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Abstract

The EvoMove system is a motion-based musical companion
that relies on a commensal computing scheme. The system
relies on wireless sensors to detect dancer moves. The sen-
sor information is sent to KymeroClust, an evolutionary algo-
rithm that identifies and maintains a clustering model of the
move categories. The system uses this information to play
audio samples according to the detected categories. These
categories are not predefined, but are built dynamically by
clustering the stream of data coming from the motion sen-
sors. The EvoMove system has been tested by different users
and subjective promising experiences are reported.

Introduction
One of the objectives of ALife is to create “Living Tech-
nologies”, i.e. technologies that are able to adapt to their
environment in an open-ended way (Banzhaf et al., 2016).
However, the concept of “Living Technology” sounds like
an oxymoron lying on two antagonistic properties. On the
one hand, one of the core universal properties of living be-
ings is their autonomy. Even if some forms of cooperation
or altruism can be observed in nature, every biological sys-
tem is fundamentally selfish. On the other hand, one of the
core universal properties of technology is its controllabil-
ity. These two antagonistic properties immediately conflict
when one wants to design living technologies: The aim here
is to design a system that satisfies the goals it was built for
(technology) and that is autonomous enough to surprise its
user (living). How can a technology be simultaneously alive
and controllable? We propose here a bio-inspired approach,
called “commensal computation” (Abernot et al., 2016), to
resolve the autonomy vs. controllability conundrum. In
biology a commensal interaction is a form of mutualism
between two organisms where the association is not detri-
mental but not obviously beneficial to the partners (Hooper
and Gordon, 2001). The idea of commensal computation is
based on the concept of nutrient processing by microbiota:
Gut microbes degrade ingested substances that would other-
wise be non-digestible or even harmful to the gut (Hooper
et al., 2002). Hence, gut microbes pre-process the com-
plex flow of nutrients and transfer the results to their host

organism, helping it to regulate its feeding, to extract spe-
cific nutrients and to gain resources it can use to survive.
Importantly, while doing so, the microbiota changes and
evolves according to its environment, i.e., according to what
the host eats. The commensal association of the microbiota
and the host contains a part of autonomy (the microbes) and
a part of control (the host). We propose to organize a liv-
ing computational system following the manner in which
host and microbiota are engaged in a mutualistic associa-
tion. In commensal computation, some complex data are
pre-processed by a virtual microbiome (the “commensals”)
that transforms them into simpler data that the processing
system (the “host”) can use. Such an architecture differs
from classical preprocessing-processing in that here the pre-
processing is performed by a community of virtual bacteria
that evolves autonomously (albeit in environmental condi-
tions that depend on the state of the global system). In par-
ticular, the only objective of the microbiota is to uptake data,
transform them into some “objects” and feed these objects to
the main processing system. Importantly, it does so indepen-
dently from any global objective.

In this paper we present the EvoMove system, a musical
companion based on the commensal computation architec-
ture. EvoMove relies on a system of sensors that captures
the moves of a dancer thus feeding a population of virtual
organisms with complex information. As these virtual or-
ganisms evolve, they produce some clustering models of the
data, categorizing raw moves into groups of similar ones,
later-on called “movements” (a movement being an orga-
nized set of moves). Finally, at each time step, the activated
movements are sent to the processing layer that uses this in-
formation to trigger small sound samples that in turn “feed”
the dancer. The EvoMove musical companion has been de-
veloped as a demonstrator for the 2013-2016 FP7 EvoEvo
project (www.evoevo.fr). This project is an interdis-
ciplinary project aiming at developing living technologies
by taking inspiration from the evolution of microorganisms
(virus and bacteria). EvoMove has been developed to assess
the efficiency of the living technologies developed during
the EvoEvo project with a challenging real world applica-
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tion.
In the rest of the paper we first present the EvoMove sys-

tem. Then the clustering problem addressed by the move
recognition unit is presented more formally, thereon the ma-
jor principles behind the move recognition system are ex-
plained. Finally we present the experimental settings and
the main experimental results.

EvoMove system
The EvoMove system is a musical companion that gener-
ates music on-the-fly according to a performer moves. The
system is composed of three elements: an acquisition unit
made of Inertial Measurement Units (IMU) body sensors
that provide a continuous data stream following the motion
of the performer(s). A move recognition unit that receives
and analyses on-the-fly the raw data provided by the sensors.
This unit is responsible of constructing and updating a clus-
tering model of the IMU data and to identify the categories
of new incoming moves. The recognition unit is based on
KymeroClust, a new evolutionary clustering algorithm that
has been presented in Deliverable 5.2 of the EvoEvo project
(http://www.evoevo.eu). Finally, the sound gener-
ator unit then produces music according to the categories
found by the recognition unit. The music generation relies
on a tiling over time of audio samples, where each sample is
triggered according to the moves detected in the data stream
coming from the sensors.

Here, these units are organized according to the com-
mensal architecture schema: The virtual organisms of the
KymeroClust algorithm (move recognition unit) constitute
the commensal layer. They pre-process the data received
by the IMU, enabling the host (the sound generator unit) to
interpret the moves and to produce sounds. These sounds
influence the reaction and the moves of the dancer, clos-
ing an enactive sensori-motor interaction loop where the
dancer and the system both recognize each-other (Varela
et al., 1992; De Loor et al., 2009).

System overview
The general architecture of the system is described in fig-
ure 1. Hereafter we expose each one of the major compo-
nents of the EvoMove system with more details.

Data acquisition unit The performer moves are captured
via a set of wearable wireless motion sensors built by the
HIKOB company (www.hikob.com). The sensors are
embedded in small boxes tied to the wrists, the ankles, the
heads or other parts of the bodies of the dancers (part A fig-
ure 1). Each sensor is an Inertial Measurement Unit (IMU)
composed of three orthogonal accelerometers, three orthog-
onal gyroscopes measuring angular speed, and three orthog-
onal magnetometers. Accelerometers and gyroscope de-
scribe the movements and the magnetic field gives a hint
about absolute orientation. Each IMU delivers information

Figure 1: The EvoMove system. (A) the performer(s) moves
are captured by multiple sensors, hence producing a high di-
mensional temporal signal (B). The signal is then processed
by the KymeroClust algorithm (the “virtual commensal mi-
crobiota”). KymeroClust performs subspace clustering on
the input data to exhibit groups of similar moves, and up-
dates on-the-fly the corresponding clustering model. The
current move is then associated to one of the clusters (C),
and depending on this cluster an audio sample is played by
the “host” (D), providing a feed-back to the performer(s).

at 50 Hz. The information is collected by a gateway using
a client-server model, thus supporting the deployment of a
variable number of sensors, and even to set them on several
performers at the same time.

The information collected by the gateway component is
aggregated every time step. This adjustable time step is set
to correspond to a beat of the music samples. For instance, if
the tempo is set to 60 bpm, the time step will be one-second
long. At the end of each time step, the mean and variance
of the 9 measures (3 accelerations, 3 angular speeds, 3 mag-
netic field measures) collected during this time step are com-
puted. This leads to 18 values describing the move that oc-
curred during the time step. These 18 values form a data
object in a space having 18 dimensions. This data object is
then sent to the move recognition unit.

Move recognition unit The move recognition unit is
based on KymeroClust, an evolutionary algorithm for sub-
space clustering used here to recognize categories of simi-
lar moves. This algorithm is based on a compact evolvable
genome structure and uses bio-inspired mutational opera-
tors. It uses a median-based representation of the categories
of moves that makes it resistant to noise and high dimen-
sional datasets (see below). These features allow Kyme-
roClust to exhibit good quality clusters when compared to
well-established clustering paradigms on real and synthetic
static datasets, while allowing for short runtimes.

Sound generator unit After the acquisition of a new data
point, KymeroClust determines the category of moves (clus-
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ter) to which this new point belongs. Then the cluster iden-
tifier is passed to the sound generator unit of the EvoMove
system, which sets a trigger to start to play, on the next
beat, the audio sample associated to this cluster identifier.
The cluster-sample association is randomly determined at
the first activation of a cluster. The set of samples itself is
built beforehand by a musician, following timber and har-
monic design principles, in order to form a coherent musical
atmosphere. Finally the Ableton Live program is used to
generate and play the music samples. From the user per-
spective, if the tempo is set to 60 bpm, this means that every
second a description of the user moves is computed, an au-
dio sample is started, and the system adapts its clustering
model.

Medians-based subspace clustering task
In a commensal architecture, the commensal layer is made
of a population of virtual bacteria that process the incoming
data and evolve while doing so (those bacteria more able to
produce good clusters being selected at each time step). In
EvoMove, this layer constitutes the move recognition unit
that constructs and updates a model of the performer moves.
As explained above, the move recognition unit is based on
clustering analysis, i.e., it relies on an algorithm that forms
groups of moves (clusters) that share similar characteristics.

Clustering based on medians
Different clustering algorithms relying on different sim-
ilarity measures and paradigms regarding the definition
of clusters have been proposed. Among the major cate-
gories (Müller et al., 2009), clustering-oriented approaches
group objects mainly using distance-based similarities and
tend to build center-based hyper-spherical shaped clusters.
The very well known K-means algorithm, for instance, uses
an Euclidean distance to produce clusters around centroids.
Other important techniques known as the K-medians ap-
proaches (Har-Peled and Kushal, 2006) are also important
in solving optimization tasks. The K-medians problem is
a well defined and NP-hard problem that has many differ-
ent applications (reader is referred to (Jamshidi, 2009) for
examples of real world applications of K-medians). These
techniques use the Manhattan distance to group data objects
around medians that are less sensitive to unusual and ex-
treme values and more robust to noise and outliers. More-
over according to (Aggarwal et al., 2001) the use of the Man-
hattan distance should be preferred for high dimensional
data mining applications, since this metric is less impacted
by the problem known as the curse of dimensionality.

Indeed, dealing with high dimensional data reveals to be
a challenging task since usual similarity measures tend to
be less meaningful in high dimensional spaces. This com-
plication leads traditional clustering techniques to struggle
with high dimensional data. To overcome this problem,
new clustering approaches called subspace-clustering ap-

proaches have been proposed in the literature. These ap-
proaches decompose the clustering task into two different
tasks that should be solved simultaneously: detect clusters in
the dataset and identify the relevant subspace of each clus-
ter. Various concepts have been investigated in the subspace
clustering community as reported for instance in (Kriegel
et al., 2012; Parsons et al., 2004). In order to take advantage
of the benefits of median-based representations and sub-
space clustering ones, we developed a median-based sub-
space clustering algorithm (KymeroClust) and used it to
model the performer moves. As explained above, in the
commensal architecture, the objective function of the com-
mensal layer is different from the one of the host (and from
the one of the entire system). Hereafter we describe more
formally the objective function that is used by KymeroClust.

Let a set of objects S = {s1, s2 . . . } denote a dataset.
Each object in S has a unique identifier and is described in
RD by D features (the coordinates of the object). Let D
denote the number of dimensions (i.e., the dimensionality)
of S. Each dimension is represented by a number from 1
to D and the set of all dimensions of the dataset is denoted
D = {1, . . . , D}.

A subspace clustering M, called hereafter a model , is
a set of centers such that each center mi ∈ M is asso-
ciated to a subspace Di of D. From the point of view of
center-based subspace clustering, a cluster center described
in a given subspace can be perceived informally as a sum-
mary of the cluster objects. Indeed this set of objects can
be represented in a more abstract way simply by the loca-
tion of the center along the dimensions considered in the
cluster subspace. For a dimension d that is not in Di, the in-
tended meaning is that, along d, the objects of the cluster fol-
low the same distribution as the other objects of the dataset.
For an object s, the Absolute Error is then AE(s,M) =
minmi∈M dist(s,mi), where dist(s,mi) =

∑
d∈Di

|sd −
mi,d| +

∑
d∈D\Di

|sd|, with mi,d the coordinate of mi in
dimension d. The Sum of Absolute Errors (SAE) is then
defined as SAE(S,M) =

∑
s∈S AE(s,M). Each object

is associated to the center mi that minimizes dist(s,mi).
If several centers minimize this expression then the object
is non-deterministically associated to one of them. Finally,
the size of a model M, noted Size(M), is defined as the
sum of the dimensionalities of each subspace associated to
the centers in M, and is interpreted as the level of detail
captured by the clustering. To perform such a median-based
subspace clustering, the core task performed by Kymero-
Clust is to evolve modelsM (one per individual) that min-
imize the SAE and such that Size(M) ≤ SDmax, where
SDmax is a parameter denoting the maximum Sum of Di-
mensions used inM to define all the subspaces. Since the
algorithm aims to minimize the SAE(M,S), this objective
function can be seen as the phenotypic error of the individ-
ual encodingM, in the environmental context of the dataset
S, and its fitness can be computed taking the opposite of the



phenotypic error. In terms of commensal architecture, the
success of the commensal layer is thus linked to its ability to
efficiently model the incoming data, regardless of the quality
of the music. Note however that if the music is not recog-
nized by the dancer, then he is likely to modify his behavior,
thus producing new kinds of moves and large changes in the
dataset, leading to directional selection in the commensal
layer.

KymeroClust
KymeroClust is based on a phenotypic representation sim-
ilar to ChameleoClust, an evolutionary subspace cluster-
ing algorithm developed previously by the EvoEvo consor-
tium (Peignier et al., 2015). As ChameleoClust, Kymero-
Clust takes advantage of an evolvable representation of the
genotypes to adapt the numbers of clusters produced and
the subspace dimensionalities according to the performer
moves. However, since KymeroClust must be able to up-
date its model and to compute the relevant cluster in real
time (i.e. while the dancers dance), we used an indirect cod-
ing of the genome structure and new bio-inspired mutation
operators to increase the algorithm efficiency, both in terms
of runtime and adaptation speed. The complete description
of KymeroClust and its comparison to the main subspace
clustering methods can be found in Peignier (2017).

Genotype-Phenotype representation
As in ChameleoClust, in KymeroClust each individual phe-
notype is a model M, i.e., a set of centers each being de-
fined in its own subspace. To allow for an efficient com-
putation, individuals are encoded by a dual structure that
allows to encode at once an implicit representation of the
genome and an explicit representation of the phenotype of
the individual thus avoiding to compute the phenotype of
each individual at each generation. The biological analogs
of KymeroClust subspace-clustering paradigm is the follow-
ing: each center is a phenotypic trait composed of several
biological functions – a function being the coordinate of a
center along a given dimension. Then, a given gene con-
tributes to one and only one function but a given function
can be performed by several genes, possibly carrying dif-
ferent alleles. The genes are implicitly represented and we
only store the number of genes involved in a given biolog-
ical function (i.e. a coordinate) of a given phenotypic trait
(i.e. a center) as well as their mean contribution. This level
of description is flexible enough and enables to implement
a gene-duplication-divergence mechanism while being ab-
stract enough to avoid the use of a genotype to phenotype
mapping function to compute phenotypes from genotypes at
each generation.

The implicit representation of the genome is based on a
weighted model. In KymeroClust each individual is encoded
by a pair of matrices M = 〈L,W〉 that respectively de-
scribe the phenotype ofM and the genotypic structure that

encodes it. More precisely, L encodes the values of the bio-
logical functions: An element Li,d represents the coordinate
of a center mi along dimension d (thus defining the pheno-
typic function). The matrixW encodes the number of genes
encoding a given biological function: An elementWi,d de-
notes the number of genes encoding the coordinate Li,d.

Given L andW, the subspace associated to a center mi is
Di = {d ∈ {1, . . . , D}|Wi,d > 0}. Valid centers are those
for which at least one dimension is defined, and their set of
index is simply Γ = {c ∈ {1, . . . , SDmax}|

∑
dWc,d > 0}.

To permit to encode a model of size SDmax but no more,
both matrices have SDmax rows and D columns.

Variation operators
The exploration of the space of possible clustering models is
ensured here by two bio-inspired mutational operators: gene
duplications-divergence and gene deletions. Given the struc-
ture of the individuals, these operators revealed to be key el-
ements of the algorithm since they allow a joint exploration
of the space of solutions and of the space of possible genome
structures.

It is well known that duplicated genes have an important
role in evolution (Ohno, 1970) as they constitute raw ma-
terial that can evolve through divergence, thus facilitating
the acquisition of new functions and allowing individuals to
quickly adapt to new environments. However, most of the
duplicated genes are deleted (reverted) just after being cre-
ated, especially if the gene duplication leads to deleterious
consequences related to dosage effects (Conant and Wolfe,
2008). Indeed, new functions emerge only when one copy
mutates (divergence). Hence the appearance of new func-
tions via gene duplication-divergence is slow, indirect and
fragile (one copy can be deleted anytime). Therefore we
decided to group gene duplication and gene divergence in
a single operation. Moreover, in order to avoid deleterious
dosage effects, multiple genes coding for the same biolog-
ical function have a non-additive effect on it. Indeed gene
multiplicity only has an impact on the robustness (backup
genes) and the evolvability (larger mutational target) of the
biological function.

Duplication-divergence operator When a duplication
occurs, a gene is randomly chosen on the genome (i.e. a
non-null row in the matrixW). This gene is duplicated and
immediately mutated. The mutation has two possible out-
comes: Functional divergence or allelic divergence. With a
low probability functional divergence gives birth to a new
phenotypic trait hence creating a new center in the pheno-
type. Otherwise the functional divergence leads to the ac-
quisition of a new biological function that still contributes
to the same phenotypic trait as the original gene (the cen-
ter acquires a new coordinate along an unexplored dimen-
sion). If the duplicated gene undergoes allelic divergence,
the value of the corresponding biological function is modi-



fied (the coordinate is changed). In both cases, the new func-
tion is randomly chosen in the domain of the possible func-
tions. This choice is supported by the fact that new proteins
created through gene duplication and subsequent divergence
may still be involved in reactions related to the role of the
original protein (Eisenberg and Levanon, 2003).

The duplication-divergence operator modifies both the
genome structure (W) by increasing the number of genes
associated to the biological function involved and by modi-
fying the given biological function (the center location in L)
thus changing the phenotypic representation. Importantly,
in KymeroClust, gene mutations (i.e. divergence) are not
uniformly chosen. Indeed, when a bacteria faces a new en-
vironmental challenge, its evolutionary fate is partly pre-
dictable and partly not. Indeed, we KNOW that the bac-
teria will adapt by integrating information from its environ-
ment but we DO NOT KNOW how it will do it at the ge-
netic level (Lässig et al., 2017). We model the unpredictable
part by choosing randomly the genes that are duplicated (or
deleted – see below). On the opposite, the predictable part
lies in the divergence process: In case of a divergence (ei-
ther functional or allelic), the set of values that can be taken
by the new biological functions (i.e. center coordinates in
L) are randomly chosen among the coordinates of the avail-
able data objects. Then the exploration space is restrained
and it is easier for the individuals to acquire new promis-
ing functions, leading the algorithm toward better candidate
solutions.

Deletion operator Most of the time the deletion operator
modifies only the genome representation by decreasing the
number of genes associated to the function. This operator
only modifies the phenotype when no more genes encode
the function after the deletion, in this case the function is
suppressed from the phenotypic trait (i.e. the location of the
center along the given dimension is set to zero in L).

Genome size and model size The algorithm uses the data
objects themselves to generate the children of a model M
through mutations: A child of a modelM is a model that can
be obtained fromM by inserting or removing a dimension
in a subspace and setting a center coordinate to a value equal
to one of the object coordinates (gene deletion and gene du-
plication/divergence operators). However, this may result in
the indefinite increase of the genome size and possibly to
very bad clustering performance (e.g. one cluster per object
in the dataset). That is why we set a maximum genome size
SDmax (the genome size being defined as the total number
of genes in the genome:

∑
i,jWi,j). It is worth to say that

SDmax constrains the maximal size of the subspace model
encoded in the genome. However, the algorithm has still
an important degree of freedom to adapt the size of the sub-
space clustering model it encodes. This flexibility is ensured
by duplicate genes since more than one gene can encode the

same biological function and thus the size of the resulting
model can be smaller than the genome size itself. In addi-
tion KymeroClust can also encode centers that correspond
to empty clusters, in this case associated genes can be seen
as non-functional genes. This enhances the ability of the
algorithm to adapt the number of clusters it produces.

Evaluation and selection
In practice the SAE is not evaluated on the entire dataset,
KymeroClust relies on a sliding window S̃ that only keeps
the latest data objects (i.e. the latest moves of the performer)
and assess the SAE on it.

Each time step a new point from the data stream is re-
ceived by KymeroClust, the oldest object from the sliding
sample is replaced by the new point. From an evolutionary
point of view, this corresponds to an environmental modifi-
cation. The effect of the new environment on the population
can be assessed by computing the SAE (of the best indi-
vidual) in the new environment. This can be done very ef-
ficiently: the AE associated to the oldest point is deducted
from the SAE while the new point is assigned to its closest
clusters and the AE corresponding to this point is added to
the SAE. Now, either the new SAE can be larger or smaller
than the former one. This corresponds respectively to chal-
lenging and non-challenging environmental variations. In
case of non-challenging variation, the selection pressure on
the population is supposed to be stabilizing and no mutation
is fixed (in practice no new generation is computed). In case
of a challenging environment variation, i.e. if the SAE of
the best individual increases, the selection pressure is sup-
posed to be directional and a new generation is computed
following a (1, λ) Evolutionary Strategy selection scheme:
The model M with the lowest phenotypic error (SAE) is
selected to generate λ children. Then the offspring under-
goes mutation and the SAE of the new candidate models
are evaluated. Finally only the best individual, among the
λ children and the parental modelM, is chosen to populate
the next generation.

Initialization KymeroClust is organized in two different
phases, an initial phase called construction phase operates
during the first generations and a stationary phase that oper-
ates then until the end of the performance.

The algorithm takes as initial individual M∅, the empty
model (a model containing no center), for which the def-
inition of AE is extended as AE(s,M∅) =

∑
d∈D |sd|.

During the construction phase, whenever a new individual
is produced by replication, one duplication-divergence oper-
ation is applied, but no deletion is performed. Consequently
the genomes of the individuals are progressively built
from scratch along generations by successive duplications-
divergences until genomes reach the genome size SDmax.
Once the construction phase ends, the algorithm enters in a
stationary phase and remains in this phase until the end of



the run. During this phase, each time a replication occurs
in directional selection, the gene deletion operator is applied
before the gene duplication-divergence operator to keep the
genome size constant (note that, as explained above, this
does not mean that the model size is constant during the sta-
tionary phase).

Parameter setting At the beginning of each EvoMove
session, the user chooses the set of audio samples that the
system will use during the performance, the number of sen-
sors, a well as the main parameters of the KymeroClust al-
gorithm. This parameter setting was the same for all exper-
iments reported here. The maximal genome size was set to
SDmax = 100. The model could for instance build a max-
imum of 10 clusters with subspaces having 10 dimensions
as well as 100 clusters in mono-dimensional subspaces. The
number of objects in the sliding sample used to assess the
fitness of the individuals was set to |S̃| = 100. Finally, in
order to largely explore the space of candidate solutions, the
number of children produced at each generation was set to
λ = 100.

Experiments
During the prototyping and tests of the EvoMove sys-
tem, we had the occasion to work with different peo-
ple to go deeper in our understanding of the behav-
ior of the system and to what extend it could be used
and enhanced in order to help dancers in their cre-
ation/performance process. In particular we had the occa-
sion to work with professional dancers from the Anou Skan
dance company (http://www.anouskan.fr, later-on
called the “Anou Skan experiment”) and from the Dé-
soblique company (later-on called the “Désoblique exper-
iment”). Two videos of the Anou Skan experiment can
be found at https://www.youtube.com/channel/
UCoyfXJx_izpQZi6hD8w5M3A. In addition the Evo-
Move system has also been used in public performances
Meute (Pack in English) in February and March 2017 (by
Claire Lurin - Désoblique danse company, and perform-
ers: Claire Lurin, Jean Boulvert, Maxence D’Hauthuille and
Jonas Abernot).

In this section we first describe the settings of the Evo-
Move system used in all these experiments, then we will
illustrate the EvoMove performance by commenting the on-
line videos and discuss the dancers and the audience percep-
tion of the system. We will then conclude by discussing the
performances of the EvoMove system and providing insights
regarding the conception of a personal living companion.

Sensor setting Beyond the preprocessing choices (com-
puting means and variances over one time step), and the
KymeroClust settings, the interaction between EvoMove
and the performer(s) can be configured. The first critical

choice is of course the number and position of the sensors on
the bodies of the performers. In the Anou Skan experiment,
we used two sensors attached to the wrists of one dancer.
During the Désoblique experiment Claire Lurin used up to 4
sensors. One was attached to her right wrist, one to her left
ankle, one in her hair and one on the abdomen. In the pub-
lic Meute performance, three dancers were equipped with
sensors.

Importantly, the number of KymeroClust instances used
to process the collected data can be different from the num-
ber of sensors. One can use a single instance collecting all
the data or one instance per sensor or whatever combination
(e.g. one instance for the two arms and one instance for the
two legs). In the Anou Skan experiment accessible online,
the two sensors were collected by two different instances of
KymeroClust running at the same time, each of them using
its own set of audio samples. However, this setup is only one
of the numerous possible ones with this system. As expe-
rienced during the public performance, several users could
wear sensors, several sensor measures could be combined to
describe moves (e.g., using the difference between two mea-
sures or their product) and data captured by different sensors
could be sent to the same KymeroClust instance. In some of
our experiments, sensors have been added, removed or even
passed from one performer to another one on the fly, without
requiring any reconfiguration of the system. This versatility
is one of the benefit of the commensal architecture since the
commensal layer adapts dynamically to the new conditions,
continuously delivering coherent output to the host layer.

Audio setting The second critical choice is the audio set-
ting. Apart from the choice of the audio samples themselves
and from the music tempo (set to 60 bpm in all our experi-
ments), one can choose when the sample will be played. In
all our experiments, a given sample was triggered at each
time step. More precisely, at the end of the time step, the
data collected during this time step is associated to a clus-
ter identifier that is mapped to an audio sample to be played
on the next beat. Importantly, the audio samples used in the
experiments were from one time-step up to four time-steps
long (most of them spreading over four time steps). This
gives a feeling of "trails", moves initiating sounds that will
fully stop later. When a long sample was triggered at con-
secutive time steps, it was restarted at its beginning for each
time step and was only entirely played at its ultimate activa-
tion.

User perception and system behavior Interesting ques-
tions that have motivated the EvoMove demonstrator involve
the interaction between the users and the EvoMove “living”
personal companion. Does the user feels that an interaction
with the system is established? Does it seem to the user that
the system behaves randomly or that he is able to influence
the system in some directions?

http://www.anouskan.fr
https://www.youtube.com/channel/UCoyfXJx_izpQZi6hD8w5M3A
https://www.youtube.com/channel/UCoyfXJx_izpQZi6hD8w5M3A


During the trial sessions that were organized with differ-
ent users to analyze the system, we also asked them about
their feeling about the system and their interaction with it.
These tests were performed with people having different
backgrounds and different approaches of the system, rang-
ing from people involved in the development of the project,
to professional dancers and also musicians. Hereafter we
provide three examples of the mental representations and
feelings of three users regarding their interactions with the
system. These descriptions were collected after the first trial
of the system by the users.

• When using EvoMove, one of the developers of the sys-
tem, had a geometrical representation of the system, feel-
ing himself placing points in a multidimensional space, so
as to push and pull candidate cluster centers around in this
space. This feeling enables him to create clusters but also
to adapt them to his will.

• A musician described himself as feeling involved in a
taming relationship with the system, trying to repeat ges-
tures so as for the machine to memorize it, trying to insist
on some distinctions between gestures, just as if the user
was teaching a trick to an animal.

• A dancer perceived the system as a monitoring tool for her
moves, that was noticing small move differences by play-
ing a different sound, as if a specialist (a dance teacher)
was checking the correctness of her moves.

From the discussions we had with the users, it appeared
that they had very different inner representations of what the
system was doing and they also had different feelings re-
garding their interaction with the system. In particular they
imagined different applications of the system, ranging from
its use as a dance improvisation companion to its use as an
electronic instrument that could be mastered to control what
sound will be played by the system. These observations are
rather encouraging, since they illustrate the wide scope of
applications of the EvoMove system and also suggest that
the users perceive that the system interacts with them.

Interestingly, some emergent behaviors of the systems
that were not predicted have been observed during the work-
ing sessions. Let us illustrate this on the video EvoMove
AnouSkan 1 (https://www.youtube.com/watch?
v=p_eJFiQfW1E&t=141s).

• Biological organisms are immersed in environments that
constantly change. Hence they must adapt constantly to
new environments. However they can do so through the
acquisition of new traits or, more basically, by adapting
existing traits. In KymeroClust, when a new move is in-
troduced by the user, the system can create a new center
(phenotypic trait), but, if the new move is close to a one
previously observed, KymeroClust can simply drift an ex-
isting center to account for the modification. An exam-
ple of this behavior can be observed in the video from

timestamp 1′28′′ to 1′54′′. During this period, the dancer
slightly transforms her moves at each repetition, but the
sound remains the same along these thirty seconds. The
variations of the dancer moves are followed by the system
through the gradual changes of the associated center.

• Some phenotypic traits are specific to a given environ-
ment, therefore if an individual is never confronted to
this environment, the genes involved in the trait are not
used (biologically, the genes are not activated). As a con-
sequence there is no selective pressure to remove these
genes and they can be conserved for many generations.
In the EvoMove this allows moves that have been played
once to be recognized later on, even though they were not
activated for a period longer than the observation window
that is 100 seconds long (a sample of 100 objects received
at a rate of one object per second). This can be observed
in the video EvoMove AnouSkan 1: three occurrences of
a circular walk (timestamps 2′00′′, ′4′10′′ and 6′00′′) are
accompanied by the same sounds.

Conclusion
Most of the state-of-the-art move recognition systems used
in music control, rely on many specific sensors and pre-
processing steps, combined with supervised learning algo-
rithms. On the contrary, thanks to its commensal architec-
ture, the EvoMove system uses a few generic sensors, that
can be placed anywhere on the body and changed at anytime:
The music produced by the host (sounds generator) depends
on a model dynamically updated by the virtual commen-
sal organisms (KymeroClust), which themselves depend on
the moves the user executes in reaction to the music heard.
Hence, EvoMove creates a feedback loop including the hu-
man user. Moreover, since the timing of the loop iteration
is rather short (around one second), the EvoMove enables
a direct, enactive, interaction between the system and the
user. Interestingly, here the user does not have a full con-
trol over the system, but he can influence it, and contrary to
most software where the human acts on a system, here the
user is acting in the system. Indeed, we hypothesize that the
efficiency of EvoMove could be partially related to the in-
tegration of the human user in the feedback loop. Indeed,
since the dancer receives a direct feedback from the sys-
tem regarding his previous action, he can adapt (even uncon-
sciously) his actions in order to be understood by the system.
This behavior depends on the representation the user has of
the system, and therefore this mental image could help the
dancer to maintain and enrich the interaction with the sys-
tem.

EvoMove opens a lots of possibilities. An interesting per-
spective would be to use the cluster centers to directly con-
trol the sound generation as in (Choi and Bargar, 2014).
Another possibility would be to let the samples evolve as
in (Abernot et al., 2016), rather than relying on predefined

https://www.youtube.com/watch?v=p_eJFiQfW1E&t=141s
https://www.youtube.com/watch?v=p_eJFiQfW1E&t=141s


samples. One could also use the same architecture for other
purposes like rehabilitation (Brunelli et al., 2006) or to con-
trol other systems: A version in which the host produce
drone commands rather that music samples is being devel-
oped. The objective here is to test whether the drone can act
as a dance (or game) companion. However, the most excit-
ing perspective is to explore the artistic landscape opened by
this “living” musical companion. Indeed, while several ex-
amples of systems (Ng, 2004) or performances (Variations V
by Merce Cunningham and John Cage, or Virus/Antivirus by
Cie Lanabel), also use motion sensors, the novelty of Evo-
Move is to let open the mapping between the motion space
and the sound space. Indeed, the correspondence between
sounds and movements is not chosen in advance, it is built
on-the-fly depending on the moves made and repeated by
the performers. So, the performers have to find their own
way through a musical landscape generated by them and for
them.

To conclude, it is worth noticing the reaction of the audi-
ence when the EvoMove system has been used in the public
Meute performances. The artists chose not to inform of the
EvoMove use, thus the audience was naive. After the per-
formances we collected reactions, and actually we were not
able to find someone having noticed something special (even
a person knowing that the system was used admitted that he
forgot it during the show). Whether this is good or bad news
is a matter of discussion...
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