43 research outputs found

    Subset feedback vertex set is fixed parameter tractable

    Full text link
    The classical Feedback Vertex Set problem asks, for a given undirected graph G and an integer k, to find a set of at most k vertices that hits all the cycles in the graph G. Feedback Vertex Set has attracted a large amount of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a rich source of ideas in the field. In this paper we consider a more general and difficult version of the problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an instance comes additionally with a set S ? V of vertices, and we ask for a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et al. [SICOMP'00, SIDMA'00]. The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawarabayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is fixed-parameter tractable when parametrized by |S|. Next we present an algorithm which reduces the given instance to 2^k n^O(1) instances with the size of S bounded by O(k^3), using kernelization techniques such as the 2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1

    Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable

    Get PDF
    Given a graph GG and an integer kk, the Feedback Vertex Set (FVS) problem asks if there is a vertex set TT of size at most kk that hits all cycles in the graph. The fixed-parameter tractability status of FVS in directed graphs was a long-standing open problem until Chen et al. (STOC '08) showed that it is FPT by giving a 4kk!nO(1)4^{k}k!n^{O(1)} time algorithm. In the subset versions of this problems, we are given an additional subset SS of vertices (resp., edges) and we want to hit all cycles passing through a vertex of SS (resp. an edge of SS). Recently, the Subset Feedback Vertex Set in undirected graphs was shown to be FPT by Cygan et al. (ICALP '11) and independently by Kakimura et al. (SODA '12). We generalize the result of Chen et al. (STOC '08) by showing that Subset Feedback Vertex Set in directed graphs can be solved in time 2O(k3)nO(1)2^{O(k^3)}n^{O(1)}. By our result, we complete the picture for feedback vertex set problems and their subset versions in undirected and directed graphs. Besides proving the fixed-parameter tractability of Directed Subset Feedback Vertex Set, we reformulate the random sampling of important separators technique in an abstract way that can be used for a general family of transversal problems. Moreover, we modify the probability distribution used in the technique to achieve better running time; in particular, this gives an improvement from 22O(k)2^{2^{O(k)}} to 2O(k2)2^{O(k^2)} in the parameter dependence of the Directed Multiway Cut algorithm of Chitnis et al. (SODA '12).Comment: To appear in ACM Transactions on Algorithms. A preliminary version appeared in ICALP '12. We would like to thank Marcin Pilipczuk for pointing out a missing case in the conference version which has been considered in this version. Also, we give an single exponential FPT algorithm improving on the double exponential algorithm from the conference versio

    A randomized polynomial kernel for Subset Feedback Vertex Set

    Get PDF
    The Subset Feedback Vertex Set problem generalizes the classical Feedback Vertex Set problem and asks, for a given undirected graph G=(V,E)G=(V,E), a set S⊆VS \subseteq V, and an integer kk, whether there exists a set XX of at most kk vertices such that no cycle in G−XG-X contains a vertex of SS. It was independently shown by Cygan et al. (ICALP '11, SIDMA '13) and Kawarabayashi and Kobayashi (JCTB '12) that Subset Feedback Vertex Set is fixed-parameter tractable for parameter kk. Cygan et al. asked whether the problem also admits a polynomial kernelization. We answer the question of Cygan et al. positively by giving a randomized polynomial kernelization for the equivalent version where SS is a set of edges. In a first step we show that Edge Subset Feedback Vertex Set has a randomized polynomial kernel parameterized by ∣S∣+k|S|+k with O(∣S∣2k)O(|S|^2k) vertices. For this we use the matroid-based tools of Kratsch and Wahlstr\"om (FOCS '12) that for example were used to obtain a polynomial kernel for ss-Multiway Cut. Next we present a preprocessing that reduces the given instance (G,S,k)(G,S,k) to an equivalent instance (G′,S′,k′)(G',S',k') where the size of S′S' is bounded by O(k4)O(k^4). These two results lead to a polynomial kernel for Subset Feedback Vertex Set with O(k9)O(k^9) vertices

    Covering Small Independent Sets and Separators with Applications to Parameterized Algorithms

    Full text link
    We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple linear time randomized algorithm that given as input a dd-degenerate graph GG and an integer kk, outputs an independent set YY, such that for every independent set XX in GG of size at most kk, the probability that XX is a subset of YY is at least (((d+1)kk)⋅k(d+1))−1\left({(d+1)k \choose k} \cdot k(d+1)\right)^{-1}.The second is a new (deterministic) polynomial time graph sparsification procedure that given a graph GG, a set T={{s1,t1},{s2,t2},…,{sℓ,tℓ}}T = \{\{s_1, t_1\}, \{s_2, t_2\}, \ldots, \{s_\ell, t_\ell\}\} of terminal pairs and an integer kk, returns an induced subgraph G⋆G^\star of GG that maintains all the inclusion minimal multicuts of GG of size at most kk, and does not contain any (k+2)(k+2)-vertex connected set of size 2O(k)2^{{\cal O}(k)}. In particular, G⋆G^\star excludes a clique of size 2O(k)2^{{\cal O}(k)} as a topological minor. Put together, our new tools yield new randomized fixed parameter tractable (FPT) algorithms for Stable ss-tt Separator, Stable Odd Cycle Transversal and Stable Multicut on general graphs, and for Stable Directed Feedback Vertex Set on dd-degenerate graphs, resolving two problems left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms can be derandomized at the cost of a small overhead in the running time.Comment: 35 page

    A polynomial kernel for Block Graph Deletion

    Get PDF
    In the Block Graph Deletion problem, we are given a graph GG on nn vertices and a positive integer kk, and the objective is to check whether it is possible to delete at most kk vertices from GG to make it a block graph, i.e., a graph in which each block is a clique. In this paper, we obtain a kernel with O(k6)\mathcal{O}(k^{6}) vertices for the Block Graph Deletion problem. This is a first step to investigate polynomial kernels for deletion problems into non-trivial classes of graphs of bounded rank-width, but unbounded tree-width. Our result also implies that Chordal Vertex Deletion admits a polynomial-size kernel on diamond-free graphs. For the kernelization and its analysis, we introduce the notion of `complete degree' of a vertex. We believe that the underlying idea can be potentially applied to other problems. We also prove that the Block Graph Deletion problem can be solved in time 10kâ‹…nO(1)10^{k}\cdot n^{\mathcal{O}(1)}.Comment: 22 pages, 2 figures, An extended abstract appeared in IPEC201

    Odd Multiway Cut in Directed Acyclic Graphs

    Get PDF
    We investigate the odd multiway node (edge) cut problem where the input is a graph with a specified collection of terminal nodes and the goal is to find a smallest subset of non-terminal nodes (edges) to delete so that the terminal nodes do not have an odd length path between them. In an earlier work, Lokshtanov and Ramanujan showed that both odd multiway node cut and odd multiway edge cut are fixed-parameter tractable (FPT) when parameterized by the size of the solution in undirected graphs. In this work, we focus on directed acyclic graphs (DAGs) and design a fixed-parameter algorithm. Our main contribution is an extension of the shadow-removal framework for parity problems in DAGs. We complement our FPT results with tight approximability as well as polyhedral results for 2 terminals in DAGs. Additionally, we show inapproximability results for odd multiway edge cut in undirected graphs even for 2 terminals
    corecore