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Nomenclature 
)(ty   System response in continuous time 
KD,M,  Mass, damping and stiffness matrices 

)(tf   Force vector 
)(tx   State vector 
CB,A,   State space matrices  

cA   System matrix in continuous time 

ky   System response in discrete time 

dA   System matrix in discrete time 
Y   System response matrix 
N   Number of data points 
M   Number of measurement channels 

kR   Covariance matrix at time lag  k
hY   Block Hankel matrix 

hfhp YY ,  Past and future half part of the Block Hankel matrix 
O   Projection matrix 

sΓ   Observability matrix 

0X   Kalman State matrix 
[ ]Ψ,iµ   Poles and eigenvectors of discrete system matrix 
[ ]Φ,iλ   Poles and eigenvectors of 2nd order differential equation 
 

Abstract 
The data driven Stochastic Subspace Identification techniques is considered to be the most powerful class of the 
known identification techniques for natural input modal analysis in the time domain. However, the techniques 
involves several steps of “mysterious mathematics” that is difficult to follow and to understand for people with a 
classical background in structural dynamics. Also the connection to the classical correlation driven time domain 
techniques is not well established. The purpose of this paper is to explain the different steps in the SSI techniques 
of importance for modal identification and to show that most of the elements in the identification techniques have 
simple counterparts in the classical time domain techniques. 



Introduction 
Stochastic Subspace Identification (SSI) modal estimation algorithms have been around for more than a decade 
by now. The real break-through of the SSI algorithms happened in 1996 with the publishing of the book by van 
Overschee and De Moor [1]. A set of MATLAB files were distributed along with this book and the readers could 
easily convince themselves that the SSI algorithms really were a strong and efficient tool for natural input modal 
analysis. Because of the immediate acceptance of the effectiveness of the algorithms the mathematical 
framework described in the book where accepted as a de facto standard for SSI algorithms.  
 
However, the mathematical framework is not going well together with normal engineering understanding. The 
reason is that the framework is covering both deterministic as well as stochastic estimation algorithms. To 
establish this kind of general framework more general mathematical concepts has to be introduced. Many 
mechanical engineers have not been trained to address problems with unknown loads enabling them to get used 
to concepts of stochastic theory, while many civil engineers have been trained to do so to be able to deal with 
natural loads like wind, waves and traffic, but on the other hand, civil engineers are not used to deterministic 
thinking. The book of van Overschee and De Moor [1] embraces both engineering worlds and as a result the 
general formulation presents a mathematics that is difficult to digest for both engineering traditions. 
 
It is the view point of the present authors, that going back to a more traditional basis of understanding for 
addressing the response of structural systems due to natural input (ambient loading) makes things more easy to 
understand. In this paper, we will look at the SSI technique from a civil engineering (stochastic) point of view. We 
will present the most fundamental steps of the SSI algorithms based on the use of stochastic theory for Gaussian 
distributed stochastic processes, where everything is completely described by the correlation functions in time 
domain or by the spectral densities in frequency domain. 
 
Most modal people still like to think about vibrations in continuous time, and thus the discrete time formulations 
used in SSI are not generally accepted. Therefore a short introduction is given to discrete time models and it is 
shown how simple it is to introduce the description of free responses in discrete time. In the SSI technique it seem 
mysterious to many people why the response data is gathered together in a Block Hankel matrix, orders of 
magnitude larger than the original amount of data. Therefore the structure of the Block Hankel matrix is related to 
traditional covariance estimation, and it is shown how the subsequent so-called Projection of this Hankel matrix 
onto itself can be explained in terms of covariances and thus results in a set of free responses for the system. 
Then finally it is explained how the physics can be estimated by performing a singular value decomposition of the 
projection matrix.  
 
It is avoided to get into discussions about how to estimate the statistical part of the general model. Normally when 
introduced to the SSI technique, people will start looking at the innovation state space formulation involving 
mysterious Kalman states and a Kalman gain matrix that has nothing to do with the physics. This makes most 
engineers with a normal background in dynamics fall of the train. In this formulation, the general model is 
bypassed, however the mysterious Kalman states are introduced and explained as the states for the free 
responses estimated by the projection. Thus, this is an invitation to the people that were disappointed in the first 
place to get back on the track, take a another ride with the SSI train to discover that most of what you will see you 
can recognize as generalized procedures well established in classical modal analysis. 
 

The discrete time formulation 
We consider the stochastic response from a system as a function of time 
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The system can be considered in classical formulation as a multi degree of freedom structural system  
 

)()()()( tttt fKyyDyM =++ &&&(2)  



 
Where ΚD,Μ,  is the mass, damping and stiffness matrix, and where  is the loading vector. In order to take 
this classical continuous time formulation to the discrete time domain the easiest way is to introduce the State 
Space formulation 

)(tf
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Here we are using the rather confusing terminology from systems engineering where the states are denoted 

(so please don’t confuse this with the system input, the system input is still ).  Introducing the State Space 
formulation, the original 2

)(tx )(tf
nd order system equation given by eq. (2) simplifies to a first order equation 
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Where the system matrix  in continuous time and the load matrix  is given by cA B
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The advantage of this formulation is that the general solution is directly available, se for instance Kailath [2] 
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Where the first term is the solution to the homogenous equation and the last term is the particular solution. To 
take this solution to discrete time, we sample all variables like )( tkk ∆= yy  and thus the solution to the 
homogenous equation becomes 
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Here one should not be confused by the fact that we calculate the exponential function of a matrix, this 
construction is simply defined by its power series, and in practice is calculated by performing a eigen-value 
decomposition of the involved matrix and then taking the exponential function of the eigen values. Note that the 
system matrix in continuous time and in discrete is time is not the same.  
 

The Block Hankel Matrix 
In discrete time, the system response is normally represented by the data matrix 
 

[ ]NyyyY L21=(8)  
 
Where  is the number of data points. To understand the meaning of the Block Hankel matrix, it is useful to 
consider a more simple case where we perform the product between two matrices that are modifications of the 

N



data matrix given by eq. (7). Let  be the data matrix where we have removed the last  data points, and 

similarly, let be the data matrix where we have removed the first  data points, then 
):1( kN−Y k

):( NkY k
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Is an unbiased estimate of the correlation matrix at time lag . This follows directly from the definition of the 
correlation estimate, se for instance Bendat and Piersol [4]. The Block Hankel matrix  defined in SSI is simply 
a gathering of a family of matrices that are created by shifting the data matrix 
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The upper half part of this matrix is called “the past” and denoted  and the lower half part of the matrix is 

called “the future” and is denoted .  The total data shift is  and is denoted “the number of block rows” (of 
the upper or lower part of the Block Hankel matrix). The number of rows in the Block Hankel matrix is , the 
number of columns is . 

hpY

hfY s2
sM2

sN 2−
 

The Projection 
Here comes what in many peoples opinion is one of the most mysterious operations in SSI. In van Overschee and 
De Moor [1] the projection is introduced as a geometrical tool and is explained mainly in this context. However, 
dealing with stochastic responses, projection is defined as a conditional mean. Specifically, in SSI the projection 
of the future unto the past defines the matrix 
 

( )hphf YYO E=(11)  
 
A conditional mean like this can for Gaussian processes be totally described by its covariances, se for instance 
Melsa & Sage [3]. Since the shifted data matrices also defines covariances, it is not so strange that the projection 
can be calculated directly as also defined by van Overschee and De Moor [1] 
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The last matrix in this product defines the conditions, the first four matrices in the product introduces the 
covariances between channels at different time lags. A conditional mean like given by eq. (10) simply consist of 
free decays of the system given by different initial conditions specified by . The matrix is and any 
column in the matrix O  is a stacked free decay of the system to a (so far unknown) set of initial conditions. Using 
eq. (7) any column in O can be expressed by 

hpY sMsM ×
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Now, if we knew the so-called observability matrix , then we could simply find the initial conditions directly from 
eq. (13) (it is a useful exercise to simulate a system response from the known system matrices, use the SSI 
standard procedure to find the matrix O  and then try to estimate the initial conditions directly from eq. (13)).  

sΓ

 

The Kalman States 
The so-called Kalman states are simply the initial conditions for all the columns in the matrix , thus O
 

0XΓO s=(14)  
 
Where the matrix  contains the so defined Kalman states at time lag zero. Again, if we knew the matrix , 
then we could simply find all the Kalman states directly from eq.(14), however, since we don’t know the matrix , 
we cannot do so, and thus we have to estimate the states in a different way. The trick is to use the SVD on the O  
matrix 
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And then define the estimate of the matrix  and the Kalman state matrix states  by sΓ 0X
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The so defined procedure for estimating the matrices  and  is not unique. A certain arbitrary similarity 
transformation can be shown to influence the individual matrices, but can also be shown not to influence the 
estimation of the system matrices. 

Γ̂ 0X̂

 
A note on the name “Kalman states”. The Kalman state matrix  is the Kalman state matrix for time lag zero. If 
we remove one block row of O  from the top, and then one block row of   from the bottom, then similarly we 

can estimate the Kalman state matrix  at time lag one. Thus by subsequently removing block rows from O  all 
the Kalman states can be defined. Using the Kalman states a more general formulation for estimating also the 
noise part of the stochastic response modeling can be established. However, in this paper we focus on explaining 
how the system matrices can be found, and in this context, there is no further need for Kalman states. 
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Estimating the system matrices 
The system matrix  can be found from the estimate of the matrix  by removing one block from the top and 
one block from the bottom yielding 
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And thus, the system matrix  can be found by regression. The observation matrix  can be found simply by 
taking the first block of the observability matrix 
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Modal Analysis and practical issues 
Now we are finally back to something like what we normally do in the field of structural vibrations. First step of 
finding the modal parameters is to perform an eigenvalue decomposition of the system matrix  dÂ
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The continuous time poles iλ  are found from the discrete time poles iµ  by 
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Leading to the well known formulas 
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The mode shape matrix is found from 
 

CΨΦ =(22)  
 
and the job is done – from a modal point of view – if we are able to make up our mind about the size of the Block 
Hankel matrix. As we have seen earlier, the number s  defines the size of the Block Hankel matrix, and thus also 
the size of the projection matrix O . However, the number  defines the number of eigenvalues in our model, 
thus  defines the model order. Normally we would like to vary the model order to establish a stabilization 
diagram. This can of course be done by establishing a series of Block Hankel matrices of different size, but it is 
somewhat easier, instead of varying the size of the Block Hankel matrix, to vary the number of singular values 
used in eq. (16). Thus in practice the size of the Block Hankel matrix defines the maximum model order, and the 
actual model order is varied by varying the number of singular values taken into account when performing the 
singular value decomposition of the projection matrix. The maximum number of eigen values must be 
adjusted to a reasonable level to incorporate the needed range of models.  
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