ready to receive a message from participant pp, who in turn expects a message from
participant p.

The main result of [16] is:

Theorem 5. The synchronous multiparty session subtyping is operationally precise.

6 Characteristic Terms for Denotational Preciseness
It is standard [21U11J15016] to interpret a type o as the set of closed terms typed by o,

- [o]={M | -M:o}

15

In this case denotational soundness immediately follows from the subsumption rule.
Moreover, the existence of characteristic terms as defined in [Step 3] at page [3]implies
denotational completeness. By definition characteristic terms enjoy the following key
property:

F Mgy : T implies 0 < 7.

We get denotational completeness, since if ¢ £ 7, then M € [[o]], but M5 & [[7].

Theorem 6. (Denotational preciseness) The existence of characteristic terms for a
subtyping relation implies its denotational preciseness.

This theorem implies the denotational preciseness of the subtypings which are shown
to be operationally precise in previous sections. In particular the denotational precise-
ness of L'} is new, since Ligatti et al. [27] only consider operational preciseness.

7 Conclusion

The present paper discusses some recent results of preciseness for subtyping of typed
functional and concurrent calculi.

Operational completeness requires that all empty (i.e. not inhabited) types are less
than all inhabited types. This makes unfeasible an operationally complete subtyping for
the pure A-calculus, both in the case of polymorphic types [28] and of intersection and
union types. In fact inhabitation is undecidable for polymorphic types being equivalent
to derivability in second order logic, while [37] shows undecidability of inhabitation
for intersection types, which implies undecidability of inhabitation for intersection and
union types.

An interesting open problem we plan to study is an extension of A-calculus enjoy-
ing operational preciseness for the decidable subtypings between polymorphic types
discussed in [2836]].

The formulation of preciseness along with the proof methods and techniques de-
scribed in this paper could be useful to examine other subtypings and calculi. Our
future work includes the applications to higher-order processes [29131130], polymor-
phic types [19U7U18]], fair subtypings [33l34] and contract subtyping [3]]. We plan to use
the characteristic processes in typecheckers for session types. More precisely, the error
messages can show processes of given types when type checking fails. One interesting
problem is to find the necessary and sufficient conditions to obtain completeness of the
generic subtyping [24]. Such a characterisation would give preciseness for the many
type systems which are instances of [24]. The notion of subtyping for session types is
clearly connected with that of type duality. Various definitions of dualities are compared
in [3)], and we plan to investigate if completeness of subtyping can be used in finding
the largest safe duality.

A last question we plan to investigate is whether preciseness of subtyping is mean-
ingful for object-oriented calculi [1]].

16

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Martin Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
. Steffen van Bakel, Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Yoko Motohama.

The minimal relevant logic and the call-by-value lambda calculus. Technical Report TR-
ARP-05-2000, The Australian National University, 2000.

. Franco Barbanera and Ugo de Liguoro. Two notions of sub-behaviour for session-based

client/server systems. In PPDP, pages 155-164. ACM, 2010.

. Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model

and the completeness of type assignment. Journal of Symbolic Logic, 48(4):931-940, 1983.

. Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouzapas. On duality rela-

tions for session types. In TGC, volume 8902 of LNCS, pages 51-66. Springer, 2014.

. Marcello M. Bonsangue, Jurriaan Rot, Davide Ancona, Frank S. de Boer, and Jan J. M. M.

Rutten. A coalgebraic foundation for coinductive union types. In ICALP, volume 8573 of
LNCS, pages 62—73. Springer, 2014.

. Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral polymor-

phism and parametricity in session-based communication. In ESOP, volume 7792 of LNCS,
pages 330-349. Springer, 2013.

. Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic subtyping for the

pi-calculus. Theoretical Computer Science, 398(1-3):217-242, 2008.

. Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani.

Foundations of session types. In PPDP, pages 219-230. ACM, 2009.

Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping. In /CALP,
volume 3580 of LNCS, pages 30-34. Springer, 2005.

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the preciseness
of subtyping in session types. In PPDP, pages 135-146. ACM Press, 2014.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A gen-
tle introduction to multiparty asynchronous session types. In SFM, volume 9104 of LNCS,
pages 146-178. Springer, 2015.

Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with linear
types. In CONCUR, volume 6901 of LNCS, pages 280-296. Springer, 2011.

Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. A filter model for
concurrent lambda-calculus. SIAM Journal on Computing, 27(5):1376-1419, 1998.
Mariangiola Dezani-Ciancaglini and Silvia Ghilezan. Preciseness of subtyping on intersec-
tion and union types. In RTATLCA, volume 8560 of LNCS, pages 194-207. Springer, 2014.
Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and
Nobuko Yoshida. Precise subtyping for synchronous multiparty sessions. In PLACES,
EPTCS, 2015. To appear.

Alan Frisch, Giuseppe Castagna, and Veronique Benzaken. Semantic subtyping: dealing
set-theoretically with function, union, intersection, and negation types. Journal of ACM,
55(4):1-64, 2008.

Simon J. Gay. Bounded polymorphism in session types. Mathematical Structures in Com-
puter Science, 18(5):895-930, 2008.

Matthew Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. An extensi-
ble approach to session polymorphism. Mathematical Structures in Computer Science, 2015.
To appear.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, 2013.

J. Roger Hindley. The completeness theorem for typing lambda-terms. Theoretical Computer
Science, 22:1-17, 1983.

17

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type disci-
plines for structured communication-based programming. In ESOP, volume 1381 of LNCS,
pages 22-138. Springer, 1998.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273-284. ACM, 2008. A full version will appear in Journal of the Associa-
tion for Computing Machinery.

Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theoreti-
cal Computer Science, 311(1-3):121-163, 2004.

Hajime Ishihara and Toshihiko Kurata. Completeness of intersection and union type as-
signment systems for call-by-value lambda-models. Theoretical Computer Science, 272(1-
2):197-221, 2002.

Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. In CON-
CUR, volume 8052 of LNCS, pages 395-409. Springer, 2013.

Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. On subtyping-relation completeness,
with an application to iso-recursive types. Technical report, University of South Florida,
2014.

John C. Mitchell. Polymorphic type inference and containment. Information and Computa-
tion, 76(2/3):211-249, 1988.

Dimitris Mostrous. Session Types in Concurrent Calculi: Higher-Order Processes and Ob-
Jjects. PhD thesis, Imperial College London, 2009.

Dimitris Mostrous and Nobuko Yoshida. Session-based communication optimisation for
higher-order mobile processes. In TLCA, volume 5608 of LNCS, pages 203-218. Springer,
20009.

Dimitris Mostrous and Nobuko Yoshida. Session typing and asynchronous subtyping for the
higher-order n-calculus. Information and Computation, 241:227-263, 2015.

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in par-
tially commutative asynchronous sessions. In ESOP, volume 5502 of LNCS, pages 316-332.
Springer, 2009.

Luca Padovani. Fair subtyping for multi-party session types. In COORDINATION, volume
6721 of LNCS, pages 127-141. Springer, 2011.

Luca Padovani. Fair subtyping for open session types. In ICALP, volume 7966 of LNCS,
pages 373-384. Springer, 2013.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is unde-
cidable. Information and Computation, 179(1):1-18, 2002.

Pawel Urzyczyn. The emptiness problem for intersection types. Journal of Symbolic Logic,
64(3):1195-1215, 1999.

Jerome Vouillon. Subtyping union types. In CSL, volume 3210 of LNCS, pages 415429,
2004.

18

	Denotational and Operational Preciseness of Subtyping: A Roadmap Dedicated to Frank de Boer on the Occasion of His 60th Birthday

