88 research outputs found

    Subspace Clustering for all Seasons

    Get PDF
    International audienceSubspace clustering is recognized as a more general and difficult task than standard clustering since it requires to identify not only objects sharing similar feature values but also the various subspaces where these similarities appear. Many approaches have been investigated for subspace clustering in the literature using various clustering paradigms. In this paper, we present Chameleoclust, an evolutionary subspace clustering algorithm that incorporates a genome having an evolvable structure. The genome is a coarse grained genome defined as a list of tuples (the "genes"),each tuple containing numbers. These tuples are mapped at the phenotype level to denote core point locations in different dimensions, which are then used to collectively build the subspace clusters, by grouping the data around the core points. The algorithm has been assessed using a reference framework for subspace clustering evaluation, and compared to state-of-the-art algorithms on both real and synthetic datasets. The results obtained with the Chameleoclust algorithm show that evolution of evolution, through an evolvable genome structure, is usefull to solve a difficult problem such as subspace clustering

    EvoMove: Evolutionary-based living musical companion

    Get PDF
    International audienceThe EvoMove system is a motion-based musical companion that relies on a commensal computing scheme. The system relies on wireless sensors to detect dancer moves. The sensor information is sent to KymeroClust, an evolutionary algorithm that identifies and maintains a clustering model of the move categories. The system uses this information to play audio samples according to the detected categories. These categories are not predefined, but are built dynamically by clustering the stream of data coming from the motion sensors. The EvoMove system has been tested by different users and subjective promising experiences are reported

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u

    The Role of Mutations in Protein Structural Dynamics and Function: A Multi-scale Computational Approach

    Get PDF
    abstract: Proteins are a fundamental unit in biology. Although proteins have been extensively studied, there is still much to investigate. The mechanism by which proteins fold into their native state, how evolution shapes structural dynamics, and the dynamic mechanisms of many diseases are not well understood. In this thesis, protein folding is explored using a multi-scale modeling method including (i) geometric constraint based simulations that efficiently search for native like topologies and (ii) reservoir replica exchange molecular dynamics, which identify the low free energy structures and refines these structures toward the native conformation. A test set of eight proteins and three ancestral steroid receptor proteins are folded to 2.7Ă… all-atom RMSD from their experimental crystal structures. Protein evolution and disease associated mutations (DAMs) are most commonly studied by in silico multiple sequence alignment methods. Here, however, the structural dynamics are incorporated to give insight into the evolution of three ancestral proteins and the mechanism of several diseases in human ferritin protein. The differences in conformational dynamics of these evolutionary related, functionally diverged ancestral steroid receptor proteins are investigated by obtaining the most collective motion through essential dynamics. Strikingly, this analysis shows that evolutionary diverged proteins of the same family do not share the same dynamic subspace. Rather, those sharing the same function are simultaneously clustered together and distant from those functionally diverged homologs. This dynamics analysis also identifies 77% of mutations (functional and permissive) necessary to evolve new function. In silico methods for prediction of DAMs rely on differences in evolution rate due to purifying selection and therefore the accuracy of DAM prediction decreases at fast and slow evolvable sites. Here, we investigate structural dynamics through computing the contribution of each residue to the biologically relevant fluctuations and from this define a metric: the dynamic stability index (DSI). Using DSI we study the mechanism for three diseases observed in the human ferritin protein. The T30I and R40G DAMs show a loss of dynamic stability at the C-terminus helix and nearby regulatory loop, agreeing with experimental results implicating the same regulatory loop as a cause in cataracts syndrome.Dissertation/ThesisPh.D. Physics 201

    A Practical Investigation into Achieving Bio-Plausibility in Evo-Devo Neural Microcircuits Feasible in an FPGA

    Get PDF
    Many researchers has conjectured, argued, or in some cases demonstrated, that bio-plausibility can bring about emergent properties such as adaptability, scalability, fault-tolerance, self-repair, reliability, and autonomy to bio-inspired intelligent systems. Evolutionary-developmental (evo-devo) spiking neural networks are a very bio-plausible mixture of such bio-inspired intelligent systems that have been proposed and studied by a few researchers. However, the general trend is that the complexity and thus the computational cost grow with the bio-plausibility of the system. FPGAs (Field- Programmable Gate Arrays) have been used and proved to be one of the flexible and cost efficient hardware platforms for research' and development of such evo-devo systems. However, mapping a bio-plausible evo-devo spiking neural network to an FPGA is a daunting task full of different constraints and trade-offs that makes it, if not infeasible, very challenging. This thesis explores the challenges, trade-offs, constraints, practical issues, and some possible approaches in achieving bio-plausibility in creating evolutionary developmental spiking neural microcircuits in an FPGA through a practical investigation along with a series of case studies. In this study, the system performance, cost, reliability, scalability, availability, and design and testing time and complexity are defined as measures for feasibility of a system and structural accuracy and consistency with the current knowledge in biology as measures for bio-plausibility. Investigation of the challenges starts with the hardware platform selection and then neuron, cortex, and evo-devo models and integration of these models into a whole bio-inspired intelligent system are examined one by one. For further practical investigation, a new PLAQIF Digital Neuron model, a novel Cortex model, and a new multicellular LGRN evo-devo model are designed, implemented and tested as case studies. Results and their implications for the researchers, designers of such systems, and FPGA manufacturers are discussed and concluded in form of general trends, trade-offs, suggestions, and recommendations

    Advances in Big Data Analytics: Algorithmic Stability and Data Cleansing

    Get PDF
    Analysis of what has come to be called “big data” presents a number of challenges as data continues to grow in size, complexity and heterogeneity. To help addresses these challenges, we study a pair of foundational issues in algorithmic stability (robustness and tuning), with application to clustering in high-throughput computational biology, and an issue in data cleansing (outlier detection), with application to pre-processing in streaming meteorological measurement. These issues highlight major ongoing research aspects of modern big data analytics. First, a new metric, robustness, is proposed in the setting of biological data clustering to measure an algorithm’s tendency to maintain output coherence over a range of parameter settings. It is well known that different algorithms tend to produce different clusters, and that the choice of algorithm is often driven by factors such as data size and type, similarity measure(s) employed, and the sort of clusters desired. Even within the context of a single algorithm, clusters often vary drastically depending on parameter settings. Empirical comparisons performed over a variety of algorithms and settings show highly differential performance on transcriptomic data and demonstrate that many popular methods actually perform poorly. Second, tuning strategies are studied for maximizing biological fidelity when using the well-known paraclique algorithm. Three initialization strategies are compared, using ontological enrichment as a proxy for cluster quality. Although extant paraclique codes begin by simply employing the first maximum clique found, results indicate that by generating all maximum cliques and then choosing one of highest average edge weight, one can produce a small but statistically significant expected improvement in overall cluster quality. Third, a novel outlier detection method is described that helps cleanse data by combining Pearson correlation coefficients, K-means clustering, and Singular Spectrum Analysis in a coherent framework that detects instrument failures and extreme weather events in Atmospheric Radiation Measurement sensor data. The framework is tested and found to produce more accurate results than do traditional approaches that rely on a hand-annotated database

    Evolutionary Reinforcement Learning: A Survey

    Full text link
    Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments. The integration of RL with deep learning has recently resulted in impressive achievements in a wide range of challenging tasks, including board games, arcade games, and robot control. Despite these successes, there remain several crucial challenges, including brittle convergence properties caused by sensitive hyperparameters, difficulties in temporal credit assignment with long time horizons and sparse rewards, a lack of diverse exploration, especially in continuous search space scenarios, difficulties in credit assignment in multi-agent reinforcement learning, and conflicting objectives for rewards. Evolutionary computation (EC), which maintains a population of learning agents, has demonstrated promising performance in addressing these limitations. This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL). We categorize EvoRL methods according to key research fields in RL, including hyperparameter optimization, policy search, exploration, reward shaping, meta-RL, and multi-objective RL. We then discuss future research directions in terms of efficient methods, benchmarks, and scalable platforms. This survey serves as a resource for researchers and practitioners interested in the field of EvoRL, highlighting the important challenges and opportunities for future research. With the help of this survey, researchers and practitioners can develop more efficient methods and tailored benchmarks for EvoRL, further advancing this promising cross-disciplinary research field
    • …
    corecore