3,472 research outputs found

    Blockwise Subspace Identification for Active Noise Control

    Get PDF
    In this paper, a subspace identification solution is provided for active noise control (ANC) problems. The solution is related to so-called block updating methods, where instead of updating the (feedforward) controller on a sample by sample base, it is updated each time based on a block of N samples. The use of the subspace identification based ANC methods enables non-iterative derivation and updating of MIMO compact state space models for the controller. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The design of a feedforward controller via the proposed approach is illustrated for an acoustic duct benchmark problem, supplied by TNO Institute of Applied Physics (TNO-TPD), the Netherlands. We also show how to cope with intrinsic feedback. A comparison study with various ANC schemes, such as block filtered-U, demonstrates the increased robustness of a subspace derived controlle

    Algorithms for deterministic balanced subspace identification

    No full text
    New algorithms for identification of a balanced state space representation are proposed. They are based on a procedure for the estimation of impulse response and sequential zero input responses directly from data. The proposed algorithms are more efficient than the existing alternatives that compute the whole Hankel matrix of Markov parameters. It is shown that the computations can be performed on Hankel matrices of the inputā€“output data of various dimensions. By choosing wider matrices, we need persistency of excitation of smaller order. Moreover, this leads to computational savings and improved statistical accuracy when the data is noisy. Using a finite amount of inputā€“output data, the existing algorithms compute finite time balanced representation and the identified models have a lower bound on the distance to an exact balanced representation. The proposed algorithm can approximate arbitrarily closely an exact balanced representation. Moreover, the finite time balancing parameter can be selected automatically by monitoring the decay of the impulse response. We show what is the optimal in terms of minimal identifiability condition partition of the data into ā€œpastā€ and ā€œfutureā€

    The Effects Of Assumption On Subspace Identification Using Simulation And Experiment Data

    Get PDF
    In the modern dynamic engineering field, experimental dynamics is an important area of study. This area includes structural dynamics, structural control, and structural health monitoring. In experimental dynamics, methods to obtain measured data have seen a great influx of research efforts to develop an accurate and reliable experimental analysis result. A technical challenge is the procurement of informative data that exhibits the desired system information. In many cases, the number of sensors is limited by cost and difficulty of data archive. Furthermore, some informative data has technical difficulty when measuring input force and, even if obtaining the desired data were possible, it could include a lot of noise in the measuring data. As a result, researchers have developed many analytical tools with limited informative data. Subspace identification method is used one of tools in these achievements. Subspace identification method includes three different approaches: Deterministic Subspace Identification (DSI), Stochastic Subspace Identification (SSI), and Deterministic-Stochastic Subspace Identification (DSSI). The subspace identification method is widely used for fast computational speed and its accuracy. Based on the given information, such as output only, input/output, and input/output with noises, DSI, SSI, and DSSI are differently applied under specific assumptions, which could affect the analytical results. The objective of this study is to observe the effect of assumptions on subspace identification with various data conditions. Firstly, an analytical simulation study is performed using a sixdegree-of-freedom mass-damper-spring system which is created using MATLAB. Various conditions of excitation insert to the simulation test model, and its excitation and response are iv analyzed using the subspace identification method. For stochastic problems, artificial noise is contained to the excitation and followed the same steps. Through this simulation test, the effects of assumption on subspace identification are quantified. Once the effects of the assumptions are studied using the simulation model, the subspace identification method is applied to dynamic response data collected from large-scale 12-story buildings with different foundation types that are tested at Tongji University, Shanghai, China. Noise effects are verified using three different excitation types. Furthermore, using the DSSI, which has the most accurate result, the effect of different foundations on the superstructure are analyzed

    AN L1 CRITERION FOR DICTIONARY LEARNING BY SUBSPACE IDENTIFICATION

    Get PDF
    Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number: 225913 (project SMALL).EPSRC Leadership Fellowship (EP/G007177/1

    Understanding Stochastic Subspace Identification

    Get PDF
    • ā€¦
    corecore