611 research outputs found

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Spectral Target Detection using Physics-Based Modeling and a Manifold Learning Technique

    Get PDF
    Identification of materials from calibrated radiance data collected by an airborne imaging spectrometer depends strongly on the atmospheric and illumination conditions at the time of collection. This thesis demonstrates a methodology for identifying material spectra using the assumption that each unique material class forms a lower-dimensional manifold (surface) in the higher-dimensional spectral radiance space and that all image spectra reside on, or near, these theoretic manifolds. Using a physical model, a manifold characteristic of the target material exposed to varying illumination and atmospheric conditions is formed. A graph-based model is then applied to the radiance data to capture the intricate structure of each material manifold, followed by the application of the commute time distance (CTD) transformation to separate the target manifold from the background. Detection algorithms are then applied in the CTD subspace. This nonlinear transformation is based on a random walk on a graph and is derived from an eigendecomposition of the pseudoinverse of the graph Laplacian matrix. This work provides a geometric interpretation of the CTD transformation, its algebraic properties, the atmospheric and illumination parameters varied in the physics-based model, and the influence the target manifold samples have on the orientation of the coordinate axes in the transformed space. This thesis concludes by demonstrating improved detection results in the CTD subspace as compared to detection in the original spectral radiance space

    Multi-Classifiers And Decision Fusion For Robust Statistical Pattern Recognition With Applications To Hyperspectral Classification

    Get PDF
    In this dissertation, a multi-classifier, decision fusion framework is proposed for robust classification of high dimensional data in small-sample-size conditions. Such datasets present two key challenges. (1) The high dimensional feature spaces compromise the classifiers’ generalization ability in that the classifier tends to overit decision boundaries to the training data. This phenomenon is commonly known as the Hughes phenomenon in the pattern classification community. (2) The small-sample-size of the training data results in ill-conditioned estimates of its statistics. Most classifiers rely on accurate estimation of these statistics for modeling training data and labeling test data, and hence ill-conditioned statistical estimates result in poorer classification performance. This dissertation tests the efficacy of the proposed algorithms to classify primarily remotely sensed hyperspectral data and secondarily diagnostic digital mammograms, since these applications naturally result in very high dimensional feature spaces and often do not have sufficiently large training datasets to support the dimensionality of the feature space. Conventional approaches, such as Stepwise LDA (S-LDA) are sub-optimal, in that they utilize a small subset of the rich spectral information provided by hyperspectral data for classification. In contrast, the approach proposed in this dissertation utilizes the entire high dimensional feature space for classification by identifying a suitable partition of this space, employing a bank-of-classifiers to perform “local” classification over this partition, and then merging these local decisions using an appropriate decision fusion mechanism. Adaptive classifier weight assignment and nonlinear pre-processing (in kernel induced spaces) are also proposed within this framework to improve its robustness over a wide range of fidelity conditions. Experimental results demonstrate that the proposed framework results in significant improvements in classification accuracies (as high as a 12% increase) over conventional approaches

    Multi-Classifiers And Decision Fusion For Robust Statistical Pattern Recognition With Applications To Hyperspectral Classification

    Get PDF
    In this dissertation, a multi-classifier, decision fusion framework is proposed for robust classification of high dimensional data in small-sample-size conditions. Such datasets present two key challenges. (1) The high dimensional feature spaces compromise the classifiers’ generalization ability in that the classifier tends to overit decision boundaries to the training data. This phenomenon is commonly known as the Hughes phenomenon in the pattern classification community. (2) The small-sample-size of the training data results in ill-conditioned estimates of its statistics. Most classifiers rely on accurate estimation of these statistics for modeling training data and labeling test data, and hence ill-conditioned statistical estimates result in poorer classification performance. This dissertation tests the efficacy of the proposed algorithms to classify primarily remotely sensed hyperspectral data and secondarily diagnostic digital mammograms, since these applications naturally result in very high dimensional feature spaces and often do not have sufficiently large training datasets to support the dimensionality of the feature space. Conventional approaches, such as Stepwise LDA (S-LDA) are sub-optimal, in that they utilize a small subset of the rich spectral information provided by hyperspectral data for classification. In contrast, the approach proposed in this dissertation utilizes the entire high dimensional feature space for classification by identifying a suitable partition of this space, employing a bank-of-classifiers to perform “local” classification over this partition, and then merging these local decisions using an appropriate decision fusion mechanism. Adaptive classifier weight assignment and nonlinear pre-processing (in kernel induced spaces) are also proposed within this framework to improve its robustness over a wide range of fidelity conditions. Experimental results demonstrate that the proposed framework results in significant improvements in classification accuracies (as high as a 12% increase) over conventional approaches

    Hyperspectral Images Classification and Dimensionality Reduction using spectral interaction and SVM classifier

    Full text link
    Over the past decades, the hyperspectral remote sensing technology development has attracted growing interest among scientists in various domains. The rich and detailed spectral information provided by the hyperspectral sensors has improved the monitoring and detection capabilities of the earth surface substances. However, the high dimensionality of the hyperspectral images (HSI) is one of the main challenges for the analysis of the collected data. The existence of noisy, redundant and irrelevant bands increases the computational complexity, induce the Hughes phenomenon and decrease the target's classification accuracy. Hence, the dimensionality reduction is an essential step to face the dimensionality challenges. In this paper, we propose a novel filter approach based on the maximization of the spectral interaction measure and the support vector machines for dimensionality reduction and classification of the HSI. The proposed Max Relevance Max Synergy (MRMS) algorithm evaluates the relevance of every band through the combination of spectral synergy, redundancy and relevance measures. Our objective is to select the optimal subset of synergistic bands providing accurate classification of the supervised scene materials. Experimental results have been performed using three different hyperspectral datasets: "Indiana Pine", "Pavia University" and "Salinas" provided by the "NASA-AVIRIS" and the "ROSIS" spectrometers. Furthermore, a comparison with the state of the art band selection methods has been carried out in order to demonstrate the robustness and efficiency of the proposed approach. Keywords: Hyperspectral images, remote sensing, dimensionality reduction, classification, synergic, correlation, spectral interaction information, mutual infor

    A manifold learning approach to target detection in high-resolution hyperspectral imagery

    Get PDF
    Imagery collected from airborne platforms and satellites provide an important medium for remotely analyzing the content in a scene. In particular, the ability to detect a specific material within a scene is of high importance to both civilian and defense applications. This may include identifying targets such as vehicles, buildings, or boats. Sensors that process hyperspectral images provide the high-dimensional spectral information necessary to perform such analyses. However, for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m \u3c\u3c d. In the remote sensing community, this has led to a recent increase in the use of manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data; this is particularly true when implementing traditional target detection approaches, and the limitations of these models are well-documented. With manifold learning based approaches, the only assumption is that the data reside on an underlying manifold that can be discretely modeled by a graph. The research presented here focuses on the use of graph theory and manifold learning in hyperspectral imagery. Early work explored various graph-building techniques with application to the background model of the Topological Anomaly Detection (TAD) algorithm, which is a graph theory based approach to anomaly detection. This led towards a focus on target detection, and in the development of a specific graph-based model of the data and subsequent dimensionality reduction using manifold learning. An adaptive graph is built on the data, and then used to implement an adaptive version of locally linear embedding (LLE). We artificially induce a target manifold and incorporate it into the adaptive LLE transformation; the artificial target manifold helps to guide the separation of the target data from the background data in the new, lower-dimensional manifold coordinates. Then, target detection is performed in the manifold space

    A new kernel method for hyperspectral image feature extraction

    Get PDF
    Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers. However, the increasing spectral dimensions, as well as the information redundancy, make the analysis and interpretation of hyperspectral images a challenge. Feature extraction is a very important step for hyperspectral image processing. Feature extraction methods aim at reducing the dimension of data, while preserving as much information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing, due to their good preservation of high-order structures of the original data. However, conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction, and this leads to poor performances for post-applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral images. Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window), the proposed method explores the use of image segmentation. The approach benefits both noise fraction estimation and information preservation, and enables a significant improvement for classification. Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, the improvements of the method on two hyperspectral image classification are 8 and 11%. This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required
    corecore