223 research outputs found

    Machine learning based CDMA power control

    Get PDF
    This paper presents binary and multiclass machine learning techniques for CDMA power control. The power control commands are based on estimates of the signal and noise subspace eigenvalues and the signal subspace dimension. Results of two different sets of machine learning algorithms are presented. Binary machine learning algorithms generate fixed-step power control (FSPC) commands based on estimated eigenvalues and SIRs. A fixed-set of power control commands are generated with multiclass machine learning algorithms. The results show the limitations of a fixed-set power control system, but also show that a fixed-set system achieves comparable performance to high complexity closed-loop power control systems

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version

    Multiuser detection in CDMA using blind techniques

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2004Includes bibliographical references (leaves: 63-65)Text in English; Abstract: Turkish and Englishxiv, 69 leavesIn code division multiple access (CDMA) systems, blind multiuser detection (MUD) techniques are of great importance, especially for downlinks, since in practice, it may be unrealistic for a mobile user to know the spreading codes of other active users in the channel. Furthermore, blind methods remove the need for training sequences which leads to a gain in the channel bandwidth. Subspace concept in blind MUD is an alternative process to classical and batch blind MUD techniques based on principle component analysis, or independent component analysis (ICA) and ICA-like algorithms, such as joint approximate diagonalization of eigen-matrices (JADE), blind source separation algorithm with reference system, etc. Briefly, the desired signal is searched in the signal subspace instead of the whole space, in this type of detectors. A variation of the subspace-based MUD is reduced-rank MUD in which a smaller subspace of the signal subspace is tracked where the desired signal is contained in. This latter method leads to a performance gain compared to a standard subspace method. In this thesis, blind signal subspace and reduced-rank MUD techniques are investigated, and applied to minimum mean square error (MMSE) detectors with two different iterative subspace tracking algorithms. The performances of these detectors are compared in different scenarios for additive white Gaussian noise and for multipath fading channels as well. With simulation results the superiority of the reduced-rank detector to the signal subspace detector is shown. Additionally, as a new remark for both detectors, it is shown that, using minimum description length criterion in subspace tracking algorithm results in an increase in rank-tracking ability and correspondingly in the final performance. Finally, the performances of these two detectors are compared with MMSE, adaptive MMSE and JADE detectors

    Least squares support vector machines for fixed-step and fixed-set CDMA power control

    Get PDF
    This paper presents two machine learning based algorithms for CDMA power control. The least squares support vector machine (LS-SVM) algorithms classify eigenvalues estimates into sets of power control commands. A binary LS-SVM algorithm generates fixed step power control (FSPC) commands, while the one vs. one multiclass LS-SVM algorithm generates estimates for fixed set power control

    4. generĂĄciĂłs mobil rendszerek kutatĂĄsa = Research on 4-th Generation Mobile Systems

    Get PDF
    A 3G mobil rendszerek szabvĂĄnyosĂ­tĂĄsa a vĂ©gĂ©hez közeledik, legalĂĄbbis a meghatĂĄrozĂł kĂ©pessĂ©gek tekintetĂ©ben. EzĂ©rt lĂ©tfontossĂĄgĂș azon technikĂĄk, eljĂĄrĂĄsok vizsgĂĄlata, melyek a következƑ, 4G rendszerekben meghatĂĄrozĂł szerepet töltenek majd be. Több ilyen kutatĂĄsi irĂĄnyvonal is lĂ©tezik, ezek közĂŒl projektĂŒnkben a fontosabbakra koncentrĂĄltunk. A következƑben felsoroljuk a kutatott terĂŒleteket, Ă©s röviden összegezzĂŒk az elĂ©rt eredmĂ©nyeket. SzĂłrt spektrumĂș rendszerek KifejlesztettĂŒnk egy Ășj, rĂĄdiĂłs interfĂ©szen alkalmazhatĂł hĂ­vĂĄsengedĂ©lyezĂ©si eljĂĄrĂĄst. SzimulĂĄciĂłs vizsgĂĄlatokkal tĂĄmasztottuk alĂĄ a megoldĂĄs hatĂ©konysĂĄgĂĄt. A projektben kutatĂłkĂ©nt rĂ©sztvevƑ Jeney GĂĄbor sikeresen megvĂ©dte Ph.D. disszertĂĄciĂłjĂĄt neurĂĄlis hĂĄlĂłzatokra Ă©pĂŒlƑ többfelhasznĂĄlĂłs detekciĂłs technikĂĄk tĂ©mĂĄban. Az elĂ©rt eredmĂ©nyek Imre SĂĄndor MTA doktori disszertĂĄciĂłjĂĄba is beĂ©pĂŒltek. IP alkalmazĂĄsa mobil rendszerekben TovĂĄbbfejlesztettĂŒk, teszteltĂŒk Ă©s ĂĄltalĂĄnosĂ­tottuk a projekt keretĂ©ben megalkotott Ășj, gyƱrƱ alapĂș topolĂłgiĂĄra Ă©pĂŒlƑ, a jelenleginĂ©l nagyobb megbĂ­zhatĂłsĂĄgĂș IP alapĂș hozzĂĄfĂ©rĂ©si koncepciĂłt. A tĂ©makörben Szalay MĂĄtĂ© Ph.D. disszertĂĄciĂłja mĂĄr a nyilvĂĄnos vĂ©dĂ©sig jutott. Kvantum-informatikai mĂłdszerek alkalmazĂĄsa 3G/4G detekciĂłra Új, kvantum-informatikai elvekre Ă©pĂŒlƑ többfelhasznĂĄlĂłs detekciĂłs eljĂĄrĂĄst dolgoztunk ki. Ehhez Ășj kvantum alapĂș algoritmusokat is kifejlesztettĂŒnk. Az eredmĂ©nyeket nemzetközi folyĂłiratok mellett egy sajĂĄt könyvben is publikĂĄltuk. | The project consists of three main research directions. Spread spectrum systems: we developed a new call admission control method for 3G air interfaces. Project member Gabor Jeney obtained the Ph.D. degree and project leader Sandor Imre submitted his DSc theses from this area. Application of IP in mobile systems: A ring-based reliable IP mobility mobile access concept and corresponding protocols have been developed. Project member MĂĄtĂ© Szalay submitted his Ph.D. theses from this field. Quantum computing based solutions in 3G/4G detection: Quantum computing based multiuser detection algorithm was developed. Based on the results on this field a book was published at Wiley entitled: 'Quantum Computing and Communications - an engineering approach'

    Blind user detection in doubly-dispersive DS/CDMA channels

    Full text link
    In this work, we consider the problem of detecting the presence of a new user in a direct-sequence/code-division-multiple-access (DS/CDMA) system with a doubly-dispersive fading channel, and we propose a novel blind detection strategy which only requires knowledge of the spreading code of the user to be detected, but no prior information as to the time-varying channel impulse response and the structure of the multiaccess interference. The proposed detector has a bounded constant false alarm rate (CFAR) under the design assumptions, while providing satisfactory detection performance even in the presence of strong cochannel interference and high user mobility.Comment: Accepted for publication on IEEE Transactions on Signal Processin

    Blind subspace DOA estimation in multipath DS/CDMA channels

    Get PDF
    In this paper, we consider the problem of blind estimation of the directions of arrival (DOA's) of users' paths in a multipath DS/CDMA channel. Making use of the signal that is sampled at multiple antenna elements and using a subspace based MUSIC-like technique, we show the possibility of DOA estimation using two search methods. The first provides path delays and DOAs simultaneously, and the second provides only DOAs. Knowledge of the chip waveform is used in the first method. It is seen that the two methods exhibit good estimation accuracy, besides being extremely near-far resistant
    • 

    corecore