2,801 research outputs found

    One-dimensional many-body entangled open quantum systems with tensor network methods

    Full text link
    We present a collection of methods to simulate entangled dynamics of open quantum systems governed by the Lindblad equation with tensor network methods. Tensor network methods using matrix product states have been proven very useful to simulate many-body quantum systems and have driven many innovations in research. Since the matrix product state design is tailored for closed one-dimensional systems governed by the Schr\"odinger equation, the next step for many-body quantum dynamics is the simulation of open quantum systems. We review the three dominant approaches to the simulation of open quantum systems via the Lindblad master equation: quantum trajectories, matrix product density operators, and locally purified tensor networks. Selected examples guide possible applications of the methods and serve moreover as a benchmark between the techniques. These examples include the finite temperature states of the transverse quantum Ising model, the dynamics of an exciton traveling under the influence of spontaneous emission and dephasing, and a double-well potential simulated with the Bose-Hubbard model including dephasing. We analyze which approach is favorable leading to the conclusion that a complete set of all three methods is most beneficial, push- ing the limits of different scenarios. The convergence studies using analytical results for macroscopic variables and exact diagonalization methods as comparison, show, for example, that matrix product density operators are favorable for the exciton problem in our study. All three methods access the same library, i.e., the software package Open Source Matrix Product States, allowing us to have a meaningful comparison between the approaches based on the selected examples. For example, tensor operations are accessed from the same subroutines and with the same optimization eliminating one possible bias in a comparison of such numerical methods.Comment: 24 pages, 8 figures. Small extension of time evolution section and moving quantum simulators to introduction in comparison to v

    Support vector machine for functional data classification

    Get PDF
    In many applications, input data are sampled functions taking their values in infinite dimensional spaces rather than standard vectors. This fact has complex consequences on data analysis algorithms that motivate modifications of them. In fact most of the traditional data analysis tools for regression, classification and clustering have been adapted to functional inputs under the general name of functional Data Analysis (FDA). In this paper, we investigate the use of Support Vector Machines (SVMs) for functional data analysis and we focus on the problem of curves discrimination. SVMs are large margin classifier tools based on implicit non linear mappings of the considered data into high dimensional spaces thanks to kernels. We show how to define simple kernels that take into account the unctional nature of the data and lead to consistent classification. Experiments conducted on real world data emphasize the benefit of taking into account some functional aspects of the problems.Comment: 13 page

    From Nagaoka's ferromagnetism to flat-band ferromagnetism and beyond: An introduction to ferromagnetism in the Hubbard model

    Full text link
    This is a self-contained review about ferromagnetism in the Hubbard model, which should be accessible to readers with various backgrounds who are new to the field. We describe Nagaoka's ferromagnetism and flat-band ferromagnetism in detail, giving all necessary backgrounds as well as complete (but elementary) mathematical proofs. By studying an intermediate model called long-range hopping model, we also demonstrate that there is indeed a deep relation between these two seemingly different approaches to ferromagnetism. We further discuss some attempts to go beyond these approaches. We briefly discuss recent rigorous example of ferromagnetism in the Hubbard model which has neither infinitely large parameters nor completely flat bands. We give preliminary discussions about possible experimental realizations of the (nearly-)flat-band ferromagnetism. Finally we focus on some theoretical attempts to understand metallic ferromagnetism. We discuss three artificial one-dimensional models in which the existence of metallic ferromagnetism can be easily proved.Comment: LaTeX2e, 72 pages, 17 epsf figures. Many minor corrections made in March 1998. This is the final version, which will appear in Prog. Theor. Phys. 99 (invited paper

    Supersymmetric Quantum Mechanics for String-Bits

    Get PDF
    We develop possible versions of supersymmetric single particle quantum mechanics, with application to superstring-bit models in view. We focus principally on space dimensions d=1,2,4,8d=1,2,4,8, the transverse dimensionalities of superstring in 3,4,6,103,4,6,10 space-time dimensions. These are the cases for which ``classical'' superstring makes sense, and also the values of dd for which Hooke's force law is compatible with the simplest superparticle dynamics. The basic question we address is: When is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string-bits that do not fall off with distance will almost certainly destroy cluster decomposition. We show that the answer is affirmative for d=1,2d=1,2, negative for d=8d=8, and so far inconclusive for d=4d=4.Comment: 17 pages, Late

    Attribute Relationship Analysis in Outlier Mining and Stream Processing

    Get PDF
    The main theme of this thesis is to unite two important fields of data analysis, outlier mining and attribute relationship analysis. In this work we establish the connection between these two fields. We present techniques which exploit this connection, allowing to improve outlier detection in high dimensional data. In the second part of the thesis we extend our work to the emerging topic of data streams

    Low-Rank Matrices on Graphs: Generalized Recovery & Applications

    Get PDF
    Many real world datasets subsume a linear or non-linear low-rank structure in a very low-dimensional space. Unfortunately, one often has very little or no information about the geometry of the space, resulting in a highly under-determined recovery problem. Under certain circumstances, state-of-the-art algorithms provide an exact recovery for linear low-rank structures but at the expense of highly inscalable algorithms which use nuclear norm. However, the case of non-linear structures remains unresolved. We revisit the problem of low-rank recovery from a totally different perspective, involving graphs which encode pairwise similarity between the data samples and features. Surprisingly, our analysis confirms that it is possible to recover many approximate linear and non-linear low-rank structures with recovery guarantees with a set of highly scalable and efficient algorithms. We call such data matrices as \textit{Low-Rank matrices on graphs} and show that many real world datasets satisfy this assumption approximately due to underlying stationarity. Our detailed theoretical and experimental analysis unveils the power of the simple, yet very novel recovery framework \textit{Fast Robust PCA on Graphs

    Locally accurate MPS approximations for ground states of one-dimensional gapped local Hamiltonians

    Get PDF
    A key feature of ground states of gapped local 1D Hamiltonians is their relatively low entanglement --- they are well approximated by matrix product states (MPS) with bond dimension scaling polynomially in the length NN of the chain, while general states require a bond dimension scaling exponentially. We show that the bond dimension of these MPS approximations can be improved to a constant, independent of the chain length, if we relax our notion of approximation to be more local: for all length-kk segments of the chain, the reduced density matrices of our approximations are ϵ\epsilon-close to those of the exact state. If the state is a ground state of a gapped local Hamiltonian, the bond dimension of the approximation scales like (k/ϵ)1+o(1)(k/\epsilon)^{1+o(1)}, and at the expense of worse but still poly(k,1/ϵ)\text{poly}(k,1/\epsilon) scaling of the bond dimension, we give an alternate construction with the additional features that it can be generated by a constant-depth quantum circuit with nearest-neighbor gates, and that it applies generally for any state with exponentially decaying correlations. For a completely general state, we give an approximation with bond dimension exp(O(k/ϵ))\exp(O(k/\epsilon)), which is exponentially worse, but still independent of NN. Then, we consider the prospect of designing an algorithm to find a local approximation for ground states of gapped local 1D Hamiltonians. When the Hamiltonian is translationally invariant, we show that the ability to find O(1)O(1)-accurate local approximations to the ground state in T(N)T(N) time implies the ability to estimate the ground state energy to O(1)O(1) precision in O(T(N)log(N))O(T(N)\log(N)) time.Comment: 24 pages, 3 figures. v2: Theorem 1 extended to include construction for general states; Lemma 7 & Theorem 2 slightly improved; figures added; lemmas rearranged for clarity; typos fixed. v3: Reformatted & additional references inserte
    corecore